Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Code Optimizations

Amey Karkare
Dept of Computer Science and Engg
IIT Kanpur
Visiting IIT Bombay

Recap

* Optimizations
— To improve efficiency of generated executable
(time, space, resources ...)
— Maintain semantic equivalence
* Two levels
— Machine Independent
— Machine Dependent

Peephole Optimization

* target code often contains redundant
instructions and suboptimal constructs

* examine a short sequence of target
instruction (peephole) and replace by a
shorter or faster sequence

* peephole is a small moving window on the
target systems

Peephole optimization examples...

Redundant loads and stores
* Consider the code sequence

Move R, a
Move a, R,

* Instruction 2 can always be removed if it
does not have a label.

7/23/2016



Peephole optimization examples...

Unreachable code

¢ Consider following code sequence

int debug=0
if (debug) {

print debugging info
}

this may be translated as
if debug == 1 goto L1
goto L2

L1: print debugging info

L2:

Eliminate jumps
if debug !=1 goto L2
print debugging information
L2:

Unreachable code example ...

constant propagation
if 0 <> 1 goto L2
print debugging information
L2:

Evaluate boolean expression. Since if condition is always true the
code becomes

goto L2
print debugging information
L2:

The print statement is now unreachable. Therefore, the code
becomes

L2:

Peephole optimization examples...

flow of control: replace jump over jumps

goto L1 goto L2

by

L1: goto L2
L1:goto L2

» Simplify algebraic expressions
remove x :=x+0 or  x:=x*1

Peephole optimization examples...

* Strength reduction
— Replace X2 by X*X
— Replace multiplication by left shift
— Replace division by right shift

¢ Use faster machine instructions
replace  Add #1,R
by IncR

7/23/2016



Course Logistics

Proposed Evaluation

Assignments 5%-10%
Course Project 30%-40%
( Proposal 5% )
( Report |15% )
( Implementation & Presentation|15% )

Mid semester exam 10%-20%
End semester exam 25%-35%
Quizzes/Class Participation 5%

Audit: Stuff in BLACK

pendent
izations

Machine Independent Optimizations

* Scope of optimizations

— Local | dural
_ Global ntraprocedura

— Interprocedural

7/23/2016



Local Optimizations

* Restricted to a basic block

* Simplifies the analysis

* Not all optimizations can be applied locally
— E.g. Loop optimizations

¢ Gains are also limited

Simplify global/interprocedural
optimizations

Global Optimizations

* Typically restricted within a
procedure/function
— Could be restricted to a smaller scope, e.g. a loop
* Most compiler implement up to global
optimizations
— Well founded theory
— Practical gains

Interprocedural Optimizations

* Spans multiple procedures, files
— In some cases multiple languages!

* Not as popular as global optimizations
— No single theory applicable to multiple scenarios
— Time consuming

A Catalogue of Code
Optimizations

7/23/2016



Compile-time Evaluation

* Move run-time actions to compile-time
* Constant Folding:
Volume = 4/3*Pl1*r*r*r;
— Compute 4/3*PI at compile time

— Applied very frequently for linearizing indices of
multidimensional arrays

— How/When can we apply it?

Compile-time Evaluation

Constant Propagation
— Replace a variable by its “constant” value

i =5; i = 5;

_ Replaced b v
§ = i*a; eplaced by i

5*4;

— May result in application of constant folding
— How/When can we apply it?

Common Subexpression Elimination

* Reuse a computation if already “available”

X = utv; t0 = utv;

Replaced by X = 10;
Yy = utv+w;

y = tO+w;

Copy Propagation

Replace a variable by another
— If they are guaranteed to have same value

i = Kk; i = k;

i - Replaced b v
§ = ia; eplaced by i

k*4;

* How to do it?

* When can we do it?

— May result in dead code, common subexpr, ...

— How to apply it?
— When can we apply it?

7/23/2016



Code Movement

* Move the code in a program
* Benefits:
— Code size reduction
— Reduction in the frequency of execution

* Allowed only if the meaning of the program
does not change.
— May result in dead code, common subexpr, ...
— How/When can we apply it?

Code Movement

* Code size reduction

Suppose Op generates a large number of machine
instructions

if (a < b) tl = x op y;
_ ) if (a <b)
U = X op Yy; |Replaced by _ N
u = ti;
else
V=xo ) else
Py v = tl;

Code Movement

* Execution frequency reduction

if (a <b) if (a<b){
u=.; u = .;
clse Replaced by 2 = x*y:
VvV = X*y; } else {
w = X*y; t2 = X*y;
v = t2;
}
w = t2;

* How/When can we do it?

Loop Invariant Code Movement

* Execution frequency reduction

for (.) { t3 = atb;
for (.) {
U= a+b: Replaced by
u = t3;
+
s

* How/When can we do it?

7/23/2016



Code Movement
* Safety of code motion

* Profitability of code motion

Other optimizations

* Dead code elimination
— Remove unreachable, unused code.
— Can we always do it?

* Strength reduction

— Use of low strength operators in place of high
strength operators.
* i*iinstead of i"2, pow(i,2)
* i<<1linstead of i*2

— Typically performed for integers only (Why?)

Data Flow Analysis

* Class of techniques to derive information
about flow of data
— along program execution paths

* Used to answer questions such as:

— whether two identical expressions evaluate to
same value

* used in common subexpression elimination

— whether the result of an assignment is used
later

* used by dead code elimination

Data Flow Abstraction
Flow graph
—Graph representation of paths that
program may exercise during execution
—Typically one graph per procedure

—Graphs for separate procedure have to
be combined/connected for
interprocedural analysis

* Later!

* Single procedure, single flow graph for now.

7/23/2016



7/23/2016

Data Flow Abstraction
* Basic Blocks (bb)

* Input state/Output state for Stmt
—Program point before/after a stmt
—Denoted IN[s] and OUT[s]

—Within a basic block:

* Program point after a stmt is same as
the program point before the next stmt




