CS626: Speech, NLP and the Web

Dependency Parsing, Technique of Probabilistic Parsing, Difficult Parsing Phenomena Pushpak Bhattacharyya **Computer Science and Engineering** Department IIT Bombay Week of 28th September, 2020

Agenda for the week

- Dependency Parsing (DP), Need for DP
- DP algorithms
- Probabilistic DP

Difference between "Discriminative" and "Generative" Models

- Historical reason
- Binary classification problem
- Want to decide if a patient has cancer based on different "features" from the reports
- $Argmax_D(P(D|S))$
- D takes values 'Y' and 'N'
- Decide 'Y' if P(D=Y|S) > P(=N|S), else 'N'

Discriminative Model

- Compute *P*(*D*/*S*) directly
- "Features" from reports, $S = \{F_1, F_2, F_3, ..., F_K\}$ (like, fever, weight loss, hair loss, haemoglobin level etc.)
- P(D=Y|<fever, weight loss, hair loss, haemoglobin level,...>)
- We are discriminating, i.e., differentiating wrt the features input

Generative Model

- Compute P(D) and P(S|D) and take product
- For P(D) we will need the proportion of cancer patients in the population (obtained via sampling)
- For the likelihood, we will make use of naïve Bayes assumption and require values of *P*(*F_i*|*D*), e.g., what is the probability of a cancer patient having fever
- Hence the "discrimination" is not direct!!

Garden path phenomenon

Ellipsis

- Text is dropped (filled in the mind of the recipient by context)
- Example
 - Horses raced past the garden neighed loudly.
 - Horses, which were raced past the garden, neighed loudly
 - Subject NP: Horses raced past the garden
 - Ram reads
 - Ram reads a book.
 - "a book" or anything which can be read is implicit

Garden path sentences: Horses raced past the garden neighed loudly

Horses raced past the garden neighed loudly: Correct parse

- Correct parse
- "raced" can not be main verb
- "neighed" is the main verb

Buffalo₁ buffaloes₂ buffaloes₃ buffalo₄ cow₅ cows₆ buffaloes₇ buffalo₈

Need for dependency parsing

Two kinds of parse representations: Constituency Vs. Dependency

- Penn Constituency Treebank
 - http://www.cis.upenn.edu/~treebank/
- Prague Dependency Treebank

 http://ufal.mff.cuni.cz/pdt2.0/

"I saw the boy with a telescope": Constituency parse-1: telescope with boy

"I saw the boy with a telescope": Dependency Parse Tree-1

Constituency Parse Tree-2: telescope with me S VP NP PP NP Ν NP Det N saw Det N with

а

boy

telescope

а

þ**ð**rsing:pushpak

Dependency Parse Tree-2

Advantage of DP over CP

 Related entities are closer in DP than in CP: in terms of path length

 Free word order does not affect DP; CP needs additional rules

Additional rules may overgeneralize!!

... CP needs additional rules

- I saw the boy with a telescope
 - $-S \rightarrow NP VP$
 - $-VP \rightarrow VBD NP PP$
- With a telescope I saw the boy
 - $-S \rightarrow NP VP$
 - $-S \rightarrow PP NP VP ???$

Impact of free order on constituency parsing

- Constituency parse fundamentally use adjacency information.
- Word order disturbs the adjacency
- Chomsky normal form demands that
 - The deduction should happen by linking together two adjacent entities.
- Example:
 - राम ने श्याम् को देखा | (Ram ne Shyam ko dekha)
 - श्याम को देखा = VP
 - श्याम को राम ने देखा | (Shyam ko Ram ne dekha)
 - VP is discontinuous
 - Constituency parsing failed here
 - The agent and object is reversed in the above

Arguments are immediately linked

Prefer: who prefers? "I"; what is preferred?: "flight".

On the other hand, phrases are like *suitcases* that put all related things **at one place**: "The morning flight through Denver"

Subset of Dependency Relations: from Universal Dependency Project (Nivre et all 2016)

Clausal Argument Relations	Description		
NSUBJ	Nominal subject		
DOBJ	Direct object		
IOBJ	Indirect object		
ССОМР	Clausal complement		
ХСОМР	Open clausal complement		
Nominal Modifier Relations	Description		
NMOD	Nominal modifier		
AMOD	Adjectival modifier		
NUMMOD	Numeric modifier		
APPOS	Appositional modifier		
DET	Determiner		
CASE	Prepositions, postpositions and other case markers		
Other Notable Relations	Description		
CONJ	Conjunct		
CC	Coordinating conjunction		

Examples to illustrate Dependency Relations

 NSUBJ, DOBJ, IOBJ- "Ram gave a book to Shyam"

- Main Verb (MV): gave

– NSUBJ: Ram; DOBJ: book; IOBJ: Shyam

- CCOMP, XCOMP: "I said that he should go", "I told him to go"
 - CCOMP: said \rightarrow go

– XCOMP: *told→go*

Illustration of DRs cntd.

- NMOD (nominal modifier), AMOD (adjective modifier), NUMMOD (numerical modifier), APPOS (appositional modifier)
 - NMOD: The bungalow of the Director: bungalow → Director
 - AMOD: The large bungalow: large → bungalow
 - NUMMOD: *Three cups: three* → *cups*
 - APPOS: covid19, the pandemic: covid19->pandemic

Illustration of DRs cntd.

- DET (determiner), CASE (preposition, postposition and other case markers), CONJ (conjunct), CC (coordinating conjuct)
 - DET: *The bungalow: The* → *bungalow*
 - CASE: The bungalow of Director: of →Director
 - CONJ: He is sincere and honest: sincere →honest
 - CC: He is sincere and honest: honest->and

Head → Modifier, e.g., morning → flight

Dependency Tree

- (1) There is a single designated root node that has no incoming arcs.
- (2) With the exception of the root node, each vertex has exactly one incoming arc.
- (3). There is a unique path from the root node to each vertex in *V*.

Statement of Assignment on Parsing (1/3)

- This assignment is on parsing. Its goal is to build a 2-way bridge between constituency parsing and dependency parsing.
- You are supposed to create a transformer from constituency parse (CP) to dependency parse (DP) and vice versa.

Statement of Assignment on Parsing (2/3)

Create a tool that will:

- (1) Input an English sentence
- (2) Obtain the CP output for the input sentence from any standard parser: Stanford, AllenNLP, NLTK, Spacy etc.
- (3) Convert the CP output to DP
- (4) Do steps 1-3 in the reverse direction: i.e., from DP to CP.

Statement of Assignment on Parsing (3/3)

- IMP: start with the simplest situation: single subject- single verb- single object, e.g., "students played football".
- Then gradually increase complexity:
 - "senior students", "senior students who had finished their exams",
 - "played energetically", "played energetically all day",
 - "street football", "street football with crowds watching" and so on.

Example: raw sentence

The strongest rain shut down the financial hub of Mumbai

(from: Stanford parser https://nlp.stanford.edu/software/lexparser.shtml)

Example: POS Tagged sentence

The/DT strongest/JJS rain/NN shut/VBD down/RP the/DT financial/JJ hub/NN of/IN Mumbai/NNP

Constituency parse

(S (NP (DT The) (JJS strongest) (NN rain)))

. . .

(VP (VP (VBD shut) (PRT (RP down)) (NP (NP (DT the) (JJ financial) (NN hub)) (PP (IN of) (NP (NNP Mumbai))))

Dependency Parse

root(ROOT-0, shut-4) **nsubj**(shut-4, rain-3) prt(shut-4, down-5) det(rain-3, the-1) amod(rain-3, strongest-2)

dobj(shut-4, hub-8) det(hub-8, the-6) amod(hub-8, financial-7) prep(hub-8, of-9) pobj(of-9, Mumbai-10) βārsing:pushpak

Getting back to Probabilistic parsing

Data for ML based Parsing

[_{S1}[_S[_S[_{VP}[_{VB}Come][_{NP}[_{NNP}July]]]] [,] [_{cc} and] $[_{S}[_{NP}[_{DT} the]][_{II} IIT][_{NN} campus]]$ [_{VP} [_{AUX} is] [ADJP [JJ abuzz] [_{PP}[_{IN} with] [NP[ADJP [JJ new] [CC and] [VBG returning]] [_{NNS} students]]]]] [.]]]

Noisy Channel Modeling

ßårsing:pushpak

Formal Definition of PCFG

- A PCFG consists of
 - A set of terminals {w_k}, k = 1,...,V

 $\{w_k\} = \{ child, teddy, bear, played... \}$

- A set of non-terminals {Nⁱ}, i = 1,...,n {N_i} = { NP, VP, DT...}
- A designated start symbol N¹
- A set of rules $\{N^i \rightarrow \zeta^j\}$, where ζ^j is a sequence of terminals & non-terminals NP \rightarrow DT NN
- A corresponding set of rule probabilities

β8rsing:pushpak

Rule Probabilities

• Rule probabilities are such that $\forall i \sum_{i} P(N^{i} \rightarrow \zeta^{j}) = 1$

E.g., P(NP \rightarrow DT NN) = 0.2 P(NP \rightarrow NN) = 0.5 P(NP \rightarrow NP PP) = 0.3

• P(NP \rightarrow DT NN) = 0.2

Means 20 % of the training data parses use the rule NP \rightarrow DT NN

#@rsing:pushpak

Probabilistic Context Free Grammars

1.0

- $S \rightarrow NP VP$ 1.0
- NP \rightarrow DT NN 0.5
- NP \rightarrow NNS 0.3
- NP \rightarrow NP PP 0.2
- $PP \rightarrow P NP$
- $VP \rightarrow VP PP$ 0.6
- $VP \rightarrow VBD NP 0.4$

- $DT \rightarrow the$ 1.0
 - NN \rightarrow gunman 0.5
 - NN \rightarrow building 0.5
 - VBD \rightarrow sprayed 1.0
 - NNS \rightarrow bullets 1.0

parsing:pushpak

Example Parse t₁

#arsing:pushpak

Another Parse t₂

Assumptions of the PCFG model

- Place invariance : $P(NP \rightarrow DT NN)$ is same in locations 1 and 2
- Context-free :
 P(NP → DT NN | anything outside "The child")
 = P(NP → DT NN)
- Ancestor free : At 2, $P(NP \rightarrow DT NN|its ancestor is VP) NP VP$ $= P(NP \rightarrow DT NN)$

child

NP

ne

Probability of a parse tree (cont.)

(Using Chain Rule, Context Freeness and Ancestor Freeness)

Domination

- A sentence is dominated by the symbol S through domination of segments by phrases
- Examples
 - The capital of a country dominates the whole country.
 - The capital of a state dominates the whole state.
 - The district headquarter dominates the district.
 - IIT Bombay is dominated by the administration of IIT Bombay.
 - Administration dominates Heads of Depts
 - The department is dominated by head of the department.

Ambiguity in determining domination

I saw a boy with a telescope.

- "saw" dominated by VP
- "a boy" dominated by NP
- "with a telescope" dominated by PP
- Yield of first NP is "a telescope"

- "saw" dominated by VP
- "with a telescope" dominated by PP
- "a boy with a telescope" dominated by NP
- Yield of NP is a "a boy with a telescope"

Main task in probabilistic parsing

- Main Intuition
 - Resolving the uncertainty
 - which non-terminal dominates how much territory in the sentence.
- The ambiguity in determining

 The yield of NP
 Will the NP dominate "a boy" or "a boy with a telescope"

Crucial Probabilities

#8rsing:pushpak

Interesting Probabilities

Parse tree for the given sentence using probabilistic CYK parsing

 $_0$ The $_1$ gunman $_2$ sprayed $_3$ the $_4$ building $_5$ with $_6$ bullets $_7$

•Two parse trees are possible because the sentence has attachment ambiguity .

• Total 16 multiplications are required to make both the parse trees using probabilistic CYK.

•Number of multiplications is less in comparison to a probabilistic parsing which prepares the two parse trees independently with 28 multiplication.

	The 1	gunman 2	Sprayed 3	the 4	Building 5	with 6	Bullets 7
0	β _{DT} (0-1) =1.0	β _{NP} (0-2) =0.25					$\beta_{\rm S}(0-7) = 0.006$
1		β _{NN} (1-2) =0.5					
2			β _{VBD} (2-3) =1.0		β _{VP} (2-5) =0.1		β _{VP} (2-7) =0.024
3				β _{DT} (3-4) =1.0	β _{NP} (3-5) =0.25		β _{NP} (3-7) =0.015
4					β _{NN} (4-5) =0.5		
5						β _P (5-6) =1.0	β _{PP} (5-7) =0.3
6							$\beta_{\text{NP/NNS}}(6-7)$ =1.0

<u>Calculation of values for each non terminal occuring in the CYK</u> table β_{DT} (0-1) =1.0 (From Grammar rules) β_{NN} (1-2) =0.5 (From Grammar rules) $\beta_{NP}(0-2) = P(\text{the gunman} \mid NP_{0-2}, G)$ $= P(NP \rightarrow DT NN)^* \beta_{DT} (0-1)^* \beta_{NN} (1-2)$ = 0.5 * 1.0 * 0.5=0.25 $\beta_{VBD}(2-3) = 1.0$ (From Grammar rules) $\beta_{DT}(3-4) = 1.0$ (From Grammar rules) β_{NN} (4-5) =0.5 (From Grammar rules)

$$\begin{split} \beta_{NP} (3\text{-}5) &= P(\text{the building} \mid NP_{3\text{-}5} \ , \ G) \\ &= P(NP\text{-}\text{>}DT \ NN)^* \beta_{DT} (3\text{-}4) \ ^* \beta_{NN} (4\text{-}5) \\ &= 0.5 \ ^* 1.0 \ ^* 0.5 \\ &= 0.25 \end{split}$$

$$\begin{split} \beta_{VP}(2-5) &= P(VP -> VBD \ NP)^* \beta_{VBD}(2-3) * \beta_{NN} (3-5) \\ &= 0.4 * 1 * 0.25 \\ &= 0.1 \\ \beta_P(5-6) &= 1.0 \ (From \ Grammar \ rules) \\ \beta_{NP/NNS}(6-7) &= 1.0 \ (From \ Grammar \ rules) \\ \beta_{PP}(5-7) &= P(PP -> P \ NP) * \beta_P(5-6) * \beta_{NP/NNS}(6-7) \\ &= 1.0 * 1.0 * 0.3 \\ &= 0.3 \\ \beta_{NP}(3-7) &= P(NP -> NP \ PP) * \beta_{NP}(3-5) * \beta_{PP}(5-7) \\ &= 0.2 * 0.25 * 0.3 \\ &= 0.015 \\ \beta_{VP}(2-7) = (P(VP -> VBD \ NP) * \beta_{VED} \ (2-3) * \beta_{NP} \ (3-7) + P(VP -> VP \ PP) * \beta_{VP} \ (2-5) * \beta_{PP} \ (5-7)) \\ &= 0.4 * 1 * 0.015 + 0.6 * 0.1 * 0.3 \\ &= 0.024 \\ \beta_{S}(0-7) = P(S -> NP \ VP) * \beta_{NP} \ (0-2) * \beta_{VP} \ (2-7) \\ &= 1 * 0.25 * 0.024 \\ &= 0.006 \end{split}$$

þårsing:pushpak

A very difficult parsing situation!

Repeated Word handling

þārsing:pushpak

Sentence on Buffaloes!

Buffaloe buffaloes Buffaloe buffaloes buffaloe buffaloe Buffaloe buffaloes

Charniak

Collins

Stanford

RASP

Correct parse

Another sentence of same structure

parsing:pushpak

Observation

- Collins and Charniak come close to producing the correct parse.
- RASP tags all the words as nouns.

Another phenomenon: Garden pathing

e.g. The old man the boat.

Another example: The horse raced past the garden fell.