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Recurrent Neural Network
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Sequence processing m/c
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E.g. POS Tagging
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Purchased Videocon machine

VBD NNP NN
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E.g. Sentiment Analysis
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Back to RNN model
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Notation: input and state

• xt is the input at time step t. For example, could 

be a one-hot vector corresponding to the second 

word of a sentence. 

• st is the hidden state at time step t. It is the 

“memory” of the network.

• st= f(U.xt+Wst-1) U and W matrices are learnt

• f  is a function of the input and the previous state

• Usually tanh or ReLU (approximated by softplus)
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Tanh, ReLU (rectifier linear unit) 

and Softplus
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Notation: output

• ot is the output at step t

• For example, if we wanted to 

predict the next word in a sentence 

it would be a vector of probabilities 

across our vocabulary

• ot=softmax(V.st)
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Operation of RNN

• RNN shares the same parameters 

(U, V, W) across all steps

• Only the input changes

• Sometimes the output at each time 

step is not needed: e.g., in 

sentiment analysis

• Main point: the hidden states !!
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The equivalence between feedforward nets and recurrent 

nets

w1 w4

w2 w3

w1  w2  W3     W4

time=0

time=2

time=1

time=3

Assume that there is a time 

delay of 1 in using each 

connection.

The recurrent net is just a 

layered net that keeps 

reusing the same weights.

w1  w2  W3     W4

w1  w2  W3     W4
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Machine Translation
(useful start: Machine Translation, Pushpak

Bhattacharyya, CRC Press, 2015)

6 Jan, 2014isi: ml for mt:pushpak16



Motivation for MT

 MT: NLP Complete

 NLP: AI complete

 AI: CS complete

 How will the world be different when the language 
barrier disappears?

 Volume of text required to be translated currently
exceeds translators’ capacity (demand > supply).

 Solution: automation
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Taxonomy of MT systems

MT

Approaches

Knowledge

Based;

Rule Based MT

Data driven;

Machine 

Learning

Based

Example Based

MT (EBMT)

Statistical MT

Interlingua Based Transfer Based
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Why is MT difficult?

Language divergence
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Why is MT difficult: Language 

Divergence

• One of the main complexities of MT: 

Language Divergence

• Languages have different ways of 

expressing meaning
– Lexico-Semantic Divergence

– Structural Divergence

Our work on English-IL Language Divergence with 

illustrations from Hindi

(Dave, Parikh, Bhattacharyya, Journal of MT, 2002)
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Languages differ in expressing 

thoughts: Agglutination

Finnish: “istahtaisinkohan”

English: "I wonder if I should sit down for a while“ 

Analysis:

• ist + "sit", verb stem

• ahta + verb derivation morpheme, "to do something for a while"

• isi + conditional affix

• n + 1st person singular suffix

• ko + question particle

• han a particle for things like reminder (with declaratives) or 

"softening" (with questions and imperatives)
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Language Divergence Theory: 
Lexico-Semantic Divergences (few examples)

• Conflational divergence

– F: vomir; E: to be sick

– E: stab; H: chure se maaranaa (knife-with hit)

– S: Utrymningsplan; E: escape plan

• Categorial divergence

– Change is in POS category:

– The play is on_PREP (vs. The play is Sunday)

– Khel chal_rahaa_haai_VM (vs. khel ravivaar ko haai)

6 Jan, 2014isi: ml for mt:pushpak22



Language Divergence Theory: 
Structural Divergences

• SVOSOV

– E: Peter plays basketball

– H: piitar basketball kheltaa haai

• Head swapping divergence

– E: Prime Minister of India

– H: bhaarat ke pradhaan mantrii (India-of Prime
Minister)
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Language Divergence Theory: Syntactic 

Divergences (few examples)

• Constituent Order divergence

– E: Singh, the PM of India, will address the nation
today

– H: bhaarat ke pradhaan mantrii, singh, … (India-of
PM, Singh…)

• Adjunction Divergence

– E: She will visit here in the summer

– H: vah yahaa garmii meM aayegii (she here summer-
in will come)

• Preposition-Stranding divergence

– E: Who do you want to go with?

– H: kisake saath aap jaanaa chaahate ho? (who
with…)
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Latency concerns: What is Latency?
● Example

■ Purchased videocon machine. (VBD NNP NN) (VP)

■ वीडियोकॉन मशीन खरीदी।
■ Videocon machine kharidi

● Latency

○ Purchased videocon machine: Verb phrase

○ English: Head initial (Purchased in the beginning of 

the phrase)

○ Hindi: Head final (kharidi in the end of the phrase)

○ In speech to speech translation or interactive machine 

translation

■ Translation of purchased can not be produced 

immediately after seeing the input string, it needs to 

be hold back (This phenomenon is known as 

latency)



Monotonicity
● Isolate phrases in the sentence whose translation have to 

be done together

● Move from one group of words to another without going 

back, without any regression.

● How translators translate?
○ Approach1

■ Make groups

● Groups: I saw immediately the blue sky

■ These groups (chunks) are translated and 

reordered to make the final translation.
○ Approach2

■ Rearrange the sentence first keeping the target 

language in mind, then translate.

■ I the blue sky saw immediately.

■ Maine neela asman ko turant dekha.



Exercise

Phrase movement versus local translation, 

which one should be done earlier?



Vauquois Triangle
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Kinds of MT Systems
(point of entry from source to the target text)
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Illustration of transfer SVOSOV

S

NP VP

VN NP

NJohn eats

bread

S

NP VP

VN

John eats

NP

N

bread

(transfer

svo sov)

6 Jan, 2014isi: ml for mt:pushpak30



Fundamental processes in Machine 

Translation
● Analysis

○ Analysis of the source language to represent the 

source language in more disambiguated form

■ Morphological segmentation, POS tagging, 

chunking, parsing, discourse resolution, pragmatics 

etc.

● Transfer

○ Knowledge transfer from one language to another

○ Example: SOV to SVO conversion

● Generation

○ Generate the final target sentence

○ Final output is text, intermediate representations can 

include F-structures, C-structures, tagged text etc.



Universality hypothesis

Universality hypothesis: At the 

level of “deep meaning”, all texts 

are the “same”, whatever the 

language. 
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Understanding the Analysis-Transfer-

Generation over Vauquois triangle (1/4)

H1.1: सरकार_ने चनुावो_के_बाद मुुंबई में करों_के_माध्यम_से अपने राजस्व_को

बढ़ाया | 

T1.1: Sarkaar ne chunaawo ke baad Mumbai me karoM ke

maadhyam se apne raajaswa ko badhaayaa

G1.1: Government_(ergative) elections_after Mumbai_in

taxes_through its revenue_(accusative) increased 

E1.1: The Government increased its revenue after the

elections through taxes in Mumbai
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Interlingual representation: complete 

disambiguation

• Washington voted Washington to 

power
Vote 

@past

Washingto

n power Washington 

@emphasis

<is-a > 

action

<is-a > 

place

<is-a > capability

<is-a > …

<is-a > 

person

goal
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Kinds of disambiguation needed for a 

complete and correct interlingua graph

• N: Name

• P: POS

• A: Attachment

• S: Sense

• C: Co-reference

• R: Semantic Role
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Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw 

some money but was disappointed to find it closed.

ISSUES Part Of Speech
Noun or Verb
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Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw 

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

John is the 

name of a 

PERSON
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Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw 

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

WSD Financial bank 

or River bank
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Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw 

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

WSD

Co-reference

“it”  “bank” .
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Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw 

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

WSD

Co-reference

Subject Drop

Pro drop 

(subject “I”)
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Typical NLP tools used

• POS tagger 

• Stanford Named Entity Recognizer

• Stanford Dependency Parser

• XLE Dependency Parser

• Lexical Resource
– WordNet

– Universal Word Dictionary (UW++)
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System Architecture

Stanford  

Dependency 

Parser

XLE Parser

Feature 

Generation

Attribute 

Generation

Relation 

Generation

Simple Sentence

Analyser

NER

Stanford  Dependency Parser

WSD

Clause 

Marker

Merger 

Simple

Enco.

Simple

Enco.

Simple

Enco.

Simple

Enco.

Simple

Enco.

Simplifier
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Target Sentence Generation from 

interlingua

Lexical Transfer

Target Sentence 

Generation

Syntax 

Planning

Morphological 

Synthesis

(Word/Phrase  

Translation )
(Word form 

Generation)
(Sequence)
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Generation Architecture

Deconversion = Transfer + Generation
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Transfer Based MT

Marathi-Hindi
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Indian Language to Indian Language 

Machine Translation (ILILMT)

• Bidirectional Machine Translation System

• Developed for nine Indian language pairs

• Approach:

– Transfer based

– Modules developed using both rule based and 

statistical approach
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Architecture of ILILMT System

Morphological

Analyzer 

Source Text

POS Tagger

Chunker

Vibhakti

Computation

Name Entity 

Recognizer

Word Sense 

Disambiguatio

n

Lexical 

Transfer

Agreement 

Feature

Interchunk

Word 

Generator

Intrachunk

Target Text

Analysis

Transfer

Generation
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M-H MT system: Evaluation 

– Subjective evaluation based on machine 

translation quality 

– Accuracy calculated based on score given by 

linguists               

S5: Number of score 5 Sentences, 

S4: Number of score 4 sentences, 

S3: Number of score 3 sentences, 

N: Total Number of sentences

Accuracy =  

Score : 5 Correct Translation

Score : 4 Understandable with

minor errors

Score : 3 Understandable with

major errors

Score : 2 Not Understandable

Score : 1 Non sense translation
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Evaluation of Marathi to Hindi 

MT System

0
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WSD Lexical
Transfer

Word
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Evaluation of Marathi to Hindi 

MT System (cont..)

• Subjective evaluation on translation quality
– Evaluated on 500 web sentences

– Accuracy calculated based on score given according to the 
translation quality.

– Accuracy: 65.32 %

• Result analysis:
– Morph, POS tagger, chunker gives more than 90% 

precision but Transfer,  WSD,  generator modules are 
below 80% hence degrades MT quality.

– Also, morph disambiguation, parsing, transfer grammar 
and FW disambiguation modules are required to improve 
accuracy.
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Statistical Machine Translation
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Czeck-English data

• [nesu] “I carry”

• [ponese] “He will carry”

• [nese] “He carries”

• [nesou] “They carry”

• [yedu] “I drive”

• [plavou] “They swim”
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To translate …

• I will carry.

• They drive.

• He swims.

• They will drive.
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Hindi-English data

• [DhotA huM] “I carry”

• [DhoegA] “He will carry”

• [DhotA hAi] “He carries”

• [Dhote hAi] “They carry”

• [chalAtA huM] “I drive”

• [tErte hEM] “They swim”
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Bangla-English data

• [bai] “I carry”

• [baibe] “He will carry”

• [bay] “He carries”

• [bay] “They carry”

• [chAlAi] “I drive”

• [sAMtrAy] “They swim”
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To translate … (repeated)

• I will carry.

• They drive.

• He swims.

• They will drive.
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Foundation

• Data driven approach
• Goal is to find out the English sentence e

given foreign language sentence f whose 
p(e|f) is maximum.

• Translations are generated on the basis 
of statistical model

• Parameters are estimated using bilingual 
parallel corpora

6 Jan, 2014isi: ml for mt:pushpak57



SMT: Language Model

• To detect good English sentences

• Probability of an English sentence w1w2 …… wn can be 
written as

Pr(w1w2 …… wn) = Pr(w1) * Pr(w2|w1) *. . . * Pr(wn|w1 w2 . . . wn-1)

• Here Pr(wn|w1 w2 . . . wn-1) is the probability that word wn

follows word string w1 w2 . . . wn-1. 
– N-gram model probability

• Trigram model probability calculation
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