CS626: Speech, NLP and the Web

RNN, Seq2seq, Machine Translation
Pushpak Bhattacharyya
Computer Science and Engineering
Department
IIT Bombay
Week of 9th November, 2020

Recurrent Neural Network

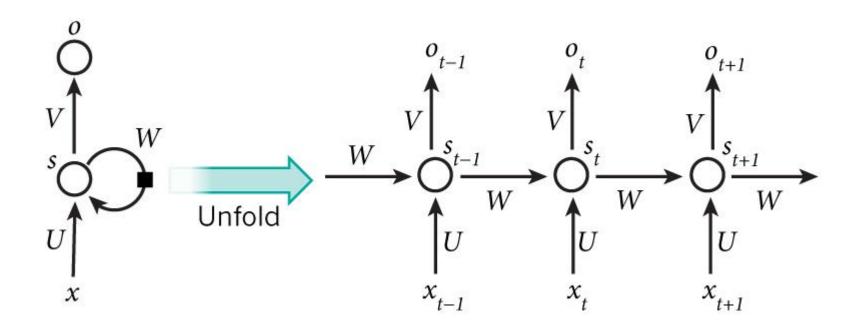
Acknowledgement:

1. http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

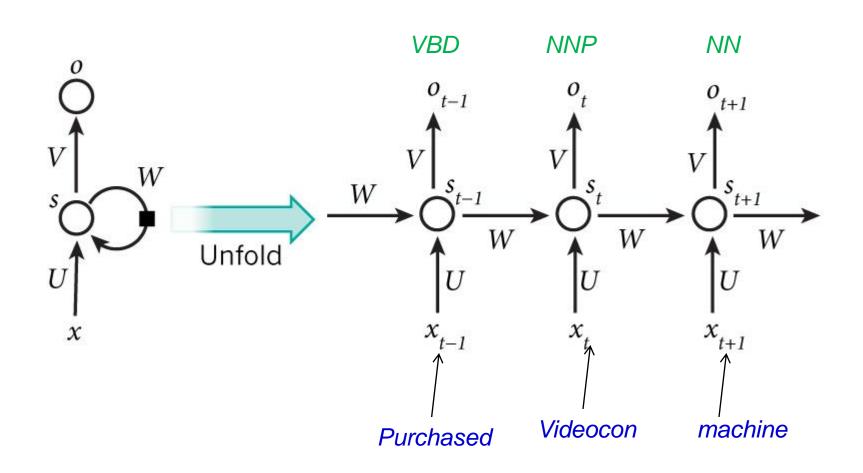
By Denny Britz

2. Introduction to RNN by Jeffrey Hinton http://www.cs.toronto.edu/~hinton/csc2535/lectures.ht ml

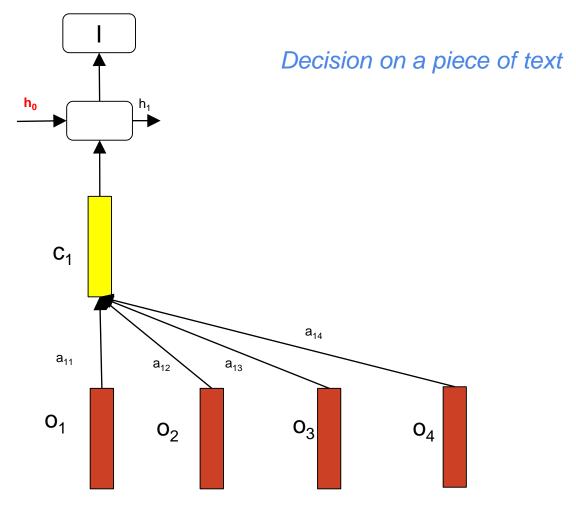
Sequence processing m/c

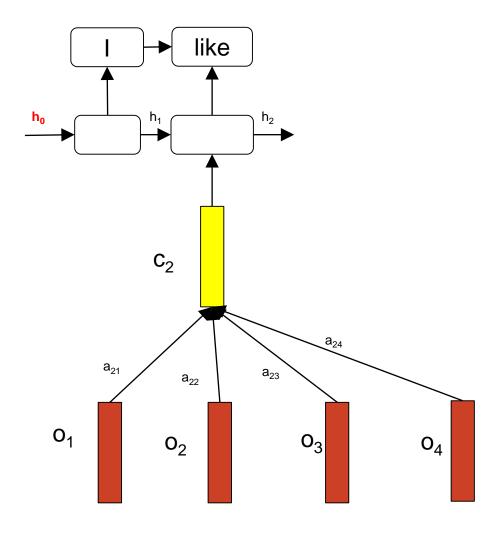


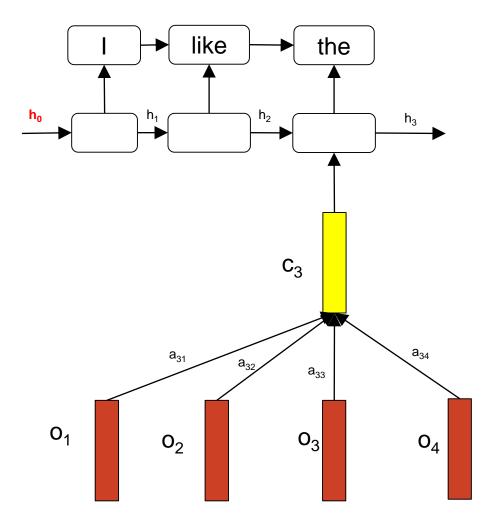
E.g. POS Tagging

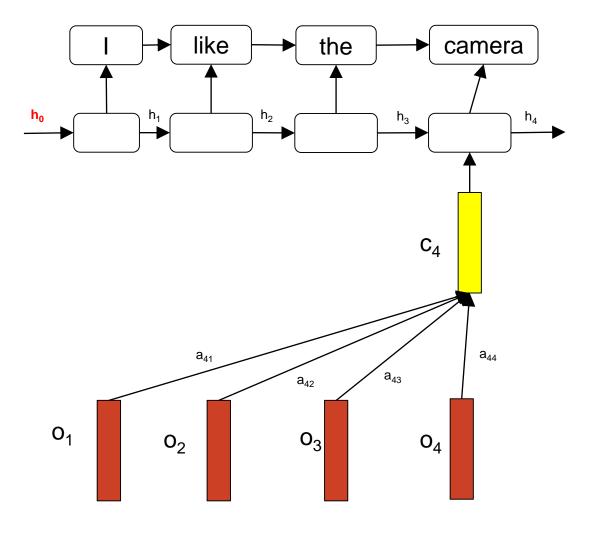


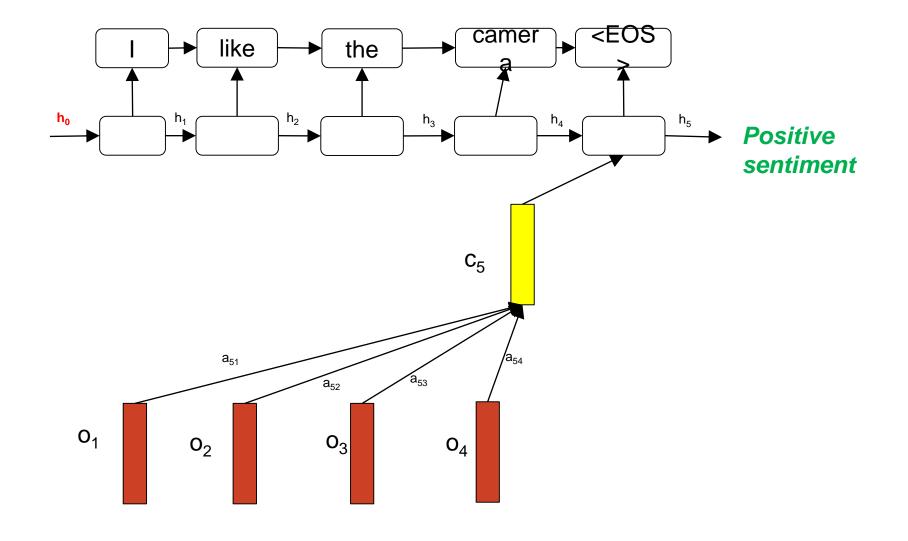
E.g. Sentiment Analysis



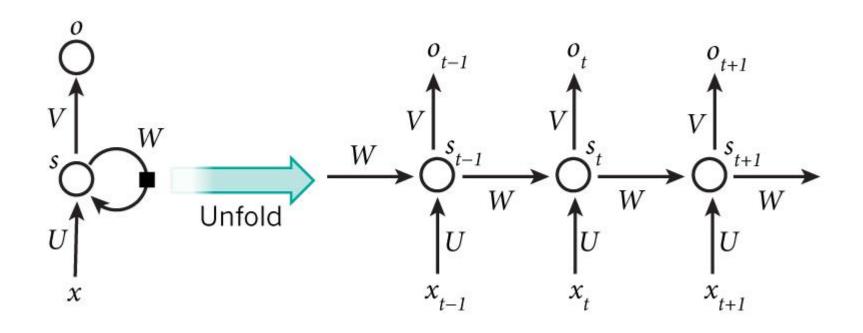








Back to RNN model



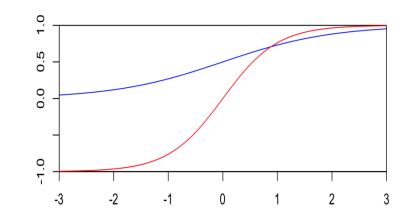
Notation: input and state

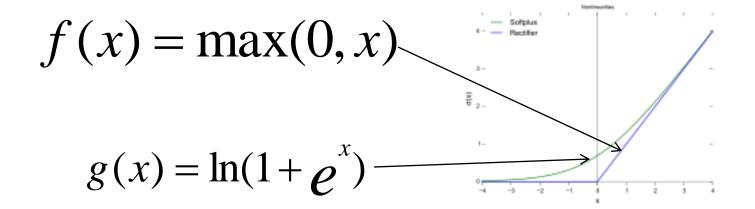
- x_t is the input at time step t. For example, could be a one-hot vector corresponding to the second word of a sentence.
- s_t is the hidden state at time step t. It is the "memory" of the network.
- $s_t = f(U.x_t + Ws_{t-1}) U$ and W matrices are learnt
- f is a function of the input and the previous state
- Usually tanh or ReLU (approximated by softplus)

Tanh, ReLU (rectifier linear unit) and Softplus

$$tanh = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$tanh = \frac{e^{x} - e^{-x}}{e^{-x}}$$





Notation: output

o_t is the output at step t

 For example, if we wanted to predict the next word in a sentence it would be a vector of probabilities across our vocabulary

• $o_t = softmax(V.s_t)$

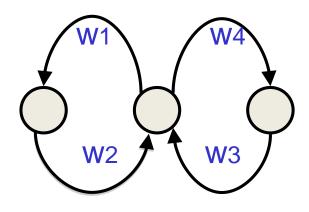
Operation of RNN

RNN shares the same parameters
 (U, V, W) across all steps

Only the input changes

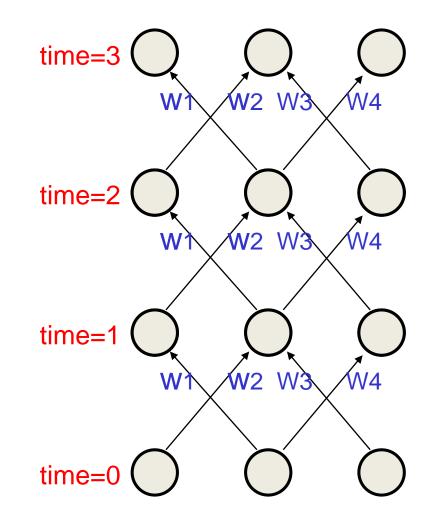
- Sometimes the output at each time step is not needed: e.g., in sentiment analysis
- Main point: the hidden states !!

The equivalence between feedforward nets and recurrent nets



Assume that there is a time delay of 1 in using each connection.

The recurrent net is just a layered net that keeps reusing the same weights.



1866) aml, f200 1n4t:pushpak

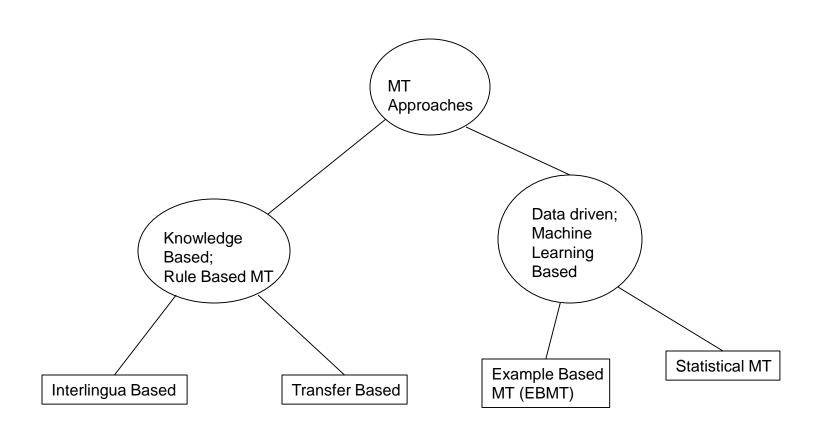
Machine Translation

(useful start: Machine Translation, Pushpak Bhattacharyya, CRC Press, 2015)

Motivation for MT

- MT: NLP Complete
- NLP: AI complete
- AI: CS complete
- How will the world be different when the language barrier disappears?
- Volume of text required to be translated currently exceeds translators' capacity (demand > supply).
 - Solution: automation

Taxonomy of MT systems



1899 Janni, f**200 1n4**t:pushpak

Why is MT difficult?

Language divergence

Why is MT difficult: Language Divergence

- One of the main complexities of MT: *Language Divergence*
- Languages have different ways of expressing meaning
 - Lexico-Semantic Divergence
 - Structural Divergence

Our work on English-IL Language Divergence with illustrations from Hindi (Dave, Parikh, Bhattacharyya, Journal of MT, 2002)

Languages differ in expressing thoughts: Agglutination

Finnish: "istahtaisinkohan"

English: "I wonder if I should sit down for a while"

Analysis:

- ist + "sit", verb stem
- ahta + verb derivation morpheme, "to do something for a while"
- isi + conditional affix
- n + 1st person singular suffix
- ko + question particle
- han a particle for things like reminder (with declaratives) or "softening" (with questions and imperatives)

Language Divergence Theory:

Lexico-Semantic Divergences (few examples)

- Conflational divergence
 - F: vomir; E: to be sick
 - E: stab; H: chure se maaranaa (knife-with hit)
 - S: Utrymningsplan; E: escape plan
- Categorial divergence
 - Change is in POS category:
 - The play is on_PREP (vs. The play is Sunday)
 - Khel chal_rahaa_haai_VM (vs. khel ravivaar ko haai)

Language Divergence Theory:

Structural Divergences

- SVO→SOV
 - E: Peter plays basketball
 - H: piitar basketball kheltaa haai

- Head swapping divergence
 - E: Prime Minister of India
 - H: bhaarat ke pradhaan mantrii (India-of Prime Minister)

Language Divergence Theory: Syntactic

Divergences (few examples)

- Constituent Order divergence
 - E: Singh, the PM of India, will address the nation today
 - H: bhaarat ke pradhaan mantrii, singh, ... (India-of PM, Singh...)
- Adjunction Divergence
 - E: She will visit here in the summer
 - H: vah yahaa garmii meM aayegii (she here summerin will come)
- Preposition-Stranding divergence
 - E: Who do you want to go with?
 - H: kisake saath aap jaanaa chaahate ho? (who with...)

Latency concerns: What is Latency?

- Example
 - Purchased videocon machine. (VBD NNP NN) (VP)
 - वीडियोकॉन मशीन खरीदी।
 - Videocon machine kharidi

Latency

- Purchased videocon machine: Verb phrase
- English: Head initial (Purchased in the beginning of the phrase)
- Hindi: Head final (kharidi in the end of the phrase)
- In speech to speech translation or interactive machine translation
 - Translation of purchased can not be produced immediately after seeing the input string, it needs to be hold back (This phenomenon is known as latency)

Monotonicity

- Isolate phrases in the sentence whose translation have to be done together
- Move from one group of words to another without going back, without any regression.
- How translators translate?
 - Approach1
 - Make groups
 - Groups: I saw immediately the blue sky
 - These groups (chunks) are translated and reordered to make the final translation.
 - Approach2
 - Rearrange the sentence first keeping the target language in mind, then translate.
 - I the blue sky saw immediately.
 - Maine neela asman ko turant dekha.

Exercise

Phrase movement versus local translation, which one should be done earlier?

2681 aml, f200 1141t: pushpak

Vauquois Triangle

2690 annil, f200 1n4t: pushpak

Kinds of MT Systems

(point of entry from source to the target text)

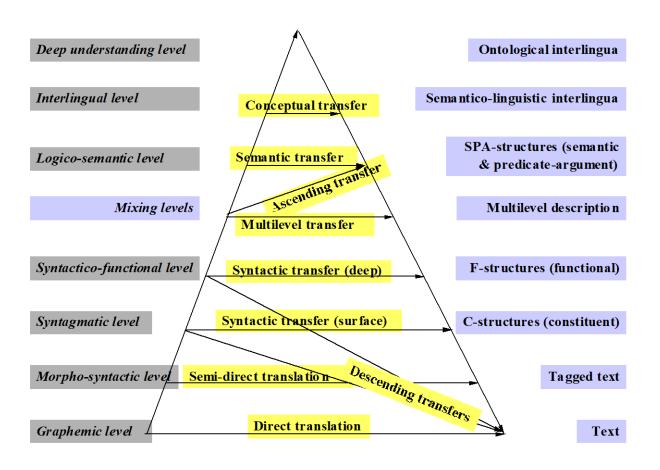
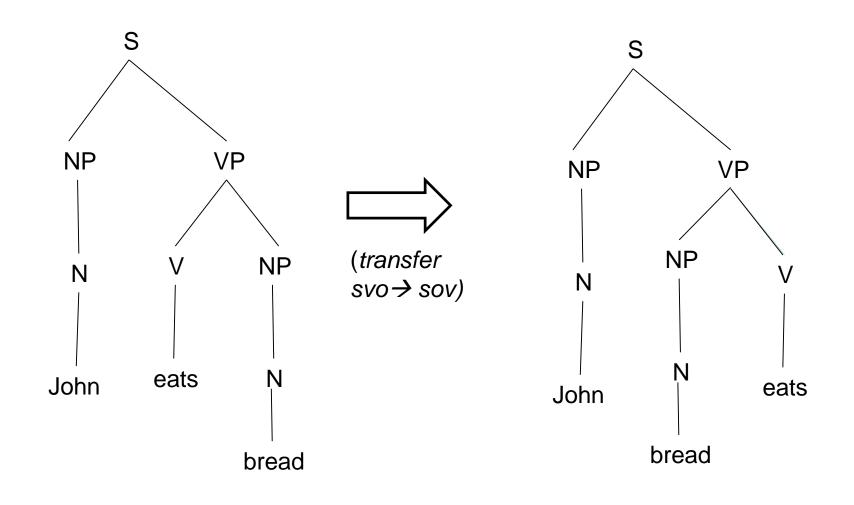


Illustration of transfer SVO→SOV



Fundamental processes in Machine Translation

Analysis

- Analysis of the source language to represent the source language in more disambiguated form
 - Morphological segmentation, POS tagging, chunking, parsing, discourse resolution, pragmatics etc.

Transfer

- Knowledge transfer from one language to another
- Example: SOV to SVO conversion

Generation

- Generate the final target sentence
- Final output is text, intermediate representations can include F-structures, C-structures, tagged text etc.

Universality hypothesis

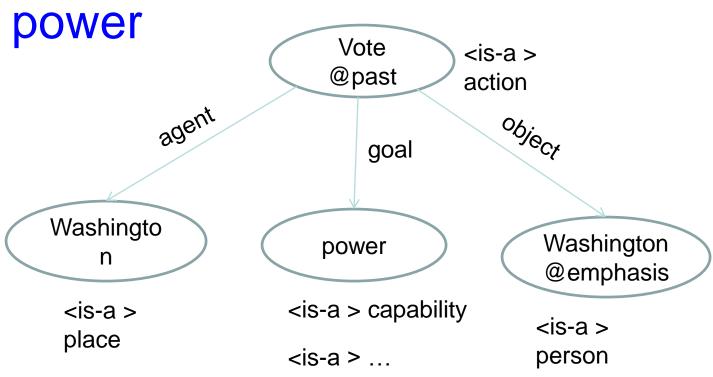
Universality hypothesis: At the level of "deep meaning", all texts are the "same", whatever the language.

Understanding the Analysis-Transfer-Generation over Vauquois triangle (1/4)

- H1.1: सरकार_ने चुनावो_के_बाद मुंबई में करों_के_माध्यम_से अपने राजस्व_को बढ़ाया |
- T1.1: Sarkaar ne chunaawo ke baad Mumbai me karoM ke maadhyam se apne raajaswa ko badhaayaa
- G1.1: Government_(ergative) elections_after Mumbai_in taxes_through its revenue_(accusative) increased
- E1.1: The Government increased its revenue after the elections through taxes in Mumbai

Interlingual representation: complete disambiguation

Washington voted Washington to

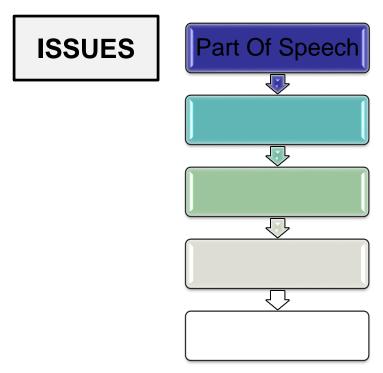


Kinds of disambiguation needed for a complete and correct interlingua graph

- N: Name
- P: POS
- A: Attachment
- S: Sense
- C: Co-reference
- R: Semantic Role

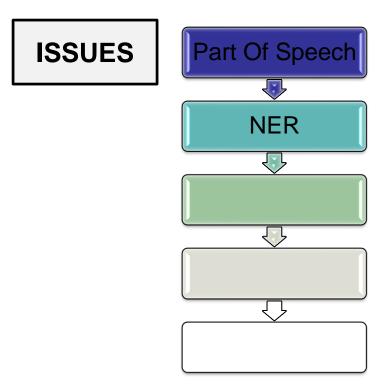
Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.

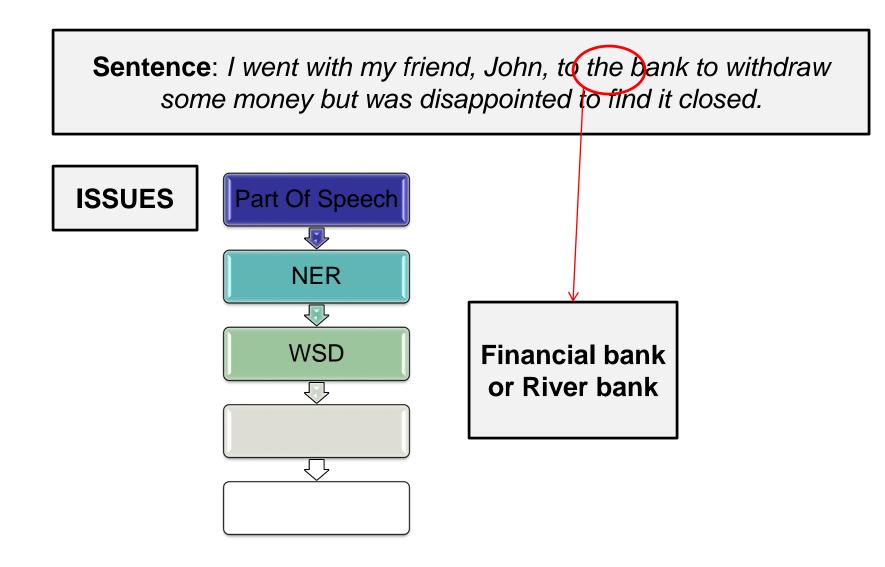


Noun or Verb

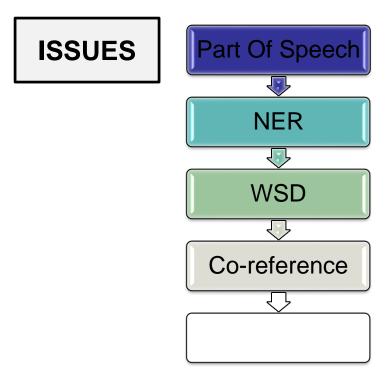
Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.



John is the name of a PERSON

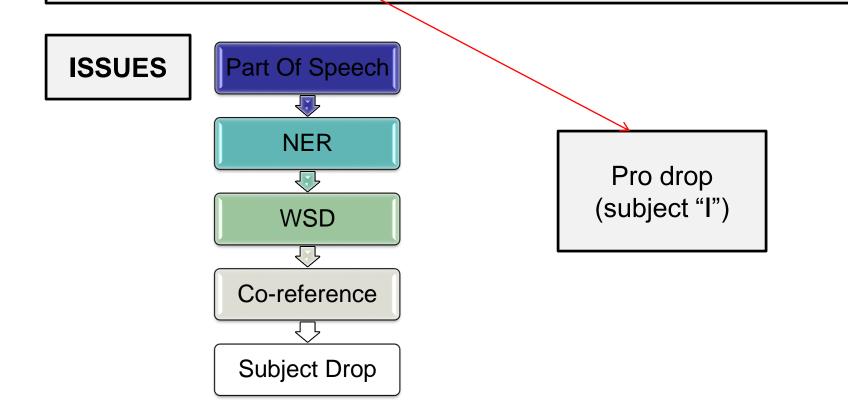


Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.



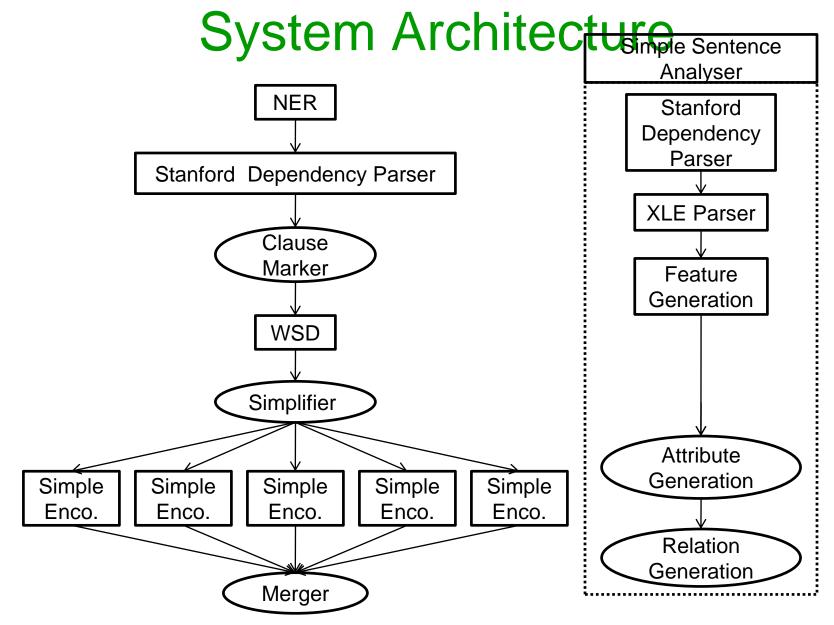
"it" → "bank" .

Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.

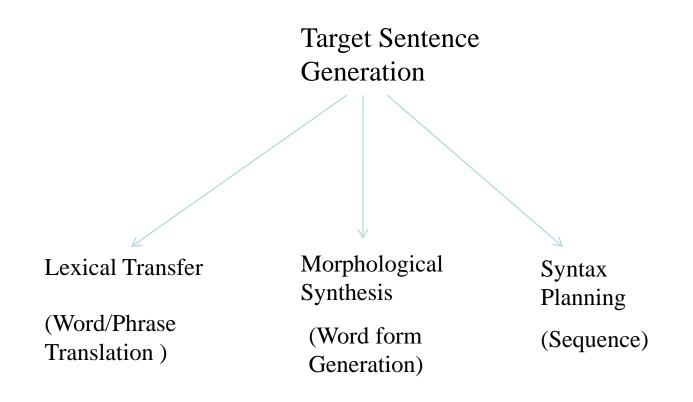


Typical NLP tools used

- POS tagger
- Stanford Named Entity Recognizer
- Stanford Dependency Parser
- XLE Dependency Parser
- Lexical Resource
 - WordNet
 - Universal Word Dictionary (UW++)

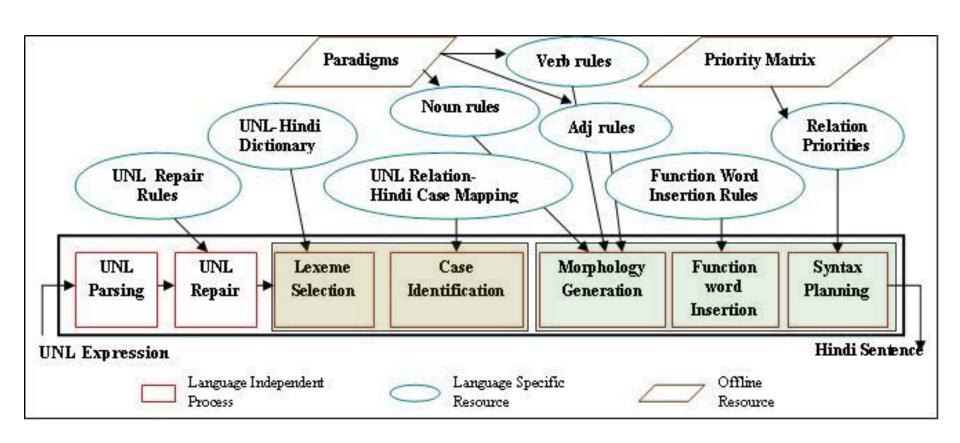


Target Sentence Generation from interlingua



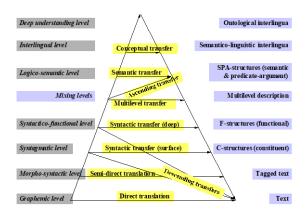
Generation Architecture

Deconversion = Transfer + Generation



Transfer Based MT

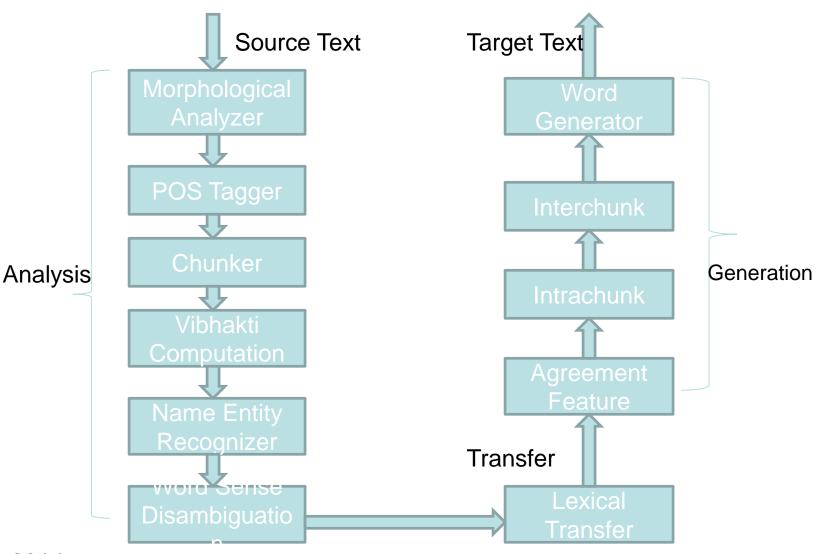
Marathi-Hindi



Indian Language to Indian Language Machine Translation (ILILMT)

- Bidirectional Machine Translation System
- Developed for nine Indian language pairs
- Approach:
 - Transfer based
 - Modules developed using both rule based and statistical approach

Architecture of ILILMT System



6 Jan, 2014

isi: ml for mt:pushpak

M-H MT system: Evaluation

- Subjective evaluation based on machine translation quality
- Accuracy calculated based on score given by linguists

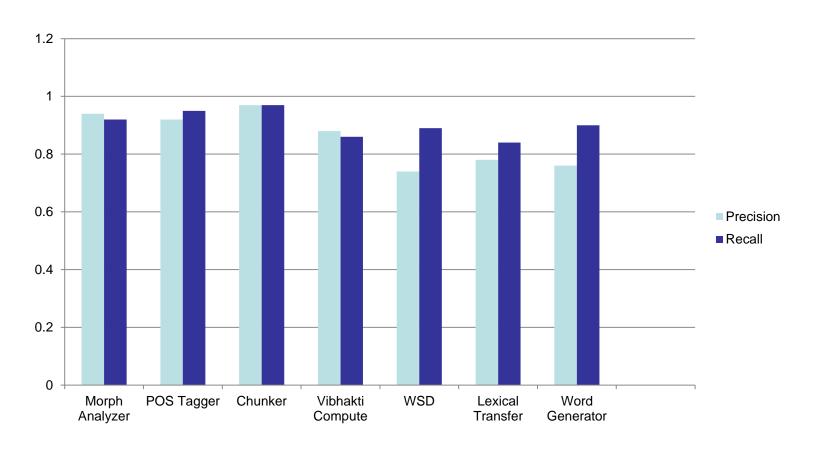
Score : 5	Correct Translation	
Score: 4	Understandable	with
	minor errors	
Score: 3	Understandable	with
	major errors	
Score : 2	Not Understandable	
Score : 1	Non sense translation	

S5: Number of score 5 Sentences, S4: Number of score 4 sentences, S3: Number of score 3 sentences, N: Total Number of sentences

Accuracy =
$$\frac{1*S5 + 0.8*S4 + 0.6*S3}{N}$$

859 Jaml, f**200 1n4**t: pushpak

Evaluation of Marathi to Hindi MT System



Module-wise precision and recall

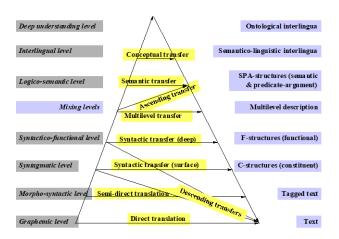
Evaluation of Marathi to Hindi MT System (cont..)

- Subjective evaluation on translation quality
 - Evaluated on 500 web sentences
 - Accuracy calculated based on score given according to the translation quality.
 - Accuracy: **65.32** %

Result analysis:

- Morph, POS tagger, chunker gives more than 90% precision but Transfer, WSD, generator modules are below 80% hence degrades MT quality.
- Also, morph disambiguation, parsing, transfer grammar and FW disambiguation modules are required to improve accuracy.

Statistical Machine Translation



Czeck-English data

- [nesu]
- [ponese]
- [nese]
- [nesou]
- [yedu]
- [plavou]

- "I carry"
- "He will carry"
- "He carries"
 - "They carry"
- "I drive"
- "They swim"

To translate ...

- I will carry.
- They drive.
- He swims.
- They will drive.

Hindi-English data

- [DhotA huM]
- [DhoegA]
- [DhotA hAi]
- [Dhote hAi]
- [chalAtA huM]
- [tErte hEM]

- "I carry"
- "He will carry"
- "He carries"
- "They carry"
 - "I drive"
- "They swim"

Bangla-English data

- [bai] "I carry"
- [baibe] "He will carry"
- [bay] "He carries"
- [bay] "They carry"
- [chAlAi] "I drive"
- [sAMtrAy] "They swim"

To translate ... (repeated)

- I will carry.
- They drive.
- He swims.
- They will drive.

Foundation

- Data driven approach
- Goal is to find out the English sentence e given foreign language sentence f whose p(e|f) is maximum.

$$\tilde{e} = \underset{e \in e^*}{\operatorname{argmax}} p(e|f) = \underset{e \in e^*}{\operatorname{argmax}} p(f|e)p(e)$$

- Translations are generated on the basis of statistical model
- Parameters are estimated using bilingual parallel corpora

SMT: Language Model

- To detect *good* English sentences
- Probability of an English sentence $w_1w_2.....w_n$ can be written as

$$Pr(w_1w_2.....w_n) = Pr(w_1) * Pr(w_2|w_1) * ... * Pr(w_n|w_1|w_2...w_{n-1})$$

- Here $Pr(w_n/w_1 w_2 ... w_{n-1})$ is the probability that word w_n follows word string $w_1 w_2 ... w_{n-1}$.
 - N-gram model probability
- Trigram model probability calculation

$$p(w_3|w_1w_2) = \frac{count(w_1w_2w_3)}{count(w_1w_2)}$$