
Program Analysis
https://www.cse.iitb.ac.in/~karkare/cs618/

Amey Karkare
Dept of Computer Science and Engg

 IIT Kanpur
Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Data Flow Analysis

Recap

• Optimizations
– Machine Independent
– Machine Dependent

• Analysis
– Intraprocedural

• Local
• Global

– Interprocedural

2

Agenda

• For the next few lectures
• Intraprocedural Data Flow analysis

– Components
– Classical examples

3

Assumptions

• Unless otherwise specified
• Intraprocedural: Restrict to a single procedure
• Input in 3–address code format

4

3 Address Code

• Assignments
 x = y op z
 x = op y
 x = y

• Jump/Control statements
 goto L
 if x relop y goto L

• Statements can have label(s)
 L: …

5

Arrays, Pointers and
Procedures to be added
later when needed

Data Flow Analysis
• Class of techniques to derive information

about flow of data
– along program execution paths

• Used to answer questions such as:
– whether two identical expressions evaluate to

same value
• used in common subexpression elimination

– whether the result of an assignment is used
later

• used by dead code elimination

6

Data Flow Abstraction
• Basic Blocks (BB)

–sequence of 3-address code stmts
–single entry at the first statement
–single exit at the last statement
–Typically we use “maximal” basic

block (maximal sequence of such
instructions)

7

Data Flow Abstraction
• Leader: First statement of a basic

block
–First instruction of program

(procedure)
–Target of a branch (goto)
–Instruction immediately following a

branch

8

Special Basic Blocks

• Two special BBs are added to simplify the
analysis
– empty (?) blocks!

• Entry: Assumed to be the first block to be
executed for the procedure analyzed

• Exit: Assumed to be the last block to be
executed

9

Data Flow Abstraction

• Control Flow Graph (CFG)
• A rooted directed graph G= (N, E)
• N = set of BBs

– including entry, exit

• E = set of edges

10

CFG Edges

• Edge B1→B2 ∈ E if control can transfer
from B1 to B2
– Fall through
– Through jump (goto)
– Edge from entry to (all?) real first BB(s)
– Edge to exit from all last BBs

• BBs containing return
• Last real BB

11

Data Flow Abstraction
• Control Flow graph

– Graph representation of paths that
program may exercise during execution

– Typically one graph per procedure
– Graphs for separate procedures have to

be combined/connected for
interprocedural analysis
• Later!
• Single procedure, single flow graph for now.

12

Data Flow Abstraction
• Input state/Output state for Stmt

–Program point before/after a stmt
–Denoted IN[s] and OUT[s]
–Within a basic block:

• Program point after a stmt is same as
the program point before the next
stmt

13

Data Flow Abstraction
• Input state/Output state for BBs

–Program point before/after a bb
–Denoted IN[B] and OUT[B]
–For B1 and B2:

• if there is an edge from B1 to B2 in CFG,
then the program point after the last stmt of
B1 may be followed immediately by the
program point before the first stmt of B2.

14

Data Flow Abstraction
• Execution Path

– p1,p2,…, pn
– pi -> pi+1 are adjacent program points in the

CFG

• Infinite number of possible execution
paths.

• No finite upper bound on the length.
• Need to Summarize the information at a

program point with a finite set of facts.

15

Data Flow Schema
• Data flow values associated with each

program point
– Summarize all possible states at that

point

• Domain: set of all possible data flow
values

• Different domains for different
analysis/optimization

16

Data Flow Problem
• Constraints on data flow values

– Transfer constraints
– Control flow constraints

• AIM: To find a solution to the constraints
– Multiple solutions possible
– Trivial solutions,…, Exact solutions

• We typically compute approximate
solution, close to the exact solution
– Why not exact solution?

17

Data Flow Constraints
• Transfer functions

–relationship between the data flow
values before and after a stmt

• forward functions
OUT[s] = fs(IN[s])

• backward functions
IN[s] = fs(OUT[s])

18

Data Flow Constraints

• Control flow constraints
–relationship between the data flow

values of two points that are related
by program execution semantics

• For a basic block having n
statements:
IN[si+1] = OUT[si], i = 1,2,…,n-1

IN[s1], OUT[sn] to come later
19

Data Flow Constraints: Basic Block
• Forward

– For B consisting of s1, s2, … sn
 fB = fsn o … o fs2 o fs1

 OUT[B] = fB(IN[B])

– Control flow constraints
 IN[B] = ∪P a predecessor of B OUT[P]

• Backward
 IN[B] = fB(OUT[B])
OUT[B] = ∪S a successor of B IN[S]

20

Data Flow Equations
• Typical Equation

out[s] = in[s] – kill[s] U gen[s]
– gen(s): information generated
– kill(s) : information killed

• For example:
a = b * c // generates expression b*c
c = 5 // kills expression b*c
d = b * c // is b*c redundant here?

21

Analysis of Structured Programs

• Reaching Definitions Analysis

22

Analysis of Structured Programs

• Reaching Definitions Analysis
– definition of a variable x :

x = …something…

22

Analysis of Structured Programs

• Reaching Definitions Analysis
– definition of a variable x :

x = …something…
• Could be more complex (e.g. through pointers,

references, implicit)

22

Analysis of Structured Programs

• Reaching Definitions Analysis
– definition of a variable x :

x = …something…
• Could be more complex (e.g. through pointers,

references, implicit)

– definition d reaches a point p if

22

Analysis of Structured Programs

• Reaching Definitions Analysis
– definition of a variable x :

x = …something…
• Could be more complex (e.g. through pointers,

references, implicit)

– definition d reaches a point p if
• there is a path from the point immediately

following d to p

22

Analysis of Structured Programs

• Reaching Definitions Analysis
– definition of a variable x :

x = …something…
• Could be more complex (e.g. through pointers,

references, implicit)

– definition d reaches a point p if
• there is a path from the point immediately

following d to p
• d is not “killed” along that path

22

Analysis of Structured Programs

• Reaching Definitions Analysis
– definition of a variable x :

x = …something…
• Could be more complex (e.g. through pointers,

references, implicit)

– definition d reaches a point p if
• there is a path from the point immediately

following d to p
• d is not “killed” along that path
• “Kill” means redefinition of the left hand side (x in

the above case)

22

Analysis of Structured Programs

out(s1) = in(s1) - kill(s1) U gen(s1)
gen(s1) = {d}
kill(s1) = Dx – {d} // Dx : set of all defs of x
kill(s1) = Dx will also work here!

But may not work in general!

29

d: x = y+z s1

Analysis of Structured Programs

gen(s) = gen(s2) U (gen(s1) – kill(s2))
kill(s) = kill(s2) U (kill(s1) – gen(s2))

in(s1) = in(s)
in(s2) = out(s1)
out(s) = out(s2)

30

S
S1

S2

S

Analysis of Structured Programs

gen(s) = gen(s1) U gen(s2)
kill(s) = kill(s1) ∩ kill(s2)

in(s1) = in(s2) = in(s)
out(s) = out(s1) U out(s2)

31

S1 S2

S

Analysis of Structured Programs

gen(s) = gen(s1)
kill(s) = kill(s1)

in(s1) = in(s) U gen(s1)
out(s) = out(s1)

32

S1

S

Conservative Analysis

• Assumption: All paths are feasible.
– Consider: if (true) s1; else s2
– s2 is never executed
gen(s) = gen(s1) ⊆ gen(s1) ∪ gen(s2)
kill(s) = kill(s1) ⊇ kill(s1) ∩ kill(s2)

33

S1 S2

S

Conservative Analysis

• Thus: true gen (s) ⊆ analysis gen(s)
 true kill (s) ⊇ analysis kill(s)

• True is what is computed at run time
• This is SAFE estimate

– prevents optimization
– but no wrong optimization 34

S1 S2

	Program Analysis�https://www.cse.iitb.ac.in/~karkare/cs618/�
	Recap
	Agenda
	Assumptions
	3 Address Code
	Data Flow Analysis
	Data Flow Abstraction
	Data Flow Abstraction
	Special Basic Blocks
	Data Flow Abstraction
	CFG Edges
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Abstraction
	Data Flow Schema
	Data Flow Problem
	Data Flow Constraints
	Data Flow Constraints
	Data Flow Constraints: Basic Block
	Data Flow Equations
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Analysis of Structured Programs
	Conservative Analysis
	Conservative Analysis

