CS618: Program Analysis Assignment 3 (Solutions)

Q1. Let (S, \wedge) be a semilattice. Let $f: S \to S$ be a function. Prove that the following two definitions for *monotonicity* of f are equivalent:

 $\forall x, y \in S : f(x \land y) < f(x) \land f(y)$

and
$$\forall x,y \in S : x \leq y \Rightarrow f(x) \leq f(y)$$
• \Rightarrow : Let $x \leq y$. Then:
$$x \wedge y = x \Rightarrow f(x \wedge y) = f(x)$$
$$\Rightarrow f(x) \leq f(x) \wedge f(y)$$
$$\Rightarrow f(x) \leq f(y) \qquad // \text{ Recall properties of } \wedge$$
• \Leftarrow :
$$x \wedge y \leq x \Rightarrow f(x \wedge y) \leq f(x)$$
$$x \wedge y \leq y \Rightarrow f(x \wedge y) \leq f(y)$$
$$\Rightarrow f(x \wedge y) \text{ is a lower bound on } f(x) \text{ and } f(y)$$
$$\Rightarrow f(x \wedge y) \leq f(x) \wedge f(y)$$

Q2. Knaster-Tarski Fixed Point Theorem: Let $f: S \to S$ be a monotonic function on a complete lattice (S, \vee, \wedge) . Using the concepts covered in class, prove that fix-points of f (i.e. members of fix(f)) form a complete lattice.

Let Y be an arbitrary subset of fix(f). We need to show that lub(Y) and glb(Y) are in fix(f). We show $lub(Y) \in fix(f)$. Ther other part is similar.

Consider $y = \land Y$, and the set $X = \{x \mid x \in S, x \leq y\}$.

Consider a restriction of f over X. We show that $f: X \to X$. Consider $x \in X$ and $z \in Y$.

```
y = \land Y \quad \Rightarrow \quad x \leq y \leq z \qquad \qquad (7) (7) \quad \Rightarrow \quad f(x) \leq f(z) \qquad \qquad (8) z \text{ is a fixed-pt of } f \quad \Rightarrow \quad f(z) = z \qquad \qquad (9) (8) \text{ and } (9) \quad \Rightarrow \quad f(x) \leq z \qquad \qquad (10) Since z is an arbitrary element in Y, and y = \land Y \qquad \Rightarrow \quad f(x) \leq y \qquad \qquad (11) f(x) \in S \text{ and } (11) \quad \Rightarrow \quad f(x) \in X \qquad \qquad (12) Thus, x \in X \Rightarrow f(x) \in X. In other words, f: X \to X.
```

Page #2 CS618 Roll No:

 (X, \vee, \wedge) is a complete lattice (6), $f: X \to X$ is a monotonic function over X. Therefore, by other statements of Knaster-Tarski theorem, f has a greatest fixed-point z in X. But then, $z \in \text{fix}(f), z \leq y = \wedge Y$ implying $\text{lub}(Y) = z \in \text{fix}(f)$

Q3. An edge in a flow graph is a back edge if its head dominates its tail. Prove that every back edge is a retreating edge in every DFST of every flow graph.

Let $m \to n$ be a back edge. Then, n dominates m. Any path from ENTRY to m must go through n. No matter how we construct DFST, n will be touched before m. Thus, DFS number of n will be less than DFS number of m in any DFST $\Rightarrow m \to n$ will be a retreating edge in any DFST.

Q4. In a flow graph, the natural loop of a back edge $a \to b$ is $\{b\}$ plus the set of nodes that can reach a without going through b. Prove that two natural loops are either disjoint, identical, or nested.

Notation: $n_1 \stackrel{\overline{n_2}}{\leadsto} n_3$ denotes a path from n_1 to n_3 that does not go through n_2 . $n_1 \stackrel{n_2}{\leadsto} n_3$ denotes a path from n_1 to n_3 that goes through n_2

Lemma A: If node x is in the natural loop of a back edge $a \to b$, then b dominates x.

Proof Hint: Consider the path ENTRY $\rightsquigarrow x \stackrel{\overline{b}}{\leadsto} a$, and note that b dominates a.

Proof of main statement: Assume to the contrary that natural loops for back edges $a_1 \to b_1$ (say, L_1) and $a_2 \to b_2$ (say, L_2) intersect, but are niether identical, nor nested. Thus, there is a node x that belongs to both L_1 and L_2 , a node y_1 that belongs to L_1 but not L_2 , and a node y_2 that belongs to L_2 but not L_1 .

Clearly both b_1 and b_2 dominate x (From Lemma above). Thus, either b_1 dominates b_2 or b_2 dominates b_1 (Proof?). Without loss of generality, assume b_1 dominates b_2 . Clearly, b_2 can not dominate b_1 so b_1 does not belong to L_2 implying that paths from b_1 to a_2 , if any, must go through b_2 .

Now consider the path $y_2 \stackrel{\overline{b_1}}{\leadsto} a_2 \to b_2 \stackrel{\overline{b_1}}{\leadsto} x \stackrel{\overline{b_1}}{\leadsto} a_1$: such a path must exist (why?), and does not involve b_1 . But then, y_2 belongs to L_1 - a contradiction.