CS626: Speech, NLP and the Web

Softmax FFNN-BP and Neural Dependency Parsing Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Week of 26th October, 2020

Dependency parsing algorithms

Makin approaches

Rule based approach: CP to DP

Speech and Language Processing, Jurafksy & Martin, Ch-15, 2019

Head directionality

- Head final languages
 - Head final structure
 - Head of a phrase follows its complements
 - Example: Hindi is strong head final language
- Head initial languages
 - Head initial structure
 - Head of a phrase precedes its complements
 - Example: English is strong head-initial language
- Head
 - Component of a phrase which determines the category of the phrase
 - Example: Head of a verb phrase is verb

Rule based approach: CP to DP

• Two main acts

- Identify all the head-dependent relations
- Identifying the correct dependency relations for above relations

Task involves

- Marking the head
- Make the head of each non-head depend on the head

Jurafsky, Dan. Speech & language processing. Pearson Education India, 2000.

Example

• Ram stayed at home in the evening

• raam shaam ko ghar par rahaa

English-Hindi: Head Initial-Head Final

English CP \rightarrow DP cntd. S (stayed) stayed NP (Ram) VP (stayed) at IN Ram PP (in) NNP PP (at) VBD home evening stayed PNP (home) P NP (evening) the Ram Ν in DT Ν at home the evening root case pobj *d*ase nsubj pobj det evening in Ram home the stayed at

English Compact DP with labels

Relevant discussion: different types of subjects (nsubj, dsubj, gsubj)

- *nsubj*: Nominative subject
- Languages do have non-nominal subject
 - Dative subject is very common in Indian languages
 - Example
 - Hindi: मुझे आम चाहिए
 - English: I want Mango.
 - मुझे: Dative case (सम्प्रदान कारक) (dsubj: dative subject)
 - I: Nominative case (nsubj)

Deeper representation

- Deeper representation towards meaning
 nsubj is shallower than *agent*
 - nsubj will lead to agent
 - Semantic role labeled graph
 - Compact DP with labels
 - The relations captures the exact semantics of the situation
 - Case relationships: loc, time, agent
 - Indicate semantic relationships of the noun with the main verb

Hindi $CP \rightarrow DP$

Hindi Compact DP with labels

A Digression: Vauquois Triangle in Machine Translation

The deeper the NLP analysis, the closer the representations and the easier the analysis

Grammatical head and Semantic Head

Grammatical Head: Word whose POS gives the Phrase its name

 Semantic Head: Word that carries the "semantic load"

Data Driven: two approaches

- Transition-based
 - State machine for mapping a sentence to its dependency graph
 - Inducing a model for predicting the next transition, given the current state and the transition history so far.
- Graph-based
 - Induce a model for assigning scores to the candidate dependency graphs for a sentence
 - Find the maximum-scoring dependency Tree
 - Maximum spanning tree (MST) parsing

Basic Transition Based DP

Examines top two elements of the stack and selects an action based on consulting an oracle that examines the current configuration.

Speech and Language Processing, Jurafksy & Martin, Ch-15, 2019

Example: transition based

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]		LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]		RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]		Done	

Trace of a transition-based parse

Speech and Language Processing, Jurafksy & Martin, Ch-15, 2019

A neural transition based parser (chen and Manning 2014)

Notion of Projectivity

Definition

- An arc from a head to a dependent is said to be projective if there is a path from the head to every word that lies between the head and the dependent in the sentence
- A dependency tree is then said to be projective if all the arcs that make it up are projective
- Intuition- the dependency graph can be drawn on a plane w/o crossing of arcs

Example of projectivity

Another example

Learning of transitions

Speech and NLP, J & M, Ch 15, 2019.

Recall: transition based DP

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]		LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]		RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]		Done	

Trace of a transition-based parse

Speech and Language Processing, Jurafksy & Martin, Ch-15, 2019

Basic Transition Based DP

Examines top two elements of the stack and selects an action based on consulting an oracle that examines the current configuration.

Speech and Language Processing, Jurafksy & Martin, Ch-15, 2019

Operators: shift, leftarc, rightarc

function DEPENDENCYPARSE(words) returns dependency tree

```
state \leftarrow {[root], [words], [] }; initial configuration
while state not final
```

 $t \leftarrow ORACLE(state)$; choose a transition operator to apply state $\leftarrow APPLY(t, state)$; apply it, creating a new state **return** state

Generation of Training Data

Step	Stack	Word List	Predicted Action
0	[root]	[book, the, flight, through, houston]	SHIFT
1	[root, book]	[the, flight, through, houston]	SHIFT
2	[root, book, the]	[flight, through, houston]	SHIFT
3	[root, book, the, flight]	[through, houston]	LEFTARC
4	[root, book, flight]	[through, houston]	SHIFT
5	[root, book, flight, through]	[houston]	SHIFT
6	[root, book, flight, through, houston]	[]	LEFTARC
7	[root, book, flight, houston]		RIGHTARC
8	[root, book, flight]	Π	RIGHTARC
9	[root, book]		RIGHTARC
10	[root]		Done

Training data

How are operators generated

- LEFTARC(r): if $(S_1 r S_2) \in R_p$ RIGHTARC(r): if $(S_2 r S_1) \in R_p$ and $\forall r', w s.t.(S_1 r' w) \in R_p$ then $(S_1 r' w) \in R_c$
- SHIFT: otherwise

Generation of Training Data

Step	Stack	Word List	Predicted Action
0	[root]	[book, the, flight, through, houston]	SHIFT
1	[root, book]	[the, flight, through, houston]	SHIFT
2	[root, book, the]	[flight, through, houston]	SHIFT
3	[root, book, the, flight]	[through, houston]	LEFTARC
4	[root, book, flight]	[through, houston]	SHIFT
5	[root, book, flight, through]	[houston]	SHIFT
6	[root, book, flight, through, houston]		LEFTARC
7	[root, book, flight, houston]		RIGHTARC
8	[root, book, flight]		RIGHTARC
9	[root, book]		RIGHTARC
10	[root]		Done

Training data

A neural transition based parser (chen and Manning 2014)

Features: example sentence "cancelled flights to Houston"

 $\langle s_1.w = flights, op = shift \rangle$ $\langle s_2.w = canceled, op = shift \rangle$ $\langle s_1.t = NNS, op = shift \rangle$ $\langle s_2.t = VBD, op = shift \rangle$ $\langle b_1.w = to, op = shift \rangle$ $\langle b_1.t = TO, op = shift \rangle$ $\langle s_1.wt = flightsNNS, op = shift \rangle$

DP across languages

• "people in front of the house told me"

 "gharaasamorchyaanii malaa saaMgitle"

 "ghar ke saamnewaloM ne mujhe batayaa"

Multilingual DP

• *"people in front of the house told me"*

Examines top two elements of the stack and selects an action based on consulting an oracle that examines the current configuration.

Speech and Language Processing, Jurafksy & Martin, Ch-15, 2019

Essence of DP

 Cannot pop a *head* out of the stack if any of its dependents remains on the stack

• The above works if the sentence is projective