CS626: Speech, NLP and the Web

Shallow Parsing with Maxmimum Entropy Markov Models and Conditional Random Fields

Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week of 7th September, 2020

Agenda for the week (1/2)

- Work out the mathematics of MEMM and CRF
- Apply to shallow parsing
- Elaborate discussion on FEATURE ENGG
- Discuss Gradient Descent with Feed Forward Network and BackPropagation
- Introduce Deep Parsing
- Make reference to Neural Parsing

846216-2001shpak

Algorithmics and Mathematics of Chunking

Noisy Channel Model

Sequence *W* is transformed into sequence *T*

Sequence to Sequence Labelling: Chunk w/o chunk type

माणसाने उडण्याचा प्रयत ककेला

NN VG NN VBD B B B I

Chunking vs. POS Tagging

- Much simpler task than POS tagging!
- Only 2 tags in the simplest form: 'B' and 'I'
- Makes use of POS and MORPH
 information
- Slightly more complex when the "TYPE" of chunk also is required

Chunk with chunk type

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September].

He PRP B-NP reckons VBZ B-VP the DT B-NP current JJ I-NP account NN I-NP deficit NN I-NP MD B-VP will narrow VB I-VP

to	ТО	B-PP		
only	RB	B-NP		
#	# I-	NP		
1.8	CD	I-NP		
billion	CD	I-NP		
in	IN E	B-PP		
September NNP B-NP				

Noisy Channel

Sequence *W* is transformed into sequence *T*

Maximum Entropy Markov Model (1/2) $P(t_1, t_2, t_3 \dots, t_n | w_1, w_2, w_3, \dots, w_n)$ $= \prod_{i=1}^{n} P(t_i | h_i)$

 h_i is called the **history** at position *i*. This captures a lot of information REQUIRED for putting the label at position i.

Digression

Principle behind MEMM

- Choose the probability distribution p that has the highest entropy out of those distributions that satisfy a certain set of constraints.
- The PRINCIPLE OF MAXIMIZING ENTROPY
- Competitor to MAXIMUM
 LIKELIHOOD

Comparing Maximum Likelihood and Maximum Entropy

- MLE maximizes probability of observations: chooses parameters accordingly
- ME maximizes entropy, satisfying given constraints: takes a stand of minimum bias

Illustration for Maximum Entropy Principle

- Take a coin with parameter
 p=probability of head
- The coin is NOT tossed, so there is no observation!
- What is the value of p?
- Intuitively 0.5: WHY?
- Uniform distribution; equal probability for head and tail; no bias
- That is, maximum entropy

Entropy in case of coin with NO toss, and deriving parameter

- E = -plogp (1-p)log(1-p)
- *E* is a function of *p*
- Maximize entropy, $\frac{dE}{dp} = 0$

-logp-1+log(1-p)+1=0 p=1-p, i.e. p=0.5, QED

Case of coin with *N* tosses and *K* heads: apply MLE

• $L = p^{K} (1-p)^{(N-K)}$

$$\frac{dL}{dp} = 0$$
 gives $p = \frac{K}{N}$

Shown before

Back to MEMM for seq2seq labeling

MEMM Idea (1/2)

 Choose the probability distribution p that has the highest entropy out of those distributions that satisfy a certain set of constraints

 The constraints restrict the model to behave in accordance with a set of statistics collected from the training data

MEMM Idea (2/2)

 The statistics are expressed as the expected values of appropriate functions defined on the contexts *h* and tags *t*

 In particular, the constraints demand that the expectations of the features for the model match the empirical expectations of the features over the training data

Constraint

- A reasonable assumption
- The expectations of features according to the joint distribution pare equal to the expectations of the features in the empirical (training data) distribution p^{\sim}

Mathematically, the constraint is expressed as

$$E_{p(t_i,hi)}f_j(t_i,hi) = E_{p^{\sim}(ti,hi)}f_j(t_i,hi)$$

From this,

 $p(t_i|h_i) = [\prod_{j=1}^{K} e^{\lambda_j f_j(h_i, t_i)}] / [\sum_{t_i'} \prod_{j=1}^{K} e^{\lambda_j f_j(h_i, t_i')}]$

In sum form

$$p(t_i|h_i) = \frac{e^{\sum_{j=1}^{K} \lambda_j f_j(t_i, h_i)}}{Z}$$

where, $Z = \sum_{t'_i} e^{\sum_{j=1}^{K} \lambda_j f_j(t'_i, h_i)}$

The crux of the matter is estimation of $\lambda_j s$

Use Gradient Descent

• $log(p(t_i|h_i) = \sum_{j=1}^{K} \lambda_j f_j(t_i, hi) - logZ$

• $Z = \sum_{t'_i} e^{\sum_{j=1}^K \lambda_j f_j(t'_i,hi)}$

Iteration

- $X_n = \log(p(t_i|h_i) = \sum_{j=1}^K \lambda_j(n)f_j(t_i, hi) \log Z_n$
- Where, *n* refers to the iteration no.

• X_n is the value of $log(p(t_i|h_i))$ at the n^{th} iteration, which is a function of $\lambda_j(n)$ only

Gradient Descent based training

- Goal is to find λ_i
- Closed form expression not possible
- Find iteratively

$$\lambda_j(n+1) = \lambda_j(n) - \eta \frac{\delta X(n)}{\delta \lambda_j}$$

- Where, derivative of X at nth iteration with respect to λ_j is taken
- Start with some initial value of λ_j

How will the gradient descent run?

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September].

He PRP B-NP reckons VBZ B-VP the DT B-NP current JJ I-NP account NN I-NP deficit NN I-NP MD B-VP will narrow VB I-VP

to	ТО	B-PP		
only	RB	B-NP		
# # I-NP				
1.8	CD	I-NP		
billion	CD	I-NP		
in	IN E	B-PP		
September NNP B-NP				

How does the training go?

- Have training corpus
- Tagged with B-I labels
- POS tags
- Features extracted
- Then compute iteratively

MEMM Decoding

- If we have $f_a(s,o)$ and λ_a values, we can run Viterbi decoding (or beam search) to do the labelling
- The moot question now:

 (a) how to design f_a(s,o), the feature set, and
 (b) and assign the weights λ_a

Illustration with example

Probability of a path (e.g. Top most path) = Product of $P(Y_i|Y_{i-1}, X)$ Design the feature set: a proposal (out of many) (1/5)

Word based (window size 5)

- *f*₁= current word ('foxes')
- *f*₂= previous word ('brown')
- f_3 = prev to prev word ('^')
- f_4 = following word ('jumped')
- f_5 = following to following word ('over')

^ brown foxes jumped over the fence .

Feature Set Design (2/3)

POS based (window size 5)

- $f_6 = POS$ of current word (NNS)
- $f_7 = POS$ of previous word (JJ)
- $f_8 = POS$ of prev to prev word (^)
- $f_g = POS$ of following word (VBD)
- f_{10} = POS of following to following word (IN)

^ brown foxes jumped over the fence .

Feature Set Design (3/3)

<u>CHUNK based (window size 5)</u>

- $f_{11} = B/I$ of previous word (B)
- f_{12} = B/I of prev to prev word (B)

^ brown foxes jumped over the fence .

Feature Set Design

<u>MORPH based (window size 5)</u>

- *f*₁₂= does the current word have a particular noun suffix, like 's', 'es', 'ies', etc. (yes: 'es'):
 *f*₁₂ itself is a feature vector!
- f₁₃= particular verbal suffix, like 'd', 'ed', 't', etc. (no): f₁₃ itself is a feature vector!
- f₁₄= adjective suffix, like 'ly', 'ment', 'tion', etc. (no): f₁₃ itself is a feature vector!
- f₁₄= adverb suffix, like 'ly', 'ment', 'tion', etc.
 (no): f₁₃ itself is a feature vector!

^ brown foxes iumped over the fence.

Noun Suffixes https://examples.yourdictionary.com/list-ofsuffixes-and-suffix-examples.html

- -eer
 -ness
 Meaning: engaged in something, associated Meaning: a state or quality
 with something
 Examples: fondness, awareness, kindness
 Examples: auctioneer, volunteer, engineer, darkness
 profiteer
 -or
- -er Meaning: a person who is something Meaning: someone who performs an action Examples: distributor, investigator, Examples: helper, teacher, preacher, dancetranslator, conductor
- -ion
 Meaning: the action or process of Examples: celebration, opinion, decision, revision
 - -ity-shipMeaning: the state or condition ofMeaning: position heldExamples: probability, equality, abnormality,Examples: worship, ownership, courtship,
internship
 - -ment Meaning: the action or result of Examples: movement, retirement, abandonment, establishment
- -th

-sion

compulsion

Meaning: state or being

Meaning: state or quality Examples: strength, labyrinth, depth, warmth

Examples: depression, confusion, tension,

Adjective Suffixes

• -able, -ible:

Meaning: capable of being Examples: preventable, adaptable, predictable, credible

• -al

Meaning: pertaining to Examples: theatrical, natural, criminal, seasonal

• -ant

Meaning: inclined to or tending to Examples: vigilant, defiant, brilliant, reliant

• -ary

Meaning: of or relating to Examples: budgetary, planetary, military, honorary

 -ful: Meaning: full of or notable of Examples: grateful, beautiful, · -ic

Meaning: relating to Examples: iconic, organic, heroic, poetic

• -ious, -ous

Meaning: having qualities of Examples: gracious, cautious, humorous, fabulous

• -ive

Meaning: quality or nature of Examples: creative, expensive, expressive, pensive

-less

Meaning: without something Examples: hopeless, faultless, fearless, restless

- -y: Meaning: made up of or characterized by

Verb Suffixes

• -ed

Meaning: past-tense version of a verb Examples: laughed, climbed, called, missed

• -en

Meaning: become Examples: soften, fasten, lengthen, strengthen

• -er

Meaning: action or process, making an adjective comparative Examples: faster, bigger, fuller, longer

• -ing

Meaning: verb form/present participle of an action Examples: laughing, swimming, driving, writing

• -ize, -ise

Meaning: to cause or to become Examples: memorialize, authorize, commercialize, advertise

Adverb suffixes

• -ly

Meaning: in what manner something is being done

Examples: bravely, simply, honestly, gladly

-ward

Meaning: in a certain direction Examples: backward, wayward, awkward, afterward

-wise

Meaning: in relation to Examples: clockwise, edgewise, lengthwise, otherwise

Similarly for prefixes

PREFIX MEANING EXAMPLES

- a-, an- without, not anesthetic, atheist
- ab- away, from abject, abscess
- ad-, a-, ac-, as- to, toward access, admit, assist
- ante before antecedent, anterior
- anti- against antibiotics, antioxidant
- auto- self autoimmune, autonomous
- ben-good benefit, benign
- bi- two, both bifocals, bipolar
- circum- around circumference, circumscribe
- co-, com-, con- with, together companion, concurrent*
- contra-, counter- against contradict, counteract
- de- down, undo, not degenerate, depress
- di-, dis- lack of, not, apart disadvantage, displacement

Remarks for morphology features

- Needs morphology analysis
- Shallow MA: affix separation
- Deep MA: features (like GNPTAM for verbs)
- Statistical stemmers go by frequency of substrings
- E.g., BPE, Morfessor, Porter etc.
- For a given word, mostly the features will be 0!

Feature engineering: word form based

- Word property based (syntactic, window size 5)
- Capitalization? ('no')
- Length (5)
- #Orthographic syllables (3: fo, xe, s)
- #BPEs
- #syllables (2: fox, es)
- *hown foxes jumped over the fence .*

Feature engineering: word meaning based

- Word property based (semantic, window size 5)
- Place/Organization/Person ('no')
- Animate ('yes')

- Carnivorous ('yes')
- A brown foxes jumped over the fence
- Needs Knowledge Graph
- Not really needed at the Chunk Level

NLP inherently has cyclicity

- Semantic features need semantic analysis
- Semantic analysis needs lower level analysis: morph, pos, chunk, parse
- E.g., "Bay of Bengal"
- Should chunk the whole thing
- How to know that all these 3 words form a single unit?
- We need probability:
 MLE/Bayesian/Max Ent

Feature Vector (considering our situation) (1/4)

- Compartment-1: current word vector (can be word embedding) (size-300)
- Comp-2: prev word vector (size-300)
- Comp-3: prev to prev word vector (size-300)
- Comp-4: following word's vector (300)
- Comp-5: following to following word's vector (300)

Compartment-1 Compartment-1 ----- Compartment-n

Feature Vector (considering our situation) (2/4)

- Comp-6: current word's POS vector (size-12; there are 12 universal pos tags)
- Comp-7: prev word's POS vector (size-12)
- Comp-8: prev to prev word's POS vector (12)

Compartment-n

- Comp-9: following POS vector (12)
- Comp-10: following to following POS
 vector (12)

Compartment-1

Compartment-1

Feature Vector (considering our situation) (3/4)

- Comp-11: prev word's chunk vector (size-1; two chunk labels, so, 1/0)
- Comp-12: prev to prev word's chunk (size-1)

Compartment-1	Compartment-1		Compartment-n
---------------	---------------	--	---------------

Feature Vector (considering our situation) (3/4)

- Comp-13: current word's suffix vector (size-100; assuming 100 suffixes possible)
- Comp-14: current word's prefix vector (size-100; assuming 100 prefixes possible)
- Comp-15: current word's OTHER properties vector, capitalization,length, #syllables, animacy, etc. (*size-50;* assuming 50 such other properties)

Compartment-1	Compartment-1		Compartment-n
---------------	---------------	--	---------------

Total size of feature vector

- Word based: 300 dimensions X 5 words window (current+2 prev+2 foll)
- POS based: 12 POSes X 5
- Chunk based: 1 X 2 prev words
- Suffix: 100
- Prefix: 100

TOTAL feature vector size = 1500+60+2+350=1912

- OTHER: 50
- Most of the components will be 0!
- Very sparse feature vector!

How to weight the features

- MEMM: General Iterative Scaling
- Gradient Descent ** (will do)
- Limited Memory Broyden–Fletcher– Goldfarb–Shanno algorithm (L-BFGS)

Conditional Random Field

CRF Formulation

$$\hat{\boldsymbol{y}} = \operatorname*{arg\,max}_{\boldsymbol{y}} p_{\boldsymbol{\lambda}}(\boldsymbol{y}|\boldsymbol{x}) = \operatorname*{arg\,max}_{\boldsymbol{y}} \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y},\boldsymbol{x})$$

$$p_{\lambda}(\boldsymbol{Y}|\boldsymbol{X}) = \frac{\exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{Y}, \boldsymbol{X})}{Z_{\lambda}(\boldsymbol{X})}$$
(1)

where

$$Z_{\boldsymbol{\lambda}}(\boldsymbol{x}) = \sum_{\boldsymbol{y}} \exp \boldsymbol{\lambda} \cdot \boldsymbol{F}(\boldsymbol{y}, \boldsymbol{x})$$

$$m{F}(m{y},m{x}) = \sum_i m{f}(m{y},m{x},i) \qquad egin{array}{c} i ext{ ranges over the} \\ ext{ input} \\ ext{ positions} \end{array}$$

Gradient Descent

Explaining through Feed Forward Neural Network and Backpropagation

Backpropagation algorithm

- Fully connected feed forward network
- Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

 $\Delta w_{ji} = -\eta \frac{\delta E}{\delta w_{ji}} (\eta = \text{learning rate}, 0 \le \eta \le 1)$ $\frac{\delta E}{\delta w_{ji}} = \frac{\delta E}{\delta net_j} \times \frac{\delta net_j}{\delta w_{ii}} (net_j = \text{input at the } j^{th} \text{ layer})$ $\frac{\delta E}{\delta net_{i}} = -\delta j$ Snot

$$\Delta w_{ji} = \eta \delta j \frac{\partial \eta e \iota_j}{\partial w_{ji}} = \eta \delta j o_i$$

Backpropagation – for outermost layer

$$\delta j = -\frac{\delta E}{\delta net_j} = -\frac{\delta E}{\delta o_j} \times \frac{\delta o_j}{\delta net_j} (net_j = \text{input at the } j^{th} \text{ layer})$$

$$E = \frac{1}{2} \sum_{p=1}^{m} (t_p - o_p)^2$$

Hence, $\delta j = -(-(t_j - o_j)o_j(1 - o_j))$

$$\Delta w_{ji} = \eta (t_j - o_j) o_j (1 - o_j) o_i$$

Backpropagation for hidden layers

 δ_k is propagated backwards to find value of δ_i

Backpropagation – for hidden layers

 $\Delta w_{ii} = \eta \delta j o_i$ $\delta j = -\frac{\delta E}{\delta net_{i}} = -\frac{\delta E}{\delta o_{i}} \times \frac{\delta o_{j}}{\delta net_{i}}$ $= -\frac{\delta E}{\delta o_{i}} \times o_{j}(1 - o_{j})$ $= -\sum_{k \in \text{next layer}} \left(\frac{\delta E}{\delta net_k} \times \frac{\delta net_k}{\delta o_i}\right) \times o_j (1 - o_j)$ Hence, $\delta_i = -\sum_{i=1}^{n} (-\delta_k \times w_{ki}) \times o_i (1-o_i)$ $k \in next$ layer $= \sum (w_{ki}\delta_k)o_i(1-o_i)o_i$ $k \in next$ layer

General Backpropagation Rule

- General weight updating rule: $\Delta w_{ji} = \eta \delta j o_i$
- Where

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$
 for outermost layer

 $= \sum_{k \in \text{next layer}} (w_{kj} \delta_k) o_j (1 - o_j) o_i \text{ for hidden layers}$

How does it work?

 Input propagation forward and error propagation backward (e.g. XOR)

