Q1. Assume that we have a corpus with only noun phrases and nothing else; NP is the start symbol. The corpus is annotated with POS tags; DT (determiner), NN (singular noun), NNS (plural noun), JJ (adjective), IN (preposition), NP (noun phrase), JJP (adjective phrase) and PP (preposition phrase). The PCFG (probabilistic context free grammar) is as follows:
(i) $\mathrm{NP} \rightarrow$ DT NN; 0.5
(ii) NP \rightarrow NNS; 0.3
(iii) NP \rightarrow JJP NNS; 0.2
(iv) JJP \rightarrow JJP JJ; 0.2
(v) JJP \rightarrow JJ; 0.8

Rules (iv) and (v) state that an adjective phrase can be composed of one or more adjectives.
Answer the following questions based on the above:
(1) The transition probability for POS tagging, $P(N N \mid D T)$ is:
(a) 0.5
(b) 0.75
(c) 1.0
(d) 0.253 marks

Ans: (c)
$P(N N \mid D T)=$ Probability of NN preceded by $D T$
$P(N N \mid D T)=$ Count $(N N$ preceded by DT)/Count(DT)
DT and NN can only be generated by following PCFG rule
NP-> DT NN (which has . 5 probability)
If total number of NP is 100
Count $(D T$ preceded by $N N)=50$
Count $(D T)=50$
$\rightarrow P(N N \mid D T)=1$; hence (c).
(2) $P(N N S \mid J J)$ is:
(a) 0.8
(b) 0.2
(c) 1.0
(d) Cannot be determined

3 marks
Ans: (d)
P(NNS|JJ) = Count (NNS preceded by JJ)/Count(JJ)
Grammar rules:
$N P \rightarrow D T$ NN; 0.5
NP -> NNS; 0.3
NP -> JJP NNS; 0.2

JJP -> JJP JJ; 0.2
$J J P ~->~ J J ; ~ 0.8$
Assume there are 100 NPs
Count $($ NNS preceded by JJ $)=20$
Count (JJ) = not known; hence option (d).
(3) Assuming the language somehow does not allow more than length 3 chunks, $P(J J \mid J J)$ is
(a) 0.8
(b) 0.2
(c) 1.0
(d) Cannot be determined

3 marks
Ans: $1 / 3$ (there is a mistake in the options)

```
P(JJ|JJ) = Count (JJ preceded by JJ)/Count(JJ)
Rules involved
NP -> JJP NNS; 0.2
JJP -> JJP JJ; 0.2
JJP -> JJ; 0.8
- Assume 100 NP
- Count (JJP NNS) \(=20\)
- Count (NNS preceded by JJ) \(=0.8 \times 20=16\)
- Count(NNS preceded by more than one \(J J)=4\)
- Count \((J J\) preceded by \(J J)=8\)
- \(P(J J \mid J J)=8 /(16+8)=8 / 24=1 / 3\)
```

Q2. "Horses raced past the garden neighed loudly" ("neigh" is the call of the horse). Given this sentence and the starting rule as $S \rightarrow N P V P$, the length of the verb phrase VP is:
(a) 5
(b) 6
(c) 2
(d) 4

3 marks
Ans: (c)
NP: "Horses raced past the garden", VP: "neighed loudly"
NP
NP SBAR

Horses raced past the garden
SBAR
VP
raced past the garden

VBD	PP
raced	past the garden

PP
P NP
past the garden

Q3. Consider the sentence "Buffalo1 buffaloes2 buffaloes3 buffalo4 cow 5 cows 6 buffaloes 7 buffalo8" The word "cow" can be both noun (meaning the "common animal cow") and verb (meaning to "make afraid" or "intimidate"). Similarly "buffalo" can be both noun (meaning the "animal buffalo" or the "USA city Buffalo") or verb (meaning "to bully"). As usual, the POS tags NNS means plural noun, VBZ means $3{ }^{\text {rd }}$ person, singular, present tense verb, VB means a base verb, NN means singular noun, JJ means adjective, IN means preposition.

Based on the above, answer the following questions:
(1) How many NN tags are there for the sentence?
(a) 4
(b) 2
(c) 1
(d) 3 marks

Ans: (c)
Original "buffalo sentence":

${ }_{0}$ Buffalo buffaloes $_{2}$ Buffalo $_{3}$ buffaloes $_{4}$ buffalo $_{5}$ buffalo $_{6}$ Buffalo $_{7}$ buffaloess Buffalo9 buffaloes ${ }_{10}$ buffalo $_{11}$

4 sets of buffaloes: $1^{\text {st }}$ set bullies $3^{\text {rd }}$ set. $2^{\text {nd }}$ set bullies $1^{\text {st }}$ set, $4^{\text {th }}$ set bullies $3^{\text {rd }}$ set.
Meaning: Buffaloes ($1^{\text {st }}$ set of buffaloes) living in Buffalo (USA) which are bullied by other buffaloes living in Buffalo ($2^{\text {nd }}$ set of buffaloes) in their turn bully buffaloes living in Buffalo (${ }^{\text {rd }}$ set of buffaloes) which are bullied by other buffaloes living in Buffalo ($4^{\text {th }}$ set of buffaloes)

Structure:

NP_{0-5}		VP_{5-11}	
		VB_{6}	NP_{7-11}
		Buffalo6	Buffalo buffaloes Buffalo
NP ${ }_{0-5}$			
NP_{0-2}			SBAR 2-5
Buffalo buffaloes			Buffalo buffaloes buffalo

NP_{2-4}	VP_{4-5}
Buffalo buffaloes	buffalo

Replicate this analysis for the buffalo-cow question.

