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Agenda for the week (1/2)

• Work out the mathematics of MEMM 

and CRF

• Apply to shallow parsing

• Elaborate discussion on FEATURE 

ENGG

• Discuss Gradient Descent with Feed 

Forward Network and 

BackPropagation

• Introduce Deep Parsing

• Make reference to Neural Parsing



Algorithmics and Mathematics of 

Chunking

31aug20cs626-pushpak3



Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into 

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W4



Sequence to Sequence Labelling: 

Chunk w/o chunk type

NN                 VG                NN         VBD

B                    B B I



Chunking vs. POS Tagging

• Much simpler task than POS tagging!

• Only 2 tags in the simplest form: ‘B’ 

and ‘I’

• Makes use of POS and MORPH 

information

• Slightly more complex when the 

“TYPE” of chunk also is required



Chunk with chunk type

He        PRP  B-NP

reckons   VBZ  B-VP

the       DT   B-NP

current   JJ   I-NP

account   NN   I-NP

deficit   NN   I-NP

will      MD   B-VP

narrow    VB   I-VP

to        TO B-PP

only      RB   B-NP

#         #    I-NP

1.8       CD   I-NP

billion   CD   I-NP

in        IN   B-PP

September NNP  B-NP

.         .   

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] 

[PP to ] [NP only # 1.8 billion ] [PP in ] [NP September ] .



Noisy Channel

W T
Noisy Channel

Sequence W is transformed into 

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W

8



Maximum Entropy Markov Model 

(1/2)

𝑃 𝑡1, 𝑡2, 𝑡3… , 𝑡𝑛 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛

= ෑ

𝑖=1

𝑛

𝑃(𝑡𝑖| ℎ𝑖)

hi is called the history at position i. This 
captures a lot of information REQUIRED for 
putting the label at position i. 



Digression



Principle behind MEMM

• Choose the probability distribution p 

that has the highest entropy out of 

those distributions that satisfy a 

certain set of constraints.

• The PRINCIPLE OF MAXIMIZING 

ENTROPY

• Competitor to MAXIMUM 

LIKELIHOOD 



Comparing Maximum Likelihood 

and Maximum Entropy

• MLE maximizes probability of 

observations: chooses parameters 

accordingly

• ME maximizes entropy, satisfying 

given constraints: takes a stand of 

minimum bias



Illustration for Maximum Entropy Principle

• Take a coin with parameter 

p=probability of head

• The coin is NOT tossed, so there is 

no observation!

• What is the value of p? 

• Intuitively 0.5: WHY?

• Uniform distribution; equal probability 

for head and tail; no bias 

• That is, maximum entropy



Entropy in case of coin with NO 

toss, and deriving parameter

• E= -plogp – (1-p)log(1-p)

• E is a function of p

• Maximize entropy, 
𝑑𝐸

𝑑𝑝
=0

-logp-1+log(1-p)+1=0

p=1-p, i.e. p=0.5, QED



Case of coin with N tosses and K

heads: apply MLE

• L=pK(1-p)(N-K)

𝑑𝐿

𝑑𝑝
=0 gives 𝑝 =

𝐾

𝑁

• Shown before



Back to MEMM for seq2seq 

labeling



MEMM Idea (1/2)

• Choose the probability distribution p 

that has the highest entropy out of 

those distributions that satisfy a 

certain set of constraints

• The constraints restrict the model to 

behave in accordance with a set of 

statistics collected from the training 

data



MEMM Idea (2/2)

• The statistics are expressed as

the expected values of appropriate 

functions defined on the contexts h 

and tags t 

• In particular, the constraints demand 

that the expectations of the features 

for the model match the empirical 

expectations of the features over the

training data 



Constraint

• A reasonable assumption

• The expectations of features

according to the joint distribution p 

are equal to the expectations of the 

features in the empirical (training 

data) distribution 𝑝~



Mathematically, the constraint is 

expressed as

𝐸𝑝 𝑡
𝑖
,ℎ𝑖 𝑓𝑗 𝑡𝑖, ℎ𝑖 = 𝐸𝑝~(𝑡𝑖,ℎ𝑖)𝑓𝑗 𝑡𝑖, ℎ𝑖

From this,

𝑝 𝑡𝑖 ℎ𝑖 =

[ς𝑗=1
𝐾 𝑒𝜆𝑗𝑓𝑗(ℎ𝑖,𝑡𝑖)]/[σ𝑡𝑖

′ς𝑗=1
𝐾 𝑒𝜆𝑗𝑓𝑗(ℎ𝑖,𝑡𝑖

′)]



In sum form

𝑝 𝑡𝑖 ℎ𝑖 =
𝑒σ𝑗=1

𝐾 𝜆𝑗𝑓𝑗 𝑡
𝑖
,ℎ

𝑖

𝑍

where, 𝑍 = σ
𝑡𝑖
′ 𝑒

σ𝑗=1
𝐾 𝜆𝑗𝑓𝑗(𝑡𝑖

′,ℎ
𝑖
)

The crux of the matter is estimation of 

𝜆𝑗s 



Use Gradient Descent

• log(p(ti|hi)= σ𝑗=1
𝐾 𝜆𝑗𝑓𝑗 𝑡𝑖, ℎ𝑖 - logZ

• 𝑍 = σ
𝑡𝑖
′ 𝑒

σ𝑗=1
𝐾 𝜆𝑗𝑓𝑗(𝑡𝑖

′,ℎ𝑖)



Iteration

• Xn= log(p(ti|hi)= σ𝑗=1
𝐾 𝜆𝑗(𝑛)𝑓𝑗 𝑡𝑖, ℎ𝑖 -

logZn

• Where, n refers to the iteration no. 

• Xn is the value of log(p(ti|hi) at the nth

iteration, which is a function of 𝜆𝑗(𝑛)

only 



Gradient Descent based training

• Goal is to find 𝜆𝑗

• Closed form expression not possible

• Find iteratively

𝜆𝑗(𝑛 + 1)=𝜆𝑗(𝑛) - η
𝛿𝑋(𝑛)

𝛿𝜆𝑗

• Where, derivative of X at nth iteration 

with respect to 𝜆𝑗 is taken

• Start with some initial value of 𝜆𝑗



How will the gradient descent run? 

He        PRP  B-NP

reckons   VBZ  B-VP

the       DT   B-NP

current   JJ   I-NP

account   NN   I-NP

deficit   NN   I-NP

will      MD   B-VP

narrow    VB   I-VP

to        TO B-PP

only      RB   B-NP

#         #    I-NP

1.8       CD   I-NP

billion   CD   I-NP

in        IN   B-PP

September NNP  B-NP

.         .   

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] 

[PP to ] [NP only # 1.8 billion ] [PP in ] [NP September ] .



How does the training go?

• Have training corpus

• Tagged with B-I labels

• POS tags

• Features extracted

• Then compute iteratively



MEMM Decoding

• If we have fa(s,o) and λa values, we 

can run Viterbi decoding (or beam 

search) to do the labelling

• The moot question now: 

(a) how to design fa(s,o), the 

feature set, and

(b) and assign the weights λa



Illustration with example



I

B

Brown

^

^

I

B

I

B

foxes

I

B

jumped

…

…

…

…

the

…

…

fence

.

.

.

I

B

I

B

over

Probability of a path (e.g. Top most path) = 

Product of P(Yi|Yi-1, X)

P(B|I,”Brown foxes jumped over the fence”)



Design the feature set: a proposal 

(out of many) (1/5)

Word based (window size 5)

• f1= current word (‘foxes’)

• f2= previous word (‘brown’)

• f3= prev to prev word (‘^’)

• f4= following word (‘jumped’)

• f5= following to following word (‘over’)

^ brown foxes jumped over the fence .



Feature Set Design (2/3)

POS based (window size 5)

• f6= POS of current word (NNS)

• f7= POS of previous word (JJ)

• f8= POS of prev to prev word (^)

• f9= POS of following word (VBD)

• f10= POS of following to following word (IN)

^ brown foxes jumped over the fence .



Feature Set Design (3/3)

CHUNK based (window size 5)

• f11= B/I of previous word (B)

• f12= B/I of prev to prev word (B)

^ brown foxes jumped over the fence .



Feature Set Design

MORPH based (window size 5)

• f12= does the current word have a particular 

noun suffix, like ‘s’, ‘es’, ‘ies’, etc.  (yes: ‘es’): 

f12 itself is a feature vector!

• f13= particular verbal suffix, like ‘d’, ‘ed’, ‘t’, 

etc.  (no): f13 itself is a feature vector!

• f14= adjective suffix, like ‘ly’, ‘ment’, ‘tion’, etc.  

(no): f13 itself is a feature vector!

• f14= adverb suffix, like ‘ly’, ‘ment’, ‘tion’, etc.  

(no): f13 itself is a feature vector!

^ brown foxes jumped over the fence .



Noun Suffixes https://examples.yourdictionary.com/list-of-

suffixes-and-suffix-examples.html

• -eer

Meaning: engaged in something, associated 

with something

Examples: auctioneer, volunteer, engineer, 

profiteer

• -er

Meaning: someone who performs an action

Examples: helper, teacher, preacher, dancer

• -ion

Meaning: the action or process of

Examples: celebration, opinion, decision, 

revision

• -ity

Meaning: the state or condition of

Examples: probability, equality, abnormality, 

civility

• -ment

Meaning: the action or result of

Examples: movement, retirement, 

abandonment, establishment

• -ness

Meaning: a state or quality

Examples: fondness, awareness, kindness, 

darkness

• -or

Meaning: a person who is something

Examples: distributor, investigator, 

translator, conductor

• -sion

Meaning: state or being

Examples: depression, confusion, tension, 

compulsion

• -ship

Meaning: position held

Examples: worship, ownership, courtship, 

internship

• -th

Meaning: state or quality

Examples: strength, labyrinth, depth, 

warmth



Adjective Suffixes
• -able, -ible: 

Meaning: capable of being

Examples: preventable, 

adaptable, predictable, credible

• -al

Meaning: pertaining to

Examples: theatrical, natural, 

criminal, seasonal

• -ant

Meaning: inclined to or tending to

Examples: vigilant, defiant, 

brilliant, reliant

• -ary

Meaning: of or relating to

Examples: budgetary, planetary, 

military, honorary

• -ful: Meaning: full of or notable of

Examples: grateful, beautiful, 

wonderful, fanciful

• -ic

Meaning: relating to

Examples: iconic, organic, heroic, 

poetic

• -ious, -ous

Meaning: having qualities of

Examples: gracious, cautious, 

humorous, fabulous

• -ive

Meaning: quality or nature of

Examples: creative, expensive, 

expressive, pensive

• -less

Meaning: without something

Examples: hopeless, faultless, 

fearless, restless

• -y: Meaning: made up of or 

characterized by

Examples: brainy, fruity, tasty



Verb Suffixes
• -ed

Meaning: past-tense 

version of a verb

Examples: laughed, 

climbed, called, missed

• -en

Meaning: become

Examples: soften, fasten, 

lengthen, strengthen

• -er

Meaning: action or process, 

making an adjective 

comparative

Examples: faster, bigger, 

fuller, longer

• -ing

Meaning: verb form/present 

participle of an action

Examples: laughing, 

swimming, driving, writing

• -ize, -ise

Meaning: to cause or to 

become

Examples: memorialize, 

authorize, commercialize, 

advertise



Adverb suffixes

• -ly

Meaning: in what manner something is being 

done

Examples: bravely, simply, honestly, gladly

• -ward

Meaning: in a certain direction

Examples: backward, wayward, awkward, 

afterward

• -wise

Meaning: in relation to

Examples: clockwise, edgewise, lengthwise, 

otherwise



Similarly for prefixes

• PREFIX MEANING EXAMPLES

• a-, an- without, not anesthetic, atheist

• ab- away, from abject, abscess

• ad-, a-, ac-, as- to, toward access, admit, assist

• ante before antecedent, anterior

• anti- against antibiotics, antioxidant

• auto- self autoimmune, autonomous

• ben- good benefit, benign

• bi- two, both bifocals, bipolar

• circum- around circumference, circumscribe

• co-, com-, con- with, together companion, concurrent*

• contra-, counter- against contradict, counteract

• de- down, undo, notdegenerate, depress

• di-, dis- lack of, not, apart disadvantage, displacement



Remarks for morphology features

• Needs morphology analysis 

• Shallow MA: affix separation

• Deep MA: features (like GNPTAM for 

verbs)

• Statistical stemmers go by frequency 

of substrings

• E.g., BPE, Morfessor, Porter etc.

• For a given word, mostly the 

features will be 0!



Feature engineering: word form 

based
• Word property based (syntactic, 

window size 5)

• Capitalization? (‘no’)

• Length (5)

• #Orthographic syllables (3: fo, xe, s)

• #BPEs

• #syllables (2: fox, es)

• ^ brown foxes jumped over the 

fence .



Feature engineering: word meaning 

based
• Word property based (semantic, window 

size 5)

• Place/Organization/Person (‘no’)

• Animate (‘yes’)

• Carnivorous (‘yes’)

• ^ brown foxes jumped over the fence 

.

• Needs Knowledge Graph

• Not really needed at the Chunk Level



NLP inherently has cyclicity

• Semantic features need semantic 

analysis

• Semantic analysis needs lower level 

analysis: morph, pos, chunk, parse

• E.g., “Bay of Bengal”

• Should chunk the whole thing

• How to know that all these 3 words form 

a single unit?

• We need probability: 

MLE/Bayesian/Max Ent



Feature Vector (considering our 

situation) (1/4)
• Compartment-1: current word vector (can 

be word embedding) (size-300)

• Comp-2: prev word vector (size-300)

• Comp-3: prev to prev word vector (size-

300)

• Comp-4: following word’s vector (300)

• Comp-5: following to following word’s 

vector (300)

Compartment-1 Compartment-1 ------------- Compartment-n



Feature Vector (considering our 

situation) (2/4)
• Comp-6: current word’s POS vector (size-

12; there are 12 universal pos tags)

• Comp-7: prev word’s POS vector (size-12)

• Comp-8: prev to prev word’s POS vector 

(12)

• Comp-9: following POS vector (12)

• Comp-10: following to following POS 

vector (12)

Compartment-1 Compartment-1 ------------- Compartment-n



Feature Vector (considering our 

situation) (3/4)
• Comp-11: prev word’s chunk vector (size-

1; two chunk labels, so, 1/0)

• Comp-12: prev to prev word’s chunk (size-

1)

Compartment-1 Compartment-1 ------------- Compartment-n



Feature Vector (considering our 

situation) (3/4)
• Comp-13: current word’s suffix vector 

(size-100; assuming 100 suffixes possible)

• Comp-14: current word’s prefix vector 

(size-100; assuming 100 prefixes possible)

• Comp-15: current word’s OTHER 

properties vector, capitalization,length, 

#syllables, animacy, etc. (size-50; 

assuming 50 such other properties) 

Compartment-1 Compartment-1 ------------- Compartment-n



Total size of feature vector

• Word based: 300 dimensions X 5 words 

window (current+2 prev+2 foll)

• POS based: 12 POSes X 5

• Chunk based: 1 X 2 prev words

• Suffix: 100

• Prefix: 100

• OTHER: 50

• Most of the components will be 0!

• Very sparse feature vector!

TOTAL feature vector size

= 1500+60+2+350=1912



How to weight the features

• MEMM: General Iterative Scaling

• Gradient Descent ** (will do)

• Limited Memory Broyden–Fletcher–

Goldfarb–Shanno algorithm (L-BFGS)



Conditional Random Field



CRF Formulation

i ranges over the 

input

positions



Gradient Descent

Explaining through Feed Forward Neural 

Network and Backpropagation



Backpropagation algorithm

• Fully connected feed forward network

• Pure FF network (no jumping of 
connections over layers)

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
j

i

wji

….

….

….

….



Gradient Descent Equations

i

ji

j

ji

j

th

j

ji

j

jji

ji

ji

jo
w

net
jw

j
net

E

net
w

net

net

E

w

E

w

E
w






































)layer j at theinput (

)10 rate, learning(



Backpropagation – for outermost 

layer
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Backpropagation for hidden layers

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)

j

i

….

….

….

….

k

k is propagated backwards to find value of j



Backpropagation – for hidden 

layers
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General Backpropagation Rule

ijj

k

kkj ooow )1()(
layernext 

 




)1()( jjjjj ooot 

iji jow 
• General weight updating rule:

• Where 

for outermost layer

for hidden layers



How does it work?

• Input propagation forward and error 

propagation backward (e.g. XOR)

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1


