
CS618: Program Analysis
Assignment 3 (Solutions)

Q1. Let (S,∧) be a semilattice. Let f : S → S be a function. Prove that the following
two definitions for monotonicity of f are equivalent:

∀x, y ∈ S : f(x ∧ y) ≤ f(x) ∧ f(y)

and

∀x, y ∈ S : x ≤ y ⇒ f(x) ≤ f(y)

• ⇒: Let x ≤ y. Then:
x ∧ y = x ⇒ f(x ∧ y) = f(x)

⇒ f(x) ≤ f(x) ∧ f(y)
⇒ f(x) ≤ f(y) // Recall properties of ∧

• ⇐:
x ∧ y ≤ x ⇒ f(x ∧ y) ≤ f(x)
x ∧ y ≤ y ⇒ f(x ∧ y) ≤ f(y)

⇒ f(x ∧ y) is a lower bound on f(x) and f(y)
⇒ f(x ∧ y) ≤ f(x) ∧ f(y)

Q2. Knaster-Tarski Fixed Point Theorem: Let f : S → S be a monotonic function
on a complete lattice (S,∨,∧). Using the concepts covered in class, prove that fix-points
of f (i.e. members of fix(f)) form a complete lattice.

Let Y be an arbitrary subset of fix(f). We need to show that lub(Y ) and glb (Y ) are
in fix(f). We show lub(Y ) ∈ fix(f). Ther other part is similar.

Consider y = ∧Y , and the set X = {x | x ∈ S, x ≤ y}.

(S,∨,∧) is a complete lattice ⇒ y ∈ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
y ≤ y ⇒ y ∈ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

(1) and (2) ⇒ y is lub(X,∨,∧) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
glb(S,∨,∧)) is also glb(X,∨,∧) . . . . . . . . . . . . . . . . . . (4)
X ⊆ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

(3), (4) and (5) ⇒ (X,∨,∧) is a complete lattice . . . . . . . . . . . . . . . . . . . . (6)

Consider a restriction of f over X. We show that f : X → X. Consider x ∈ X and
z ∈ Y .

y = ∧Y ⇒ x ≤ y ≤ z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)
(7) ⇒ f(x) ≤ f(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

z is a fixed-pt of f ⇒ f(z) = z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)
(8) and (9) ⇒ f(x) ≤ z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

Since z is an arbitrary elememt in Y , and y = ∧Y
⇒ f(x) ≤ y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(11)

f(x) ∈ S and (11) ⇒ f(x) ∈ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)
Thus, x ∈ X ⇒ f(x) ∈ X. In other words, f : X → X.
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(X,∨,∧) is a complete lattice (6), f : X → X is a monotonic function over X.
Therefore, by other statements of Knaster-Tarski theorem, f has a greatest fixed-point z

in X. But then, z ∈ fix(f), z ≤ y = ∧Y implying lub(Y ) = z ∈ fix(f)

Q3. An edge in a flow graph is a back edge if its head dominates its tail. Prove that
every back edge is a retreating edge in every DFST of every flow graph.

Let m → n be a back edge. Then, n dominates m. Any path from ENTRY to m must
go through n. No matter how we construct DFST, n will be touched before m. Thus,
DFS number of n will be less than DFS number of m in any DFST ⇒ m → n will be a
retreating edge in any DFST.

Q4. In a flow graph, the natural loop of a back edge a → b is {b} plus the set of nodes
that can reach a without going through b. Prove that two natural loops are either disjoint,
identical, or nested.

Notation: n1

n2

 n3 denotes a path from n1 to n3 that does not go through n2.
n1

n2

 n3 denotes a path from n1 to n3 that goes through n2

Lemma A: If node x is in the natural loop of a back edge a → b, then b dominates x.

Proof Hint: Consider the path ENTRY x
b
 a, and note that b dominates a.

Proof of main statement: Assume to the contrary that natural loops for back edges
a1 → b1 (say, L1) and a2 → b2 (say, L2) intersect, but are niether identical, nor nested.
Thus, there is a node x that belongs to both L1 and L2, a node y1 that belongs to L1 but
not L2, and a node y2 that belongs to L2 but not L1.

Clearly both b1 and b2 dominate x (From Lemma above). Thus, either b1 dominates b2
or b2 dominates b1 (Proof?). Without loss of generality, assume b1 dominates b2. Clearly,
b2 can not dominate b1 so b1 does not belong to L2 implying that paths from b1 to a2, if
any, must go through b2.

Now consider the path y2
b1
 a2 → b2

b1
 x

b1
 a1: such a path must exist (why?), and

does not involve b1. But then, y2 belongs to L1 - a contradiction.


