# CS626: Speech, NLP and the Web 

## Dependency Parsing, Technique of Probabilistic Parsing, Difficult Parsing Phenomena

Pushpak Bhattacharyya
Computer Science and Engineering
Department
IIT Bombay
Week of $28^{\text {th }}$ September, 2020

## Agenda for the week

- Dependency Parsing (DP), Need for DP
- DP algorithms
- Probabilistic DP


## Difference between "Discriminative"

 and "Generative" Models- Historical reason
- Binary classification problem
- Want to decide if a patient has cancer based on different "features" from the reports
- $\operatorname{Argmax}_{D}(P(D / S))$
- $D$ takes values ' Y ' and ' N '
- Decide ' Y ' if $P(D=Y / S)>P(=N / S)$, else ' N '


## Discriminative Model

- Compute $P(D / S)$ directly
- "Features" from reports, $S=\left\{F_{1}, F_{2}\right.$, $\left.F_{3,}, \ldots, F_{k}\right\}$ (like, fever, weight loss, hair loss, haemoglobin level etc.)
- $\mathrm{P}(\mathrm{D}=\mathrm{Y} \mid<$ fever, weight loss, hair loss, haemoglobin level,...>)
- We are discriminating, i.e., differentiating wrt the features input


## Generative Model

- Compute $P(D)$ and $P(S / D)$ and take product
- For $P(D)$ we will need the proportion of cancer patients in the population (obtained via sampling)
- For the likelihood, we will make use of naïve Bayes assumption and require values of $P\left(F_{i} \mid D\right)$, e.g., what is the probability of a cancer patient having fever
- Hence the "discrimination" is not direct!!


## Garden path phenomenon

## Ellipsis

- Text is dropped (filled in the mind of the recipient by context)
- Example
- Horses raced past the garden neighed loudly.
- Horses, which were raced past the garden, neighed loudly
- Subject NP: Horses raced past the garden
- Ram reads
- Ram reads a book.
- "a book" or anything which can be read is implicit


## Garden path sentences: Horses raced past the garden neighed loudly



## Horses raced past the garden neighed loudly: Correct parse



- Correct parse
- "raced" can not be main verb
- "neighed" is the main verb


# Buffalo $_{1}$ buffaloes $_{2}$ buffaloes $_{3}$ buffalo $_{4}$ cow $_{5}$ cows $_{6}$ buffaloes $_{7}$ buffalo $_{8}$ 



Need for dependency parsing

# Two kinds of parse representations: Constituency Vs. Dependency 




- Penn Constituency Treebank
- http://www.cis.upenn.edu/~treebank/
- Prague Dependency Treebank
- http://ufal.mff.cuni.cz/pdt2.0/
parsing:pushpak


# "I saw the boy with a telescope": Constituency parse-1: telescope with boy 


a telescope

## "I saw the boy with a telescope":

 Dependency Parse Tree-1
p5rsing:pushpak

## Constituency Parse Tree-2: telescope

 With mea telescope

## Dependency Parse Tree-2



## Advantage of DP over CP

- Related entities are closer in DP than in CP: in terms of path length
- Free word order does not affect DP; CP needs additional rules
- Additional rules may overgeneralize!!


## CP needs additional rules

- I saw the boy with a telescope
$-S \rightarrow N P V P$
$-V P \rightarrow V B D N P P P$
- With a telescope I saw the boy
$-S \rightarrow N P V P$
$-S \rightarrow P P N P V P$ ???


## Impact of free order on constituency parsing

- Constituency parse fundamentally use adjacency information.
- Word order disturbs the adjacency
- Chomsky normal form demands that
- The deduction should happen by linking together two adjacent entities.
- Example:
- राम ने श्याम को देखा। (Ram ne Shyam ko dekha)
. श्याम को देखा =VP
. श्याम को राम ने देखा | (Shyam ko Ram ne dekha)
- VP is discontinuous
- Constituency parsing failed here
- The agent and object is reversed in the above


## Arguments are immediately linked



J \& M, Chapter 15,
$3^{\text {rd }}$ Edition

Prefer: who prefers? "l"; what is preferred?: "flight".

On the other hand, phrases are like suitcases that put all related things at one place: "The morning flight through Denver"

# Subset of Dependency Relatıons: from Universal Dependency Project (Nivre et all 2016) 

| Clausal Argument Relations | Description |
| :--- | :--- |
| NSUBJ | Nominal subject |
| DOBJ | Direct object |
| IOBJ | Indirect object |
| CCOMP | Clausal complement |
| XCOMP | Open clausal complement |
| Nominal Modifier Relations | Description |
| NMOD | Nominal modifier |
| AMOD | Adjectival modifier |
| NUMMOD | Numeric modifier |
| APPOS | Appositional modifier |
| DET | Determiner |
| CASE | Prepositions, postpositions and other case markers |
| Other Notable Relations | Description |
| CONJ | Conjunct |
| CC | Coordinating conjunction |

## Examples to illustrate Dependency

## Relations

- NSUBJ, DOBJ, IOBJ- "Ram gave a book to Shyam"
- Main Verb (MV): gave
- NSUBJ: Ram; DOBJ: book; IOBJ: Shyam
- CCOMP, XCOMP: "I said that he should go", "I told him to go"
- CCOMP: said $\rightarrow$ go
- XCOMP: told $\rightarrow$ go


## Illustration of DRs cntd.

- NMOD (nominal modifier), AMOD (adjective modifier), NUMMOD
(numerical modifier), APPOS (appositional modifier)
- NMOD: The bungalow of the Director: bungalow $\rightarrow$ Director
- AMOD: The large bungalow: large $\rightarrow$ bungalow
- NUMMOD: Three cups: three $\rightarrow$ cups
- APPOS: covid19, the pandemic: covid19 $\rightarrow$ pandemic


## Illustration of DRs cntd.

- DET (determiner), CASE (preposition, postposition and other case markers), CONJ (conjunct), CC (coordinating conjuct)
- DET: The bungalow: The $\rightarrow$ bungalow
- CASE: The bungalow of Director: of $\rightarrow$ Director
- CONJ: He is sincere and honest: sincere $\rightarrow$ honest
- CC: He is sincere and honest: honest $\rightarrow$ and



## Head $\rightarrow$ Modifier, e.g., morning $\rightarrow$ flight



United canceled the morning flights to Houston

## Dependency Tree

- (1) There is a single designated root node that has no incoming arcs.
- (2) With the exception of the root node, each vertex has exactly one incoming arc.
- (3). There is a unique path from the root node to each vertex in $V$.

Statement of Assignment on Parsing (1/3)

- This assignment is on parsing. Its goal is to build a 2-way bridge between constituency parsing and dependency parsing.
- You are supposed to create a transformer from constituency parse (CP) to dependency parse (DP) and vice versa.

Statement of Assignment on Parsing (2/3)
Create a tool that will:

- (1) Input an English sentence
- (2) Obtain the CP output for the input sentence from any standard parser: Stanford, AllenNLP, NLTK, Spacy etc.
- (3) Convert the CP output to DP
- (4) Do steps $1-3$ in the reverse direction: i.e., from DP to CP.


## Statement of Assignment on Parsing

 (3/3)- IMP: start with the simplest situation: single subject- single verb- single object, e.g., "students played football".
- Then gradually increase complexity:
- "senior students", "senior students who had finished their exams",
- "played energetically", "played energetically all day",
- "street football", "street football with crowds watching" and so on.


## Example: raw sentence

The strongest rain shut down the financial hub of Mumbai
(from: Stanford parser https://nlp.stanford.edu/software/lexparser.shtml)

## Example: POS Tagged sentence

The/DT strongest/JJS rain/NN shut/VBD down/RP the/DT financial/JJ hub/NN of/IN Mumbai/NNP

## Constituency parse

(S
(NP
(DT The)
(JJS strongest)
(NN rain))
)
(VP
(VP
(VP
(VBD shut)
(PRT (RP down))
(NP
(NP
(DT the) (JJ financial)
(NN hub))
(PP (IN of)
(NP (NNP Mumbai)))))

## Dependency Parse

$\operatorname{root}($ ROOT-0, shut-4)
nsubj(shut-4, rain-3)
prt(shut-4, down-5) det(rain-3, the-1) amod(rain-3, strongest-2)
dobj(shut-4, hub-8) det(hub-8, the-6)
amod(hub-8,
financial-7)
prep(hub-8, of-9) pobj(of-9, Mumbai10)




Getting back to probabilistic
parsing

(OUShPak
(2)
(os)
(ing:pak
(OUShPak
(OUShPak

(os)

$\qquad$
(2)
(os)

(OUShPark
(2)
(an


$\square$
(a)
$\square$
$\square$


,
,


## Data for ML based Parsing

[s1/s[s[vp[vBCome][np[nnpJuly]]]]
[,]
[cc and]
[s [np [dt the] [JJ IIT] [nN campus]]
[up [aux is]
[ADJP [J, abuzz]
[pp[in with]
[ NP [ADJP [JJ new] [cc and] [ vBG returning]] [NNS students]]]]]]]
[.]]]

## Noisy Channel Modeling



```
T*= argmax [P(T/S)]
    T
    = argmax [P(T).P(S/T)]
        T
    = argmax [P(T)], since given the parse the
        T
                                    sentence is completely determined and \(P(S / T)=1\)
```

קוrirsing:pushpak

## Formal Definition of PCFG

- A PCFG consists of
- A set of terminals $\left\{w_{k}\right\}, k=1, \ldots, V$
$\left\{w_{k}\right\}=\{$ child, teddy, bear, played...\}
- A set of non-terminals $\{N i\}, i=1, \ldots, n$
$\left\{N_{i}\right\}=\{N P, V P, D T . .$.
- A designated start symbol $\mathrm{N}^{1}$
- A set of rules $\left\{\mathrm{N}^{i} \rightarrow \zeta\right\}$, where $\zeta^{j}$ is a sequence of terminals \& non-terminals NP $\rightarrow$ DT NN
- A corresponding set of rule probabilities

קוrsing:pushpak

## Rule Probabilities

- Rule probabilities are such that

$$
\forall i \sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~N}^{i} \rightarrow \zeta^{j}\right)=1
$$

$$
\text { E.g., P(NP } \rightarrow \text { DT NN })=0.2
$$

$$
P(N P \rightarrow N N)=0.5
$$

$$
P(N P \rightarrow N P P P)=0.3
$$

- $P(N P \rightarrow$ DT NN $)=0.2$
- Means $20 \%$ of the training data parses use the rule NP $\rightarrow$ DT NN
parsing:pushpak


## Probabilistic Context Free Grammars

- $\mathrm{S} \rightarrow \mathrm{NP}$ VP
- NP $\rightarrow$ DT NN
- NP $\rightarrow$ NNS
- NP $\rightarrow$ NP PP 0.2
- PP $\rightarrow$ PNP
- VP $\rightarrow$ VP PP 0.6
- VP $\rightarrow$ VBD NP 0.4
1.0
0.5
0.3
1.0


## Example Parse $\mathrm{t}_{1}$.

## - The gunman sprayed the building with


parsing:pushpak

## Another Parse $\mathrm{t}_{2}$

## - The gunman sprayed the building with

 bullets.$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{t}_{2}\right) \\
& =1.0 * 0.5 * 1.0 * 0.5 * 0.4 * \\
& 1.0 * 0.2 * 0.5 * 1.0 * 0.5 * \\
& 1.0 * 1.0 * 0.3 * 1.0 \\
& \quad=0.0015
\end{aligned}
$$

Thegunman sprayed

өarsing:pushpak

## Assumptions of the PCFG model

- Place invariance :
$\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN})$ is same in locations 1 and 2
- Context-free :
$\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT}$ NN | anything outside "The child")

$$
=\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN})
$$

- Ancestor free : At 2,
$\mathrm{P}(\mathrm{NP} \rightarrow \mathrm{DT}$ NN

$$
\text { = P(NP } \rightarrow \text { DT NN })
$$



ф九rsing:pushpak

## Probability of a parse tree (cont.)

$$
\begin{gathered}
\mathrm{DT}_{1,1} \\
\mathrm{~W}_{1,1}
\end{gathered}
$$




$$
\mathrm{W}_{1,1} \quad \mathrm{~W}_{2,2} \quad \mathrm{~W}_{3,3}
$$



$$
\begin{aligned}
& \mathrm{P}(\mathrm{t} \mid \mathrm{s})=\mathrm{P}\left(\mathrm{t} \mid \mathrm{S}_{1,1}\right) \\
& =P\left(N P_{1,2}, D T_{1,1}, w_{1,1}\right. \\
& \mathrm{N}_{2,2}, \mathrm{w}_{2,2} \\
& V P_{3,1}, V_{3,3}, w_{3,3} \\
& \left.P_{4, I}, P_{4,4}, w_{4,4} N P_{5,1}, w_{5 \ldots . . l} \mid S_{1, I}\right) \\
& =P\left(\mathrm{NP}_{1,2}, \mathrm{VP}_{3,1} \mid S_{1,1}\right)^{*} P\left(D T_{1,1}, N_{2,2} \mid N P_{1,2}\right)^{*} \\
& P\left(w_{1,1} \mid D T_{1,1}\right) * P\left(w_{2,2} \mid N_{2,2}\right) * P\left(V_{3,3}, P P_{4,1} \mid V_{3,1}\right) * \\
& P\left(w_{3,3} \mid V_{3,3}\right) * P\left(P_{4,4} N P_{5,1} \mid P P_{4,1}\right) * P\left(w_{4,4} \mid P_{4,4}\right) \text { * } \\
& P\left(w_{5 \ldots . .} \mid N P_{5,1}\right)
\end{aligned}
$$

(Using Chain Rule, Context Freeness and Ancestor Freeness )

- A sentence is dominated by the symbol $S$ through domination of segments by phrases
- Examples
- The capital of a country dominates the whole country.
- The capital of a state dominates the whole state.
- The district headquarter dominates the district.
- IIT Bombay is dominated by the administration of IIT Bombay.
- Administration dominates Heads of Depts
- The department is dominated by head of the department.


## Ambiguity in determining domination

I saw a boy with a telescope.



- "saw" dominated by VP
- "a boy" dominated by NP
- "with a telescope" dominated by PP
- Yield of first NP is "a telescope"
- "saw" dominated by VP
- "with a telescope" dominated by PP
- "a boy with a telescope" dominated by NP
- Yield of NP is a "a boy with a telescope"


## Main task in probabilistic parsing

- Main Intuition
- Resolving the uncertainty
- which non-terminal dominates how much territory in the sentence.
- The ambiguity in determining
- The yield of NP
- Will the NP dominate "a boy" or "a boy with a telescope"


## Crucial Probabilities

ر⿴囗⿱一一rsing：pushpak

## Interesting Probabilities



The gunman sprayed the building with bullets 12 3


8

## Outside Probabilities

What is the probability of starting from $S$ and deriving ＂The gunman sprayed＂，a NP and＂with bullets＂？－

$$
\alpha_{N P}(4,5)
$$

## Parse tree for the given sentence using probabilistic CYK parsing

${ }_{0}$ The ${ }_{1}$ gunman ${ }_{2}$ sprayed ${ }_{3}$ the ${ }_{4} \quad$ building ${ }_{5} \quad$ with ${ }_{6}$ bullets

- Two parse trees are possible because the sentence has attachment ambiguity .
- Total 16 multiplications are required to make both the parse trees using probabilistic CYK.
-Number of multiplications is less in comparison to a probabilistic parsing which prepares the two parse trees independently with 28 multiplication.

Г̄arsing:pushpak

|  | The 1 | gunman 2 | Sprayed 3 | the 4 | Building 5 | $\begin{gathered} \text { with } \\ 6 \end{gathered}$ | Bullets 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\begin{gathered} \beta_{\mathrm{DT}}(0-1) \\ =1.0 \end{gathered}$ | $\begin{gathered} \beta_{\mathrm{NP}}(0-2) \\ =0.25 \end{gathered}$ |  |  |  |  | $\begin{aligned} & \beta_{\mathrm{S}}(0-7) \\ & =0.006 \end{aligned}$ |
| 1 |  | $\begin{gathered} \beta_{\mathrm{NN}}(1-2) \\ =0.5 \end{gathered}$ |  |  |  |  |  |
| 2 |  |  | $\begin{gathered} \beta_{\text {VBD }}(2-3) \\ =1.0 \end{gathered}$ |  | $\begin{gathered} \beta_{\mathrm{VP}}(2-5) \\ =0.1 \end{gathered}$ |  | $\begin{aligned} & \beta_{V P}(2-7) \\ & =0.024 \end{aligned}$ |
| 3 |  |  |  | $\begin{gathered} \beta_{\mathrm{DT}}(3-4) \\ =1.0 \end{gathered}$ | $\begin{gathered} \beta_{N P}(3-5) \\ =0.25 \end{gathered}$ |  | $\begin{gathered} \beta_{\mathrm{NP}}(3-7) \\ =0.015 \end{gathered}$ |
| 4 |  |  |  |  | $\begin{gathered} \beta_{\mathrm{NN}}(4-5) \\ =0.5 \end{gathered}$ |  |  |
| 5 |  |  |  |  |  | $\begin{gathered} \beta_{\mathrm{P}}(5-6) \\ =1.0 \end{gathered}$ | $\begin{gathered} \beta_{P P}(5-7) \\ =0.3 \end{gathered}$ |
| 6 |  |  |  |  |  |  | $\begin{gathered} \beta_{\text {NPRNSS }}(6-7) \\ =1.0 \end{gathered}$ |

## Calculation of values for each non terminal occuring in the CYK

 table$$
\begin{aligned}
\beta_{D T}(0-1) & =1.0 \quad \text { (From Grammar rules) } \\
\beta_{N N}(1-2) & =0.5 \quad \text { (From Grammar rules) } \\
\beta_{N P}(0-2) & =P\left(\text { the gunman } / N P_{0-2}, G\right) \\
& =P(N P->D T N N)^{*} \beta_{D T}(0-1)^{*} \beta_{N N}(1-2) \\
& =0.5 * 1.0 * 0.5 \\
& =0.25
\end{aligned}
$$

$\beta_{\text {VBD }}(2-3)=1.0 \quad$ (From Grammar rules)
$\beta_{D T}(3-4)=1.0 \quad$ (From Grammar rules)
$\beta_{N N}(4-5)=0.5 \quad$ (From Grammar rules)
$\beta_{N P}(3-5)=P\left(\right.$ the building $\left./ N P_{3-5}, G\right)$

$$
\begin{aligned}
& =P(N P->D T N N)^{*} \beta_{D T}(3-4) * \beta_{N N}(4-5) \\
& =0.5 * 1.0 * 0.5 \\
& =0.25
\end{aligned}
$$

ªrsing:pushpak

$$
\begin{aligned}
& \beta_{V P}(2-5)=P(V P->V B D N P)^{*} \beta_{V B D}(2-3)^{*} \beta_{N N}(3-5) \\
&=0.4^{*} 1^{*} 0.25 \\
&=0.1 \\
& \beta_{P}(5-6)=1.0 \text { (From Grammar rules) } \\
& \beta_{N P / N N S}(6-7)=1.0 \text { (From Grammar rules) } \\
& \beta_{P P}(5-7)=P(P P->P N P) * \beta_{P}(5-6)^{*} \beta_{N P / N N S}(6-7) \\
&=1.0{ }^{*} 1.0{ }^{*} 0.3 \\
&=0.3 \\
& \beta_{N P}(3-7)=P(N P->N P P P)^{*} \beta_{N P}(3-5)^{*} \beta_{P P}(5-7) \\
&=0.2 * 0.25^{*} 0.3 \\
&=0.015
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{V P}(2-7)=\left(P(V P->V B D N P)^{*} \beta_{V B D}(2-3) * \beta_{N P}(3-7)+P(V P->V P P P) * \beta_{V P}(2-5){ }^{*} \beta_{P P}(5-7)\right) \\
&=0.4^{*} 1^{*} 0.015+0.6{ }^{*} 0.1 * 0.3 \\
&=0.024 \\
& \beta_{S}(0-7)=P(S->N P V P) * \beta_{N P}(0-2) * \beta_{V P}(2-7) \\
&=1 * 0.25 * 0.024 \\
&=0.006
\end{aligned}
$$

# A very difficult parsing situation! 

Repeated Word handling

Г̄rsing:pushpak

## Sentence on Buffaloes!

Buffaloe buffaloes Buffaloe buffaloes buffaloe buffaloe Buffaloe buffaloes

## Charniak


「æ̈rsing:pushpak

## Collins



²ిrsing:pushpak

## Stanford



FArsing:pushpak

## RASP



## Correct parse



## Another sentence of same structure



## Observation

- Collins and Charniak come close to producing the correct parse.
- RASP tags all the words as nouns.


## Another phenomenon: Garden pathing

e.g. The old man the boat.


Another example: The horse raced past the garden fell.

