CS626: Speech, NLP and the Web

Shallow Parsing with Conditional Random Field, Morphology Brief Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week of 17th August, 2020

Agenda for the week (1/2)

- Define and solve detecting chunks/shallow_parses
 - Base Pharses/non-recursive phases
 - Using CRF (John Lafferty, Andrew McCallum, and Fernando C.N. Pereira, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", ICML 2001. https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&c ontext=cis_papers

Agenda for the week (2/2)

- Support from morphology
 - Data sparsity can be solved by looking inside words
 - NLP Stack backoff
 - "proposition" \rightarrow NN because of 'tion'
 - "abruptly" \rightarrow RB (adverb) because of 'ly'
 - Should be weighed against evidence from other features (previous tag)
- Evaluation of POS tagging (and in general of any sequences)

Evaluation of sequence to sequence labelling

POS Tagging Example

 Suppose our tags are – DT, NN, VB, JJ, RB and OT

• E.g.

۸	The	black	dog	barks	OT- others
^	DT	DT	DT	DT	
	NN	NN	NN	NN	
	VB	VB	VB	VB	Possible tags
	JJ	JJ	JJ	JJ	
	RB	RB	RB	RB	
	OT	ОТ	ОТ	ОТ	

- Correct: ^_^ The_DT black_JJ dog_NN dog barks_VB ._.
- Incorrect: ^_^ The_DT black_NN dog_VB barks barks_VB ._.

Precision

 ^_^ The_DT black_NN dog_VB barks_VB .__.

4 out of 6 correct

• Precision= 66.67%

True for population?

Question

- The POS tagger I built, will it for all time to come function with 66.67% precision
- That is, will it on *an average* tag 67% of the words correctly?
- That is, one an average, 20 out of every *sample* of 30 words sequences be correct?

Precision question similar to Coin Tossing Problem

- X1_H X2_H X3_T X4_T X5_T...
- Suppose is *H* is "correct" and *T* "incorrect"

 Then "Precision" = K/N, where #H=K and #Tosses=N

We are in the realm of Bernoulli Trial and Binomial Distribution

 Probability of K successes in N Bernoulli Trials with probability of success being p in each trial is given as

$Pr(K; N; p) = {}^{N}C_{K}p^{K}(1-p)^{N-K}$

Normal Approximation to Binomial

- The normal distribution can be used as an approximation to the binomial distribution under certain circumstances
- Namely: If X ~ B(n, p) and if n is large and/or p is close to ½, then X is approximately N(np, npq), i.e., normal with mean np and standard deviation npq, where q=1-p

Now, we are in the realm of Normal!

- Use the machinery of normal distribution
- Can use 95% confidence interval as well as *np* and *npq* to estimate test data requirement

• Of course, *p* is a function of training efficacy

Morphology

Acknowlegement: Mugdha Bapat, ex-M.Tech student, CFILT, CSE Based on: Akmajian et al, *LINGUISTICS An Introduction to Language and Communication*, 7th edition, MIT Press, 2017

What is Morphology?

- Study of Words
- Their internal structure

• Morphology tries to formulate rules that show the knowledge of the speakers of those languages

Morphemes

 Smallest linguistic pieces with a grammatical function

Accuracy vs. data size: general POS and Chunk

Figure 6: Average Accuracy of all Chunk Ta

Harshada Gune, Mugdha Bapat, Mitesh Khapra and Pushpak Bhattacharyya, Verbs are where all the Action Lies: Experiences of Shallow Parsing of a Morphologically Rich Language, Computational Linguistics Conference (COLING 2010), Beijing, China, August 2010.

Verb POS and Verb Chunk

Harshada Gune, Mugdha Bapat, Mitesh Khapra and Pushpak Bhattacharyya, Verbs are where all the Action Lies: Experiences of Shallow Parsing of a Morphologically Rich Language, Computational Linguistics Conference (COLING 2010), Beijing, China, August 2010.

Non veb POS and Non Verb Chunk

Figure 5: Average Accuracy of Non Verb POS Tags

Harshada Gune, Mugdha Bapat, Mitesh Khapra and Pushpak Bhattacharyya, Verbs are where all the Action Lies: Experiences of Shallow Parsing of a Morphologically Rich Language, Computational Linguistics Conference (COLING 2010), Beijing, China, August 2010.

Rich morphology vs. poor morphology: analogy

Verb conjugation: Gender Number Person Tense Aspect Modality: **GNPTAM**

jaanaa: jaauMgaa, jaaoge, jaayeMge ...

Combinatorics of Morphology: Verb Conjugation

- Gender (G)- 3 (M,F, N; 2 for Hindi)
- Number (N)- 2 (S, P; 3 for Sanskrit and other ancient languages: dual)
- Person (P)- 3 (1p, 2p, 3p)
- Tense (T)- 3 (past, present, future)
- Aspect (A)- 3 (progressive, perfect, Default)
- Modality (M)- 4 (declarative, Imperative, Interrogative, Exclamation)

Combinatorics

- #possibilities (GNPTAM)- 3 X 2 X 3 X 3 X 3 X 4= 648
- Given a verb root (also called stem), 648 forms

More combinatorics

- Typically about 30% of the lexical repository of any language is verbs
- Assuming the lexicon size to be 100,000
- There are 30,000 verbs
- If unambiguous morphology existed, then we would have 30000 X 648 verb forms=

~ 20 million or 2 crore verb

Reflections on morphology combinatorics

- Could have been a blow up of about 650 times
- Only verb forms occurring by themselves could give rise to a 20 million words corpora
- Combinatorial blow up does not happen
- Why?

Phenomena that control morphological combinatorial explosion

- Syncretism- overloading of forms
 - Will go
 - G=M/F, N-S/PI, P-1/2/3, T-Fut, A-Default, M-Declarative
- Many verbs occur rarely, e.g., perambulating (English), curvetting (English), batiyana, drumaayate (Sanskrit), kingkartavyabimur (bangla)

More about Morphemes

• Grammatical function of a morpheme must be constant

Infix: A type of affix- inside a word

- In the language *Bonto Igorot*
 - The infix 'in' is used to
 - indicate a completed product

Sanskrit raajaayate: raajaa+ya+te 'ya' is infix (behaves like a king)

Original word: kayu	Complex word: k <i>in</i> ayu
Meaning: wood	Meaning: gathered wood

Morphology & Grammatical Categories

 Morphology as evidence for classification

- English Nouns Inflect for number
- English Adjectives Do not inflect for number

English Verbs• Inflect for tenseEnglish Nouns• Do not inflect for tense

Classification of Free Morphemes

Open-class words, aka Content Words	Closed-class words, aka function words
Large in number	Small in number (include fixed elements)
Open-ended: Unlimited number of new words can be created and added	Addition of a new word to this class is very rare event
Grammatical categories that fall in this class: 1. Nouns 2. Verbs 3. Adjectives 4. Adverbs	 Grammatical categories that fall in this class: 1. Conjunctions 2. Articles 3. Demonstratives 4. Prepositions 5. Comparatives 6. Quantifiers

Morphology

Derivational Morphology

Inflectional Morphology

Derivational Morphology

 Derivation: Combination of a stem with a morpheme

- 1	Noun+Noun	Adjec n	tive+Nou	Prepos n	sition+Nou	Verb+Noun
ł	nair dresser	black pepper		underground		pick pocket
١	water bottle	dry dinner		overdose		get goer
C	deliverv bov	dead of the dead o	end Noun+Ad	undera	rm Prepositio	hit wicket
e	2	Jootiv	Nounna	jeenve	repeatio	
red hot		bottle green		underestimate		
icy-cold		lion-hearted		uplift		
bittersweet		earthbound		overstuff		

Word Formation Rule

The –able suffix

X	Able to be X'd
read	readable
eat	eatable
break	breakable
perish	perishable

Word formation rule

Phonological change	 Pronunciation of the base is augmented by the phonetic sequence corresponding to 'able'
Category change	 -able is attached to transitive verbs and converts them into adjectives
Semantic change	 If X is the meaning of the verb, then formed word has the meaning "able to be X'd"
Backformation

 Creating a new word by removing actual or supposed affixes

Existed earlier	Formed later by backformation
resurrection	to resurrect
preemption	to preempt
television	to televise
donation	to donate

Inflectional Suffixes

- Do not cause change in the category of the base morpheme
- Indicate certain grammatical functions of the words
 - Plurality
 - Tense
- Do not cause any unpredictable changes in the meaning of the base word

Inflectional Morphology

Noun inflectional suffixes	Plural marker -sPossessive marker 's
Verb inflectional suffixes	 Third person present singular marker -s Past tense marker -ed Progressive marker -ing Past participle markers -en or – ed
Adjective inflectional suffixes	 Comparative marker -er Superlative marker -est

Problems in Morphological Analysis

Complicate the isolation of the base of a complex word

Productivity

 Property of a morphological process to give rise to new formations on a systematic basis

Exceptions

Peaceable	Actionable	Companionable
Saleable	Marriageable	Reasonable
Impressionable	Fashionable	knowledgeable

False analysis

hospitable, sizeable

Do not have the meaning "to be able" They can not take the suffix -ity to form a noun

Analyzing them as the words containing suffix *-able* leads to false analysis

Bound Base Morphemes

- Occur only in a particular complex word
- Do not have independent existence

Classic Work (MDL Principle, Morfessor)

- John Goldsmith, Unsupervised learning of the morphology of a natural language, Computational Linguistics, Volume 27, Issue 2, 2001
- Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes, In Proceedings of the Workshop on Morphological and Phonological Learning of ACL-02, pages 21-30, Philadelphia, Pennsylvania, 11 July, 2002.

Classic Work (Porter Stemmer)

- M.F. Porter, An algorithm for suffix stripping, Program, 14(3) pp 130–137, 1980.
- Uses rules like:
 - (m > 1) *EMENT* -> *null*
 - Here S1 is 'EMENT' and S2 is null. This would map REPLACEMENT to REPLAC, since REPLAC is a word part for which m = 2.

Recent Developments

FastText (embedding that respects multilinguality and morphology)

294 languages		
Developer(s)	Facebook's AI Research (FAIR) lab ^[1]	
Initial release	November 9, 2015; 4 years ago	
Stable release	0.2.0 ^[2] / December 19, 2018;	
	20 months ago	
Repository	github.com/facebookresearch/fastText	
Written in	<u>C++</u> , <u>Python</u>	
<u>Platform</u>	Linux, macOS, Windows	
Туре	Machine learning library	
License	BSD License	
Website	fasttext.cc	

https://research.fb.com/downloads/fasttext/

Pre-trained Embeddings for Indian Languages (respects morphology)

- Kumar Saurav, Kumar Saunack, Diptesh Kanojia, and Pushpak Bhattacharyya, "A Passage to India": Pre-trained Word Embeddings for Indian Languages, Proceedings of the 1st Joint SLTU and CCURL Workshop (SLTU-CCURL 2020)
- Major languages from Indo-Aryan and Dravidian Family

Joint Model for Embeddings and Morphology

- Kris Cao, Marek Rei, A Joint Model for Word Embedding and Word Morphology, Proceedings of the 1st Workshop on Representation Learning for NLP, Berlin, 2016
- splits individual words into segments, and weights each segment according to its ability to predict context words
- Deals with unseen words which correlate better with human judgments.

Byte Pair Encoding (BPE)

- Sennrich R., Haddow B. and Birch A., Neural machine translation of rare words with subword units, arXiv preprint arXiv:1508.07909, 2015.
- Devlin J., Chang M. W., Lee K., and Toutanova K, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805, 2018.

BPE example

Byte Pair Encoding is a compression technique (Gage, 1994)

Number of BPE merge operations=3 Vocab: A B C D E F P₁=AD P₂=EE P₃=P₁D

Data-dependent segmentation

- Inspired from compression theory
- MDL Principle (*Rissansen, 1978*) ⇒ Select segmentation which maximizes data likelihood
 - 31aug20 cs626-pushpak

51

BPE construction

(1) Iteratively count character pairs in all tokens of the vocabulary.

(2) Merge every occurrence of the most frequent pair, add the new character n-gram to the vocabulary.

(3) Repeat 2, until the desired number of merge operations are completed or the desired vocabulary size is achieved (which is a hyperparameter).

BPE Application

- Quickly, slowly, abruptly, decidedly, justly, justifiably, arguably, humanly
- QuickP1, slowP1, abruptP1, decidedP1, justP1, justifiabP1, arguabP1, humanP1
- When we see a new word with P1, tag this as adverb (high probability)
- Pitfall (not adverbs): Lily, homely, homily, ugly

Subwords (for "jaauMgaa", जाऊंगा)

- Characters: "j+aa+u+M+g+aa"
- Morphemes: "jaa"+"uMgaa"
- Syllables: "jaa"+"uM"+"gaa"
- Orthographic syllables: "jaau"+"Mgaa"
- BPE (depends on corpora, statistically frequent patterns): both "jaa" and "uMgaa" are likely

Chunking

Erik F. Tjong Kim Sang and Sabine Buchholz, Introduction to the CoNLL-2000 Shared Task: Chunking. In: *Proceedings of CoNLL-2000*, Lisbon, Portugal, 2000.

Data Example

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September].

He PRP B-NP reckons VBZ B-VP the DT B-NP current JJ I-NP account NN I-NP deficit NN I-NP MD B-VP will narrow VB I-VP

to	TO B-PP	
only	RB B-NP	
#	# I-NP	
1.8	CD I-NP	
billion	CD I-NP	
in	IN B-PP	
September NNP B-NP		

https://www.aclweb.org/anthology/W00-0726.pdf

Indian Language Examples: Marathi माणसाने उडण्याचा प्रयत केला VG NN **VBD** NN Β B B Man tried flying त्याने चालायला सुरुवात केली VINF NN **VBD** PRP B Β B He started to walk

Harshada Gune, Mugdha Bapat, Mitesh Khapra and Pushpak Bhattacharyya, Verbs are where all the Action Lies: Experiences of Shallow Parsing of a Morphologically Rich Language, Computational Linguistics Conference (COLING 2010), Beijing, China, August 2010

NLP Layer

What a gripping movie was Three_Idiots!

What/WP a/DT gripping/JJ movie/NN was/VBD Three_Idiots/NNP !/!

```
Parse
(ROOT
 (FRAG
    (SBAR
      (WHNP
        (WP What))
        (S
           (NP
             (DT a)
             (JJ gripping)
             (NN movie)
           (VP
             (VBD was)
             (NP
             (NNP Three_idiots)))))
           (. !)
```

Universal dependencies

dobj(Three_Idiots-6, What-1) det(movie-4, a-2) amod(movie-4, gripping-3) nsubj(Dangal-6, movie-4) cop(Dangal-6, was-5) root(ROOT-0, Three_idiots-6) **696216-20**01shpak

Algorithmics and Mathematics of Chunking

Noisy Channel Model

Sequence *W* is transformed into sequence *T*

Sequence to Sequence Labelling: Chunk w/o chunk type

माणसाने उडण्याचा प्रयत ककेला

NN VG NN VBD B B B I

Chunking vs. POS Tagging

- Much simpler task than POS tagging!
- Only 2 tags in the simplest form: 'B' and 'I'
- Makes use of POS and MORPH
 information
- Slightly more complex when the "TYPE" of chunk also is required

Chunk with chunk type

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September].

He PRP B-NP reckons VBZ B-VP the DT B-NP current JJ I-NP account NN I-NP deficit NN I-NP MD B-VP will narrow VB I-VP

to	ТО	B-PP
only	RB	B-NP
#	# I-	NP
1.8	CD	I-NP
billion	CD	I-NP
in	IN E	B-PP
September NNP B-NP		

Decoding for the best chunk

$$\hat{\boldsymbol{y}} = \operatorname*{arg\,max}_{\boldsymbol{y}} p_{\boldsymbol{\lambda}}(\boldsymbol{y}|\boldsymbol{x}) = \operatorname*{arg\,max}_{\boldsymbol{y}} \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y},\boldsymbol{x})$$

$$p_{\lambda}(\boldsymbol{Y}|\boldsymbol{X}) = \frac{\exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{Y}, \boldsymbol{X})}{Z_{\lambda}(\boldsymbol{X})}$$
(1)

where

$$Z_{\boldsymbol{\lambda}}(\boldsymbol{x}) = \sum_{\boldsymbol{y}} \exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y}, \boldsymbol{x})$$

$$m{F}(m{y},m{x}) = \sum_i m{f}(m{y},m{x},i) \qquad egin{array}{c} i ext{ ranges over the} \\ ext{ input} \\ ext{ positions} \end{array}$$

Probability of a path (e.g. Top most path) = Product of $P(Y_i|Y_{i-1}, X)$

Gradient Descent

Explaining through Feed Forward Neural Network and Backpropagation

Backpropagation algorithm

- Fully connected feed forward network
- Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

 $\Delta w_{ji} = -\eta \frac{\delta E}{\delta w_{ji}} (\eta = \text{learning rate}, 0 \le \eta \le 1)$ $\frac{\delta E}{\delta w_{ji}} = \frac{\delta E}{\delta net_j} \times \frac{\delta net_j}{\delta w_{ii}} (net_j = \text{input at the } j^{th} \text{ layer})$ $\frac{\delta E}{\delta net_{i}} = -\delta j$ Snot

$$\Delta w_{ji} = \eta \delta j \frac{\partial \eta e \iota_j}{\partial w_{ji}} = \eta \delta j o_i$$

Backpropagation – for outermost layer

$$\delta j = -\frac{\delta E}{\delta net_j} = -\frac{\delta E}{\delta o_j} \times \frac{\delta o_j}{\delta net_j} (net_j = \text{input at the } j^{th} \text{ layer})$$

$$E = \frac{1}{2} \sum_{p=1}^{m} (t_p - o_p)^2$$

Hence, $\delta j = -(-(t_j - o_j)o_j(1 - o_j))$

$$\Delta w_{ji} = \eta (t_j - o_j) o_j (1 - o_j) o_i$$

Backpropagation for hidden layers

 δ_k is propagated backwards to find value of δ_i

Backpropagation – for hidden layers

 $\Delta w_{ii} = \eta \delta j o_i$ $\delta j = -\frac{\delta E}{\delta net_{i}} = -\frac{\delta E}{\delta o_{i}} \times \frac{\delta o_{j}}{\delta net_{i}}$ $= -\frac{\delta E}{\delta o_{i}} \times o_{j}(1 - o_{j})$ $= -\sum_{k \in \text{next layer}} \left(\frac{\delta E}{\delta net_k} \times \frac{\delta net_k}{\delta o_i}\right) \times o_j (1 - o_j)$ Hence, $\delta_i = -\sum_{k=1}^{\infty} (-\delta_k \times w_{ki}) \times o_i (1 - o_i)$ $k \in next$ layer $= \sum (w_{ki}\delta_k)o_i(1-o_i)o_i$ $k \in next$ layer

General Backpropagation Rule

- General weight updating rule: $\Delta w_{ji} = \eta \delta j o_i$
- Where

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$
 for outermost layer

 $= \sum_{k \in \text{next layer}} (w_{kj} \delta_k) o_j (1 - o_j) o_i \text{ for hidden layers}$
How does it work?

 Input propagation forward and error propagation backward (e.g. XOR)

Next Assignment

Chunking

- Input- Sentences
- Output- Chunk labels on sentences (only B and I), e.g.,
 - I/P- Many birds were flying
 O/P- B I B I
- Goal- does POS tagging indeed help
- Do chunking with POS and without POS
- Compare accuracy (P, R, F)

Evaluation of POS Tagging

8862620ushpak

Typical POS tag steps

- Implementation of Viterbi Unigram, Bigram.
- Five Fold Evaluation.
- Per POS Accuracy.
- Confusion Matrix.

888262001shpak

Screen shot of typical Confusion Matrix

	AJ0	AJ0- AV0	AJ0- NN1	AJ0- VVD	AJ0- VVG	AJ0- VVN	AJC	AJS	AT0	AV0	AV0- AJ0	AVP
AJ0	2899	20	32	1	3	3	0	0	18	35	27	[′] 1
AJ0- AV0	31	18	2	0	0	0	0	0	0	1	15	0
AJ0- NN1	161	0	116	0	0	0	0	0	0	0	1	0
AJ0- VVD	7	· 0	0	0	0	0	0	0	0	0	0	0
AJ0- VVG	8	0	0	0	2	0	0	0	1	0	C	0
AJO- VVN	8	0	0	3	0	2	0	0	1	0	0	0
AJC	2	. 0	0	0	0	0	69	0	0	11	0	0
AJS	6	0	0	0	0	0	0	38	0	2	0	0
AT0	192	0	0	0	0	0	0	0	7000	13	0	0
AV0	120	8	2	0	0	0	15	2	24	2444	29	11
AV0- AJ0	10	7	0	0	0	0	0	0	0	16	33	0
AVP	24	. 0	0	0	0	0	0	0	1	11	0	737

Computing P(.) values

Let us suppose annotated corpus has the following sentence

	have	а	brown	bag
PRN	VB	DT	JJ	NN

$$P(NN \mid JJ) = \frac{Number_of_times_JJ_followed_by_NN}{Number_of_times_JJ_appeared}$$

 $P(Brown | JJ) = \frac{Number_of_times_Brown_tagged_as_JJ}{Number_of_times_JJ_appeared}$

Why Ratios?

- This way of computing parameter probabilities: is this <u>correct</u>?
- What does "correct" mean?
- Is this principled?
- We are using Maximum Likelihood Estimate (<u>MLE</u>)
- Assumption: underlying distribution is multinomial

Explanation with coin tossing

- A coin is tossed 100 times, Head appears 40 times
- P(H)= 0.4
- Why?
- Because of maximum likelihood

N tosses, K Heads, parameter P(H)=p

- Construct Maximum Likelihood Expression
- Take log likelihood and take derivative
- Equate to 0 and Get p

$$L = p^{K} (1 - p)^{N - K}$$

$$\Rightarrow LL = \log(L) = K \log p + (N - K) \log(1 - p)$$

$$\Rightarrow \frac{d(LL)}{dp} = \frac{K}{p} - \frac{N - K}{1 - p}$$

$$\Rightarrow \frac{d(LL)}{dp} = 0 \quad gives \quad p = \frac{K}{N}$$

Exercise

- Following the process for finding the probability of Head from N tosses of coin yielding K Heads, prove that the transition probabilities can be found from MLE
- Most important: get the likelihood expression
- Use chapter 2 of the book

 – Pushpak Bhattacharyya: Machine translation, CRC Press, Taylor & Francis Group, Boca Raton, USA, 2015, ISBN: 978-1-4398-9718-8