Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Data Flow Analysis (contd...)

Amey Karkare
Dept of Computer Science and Engg
IIT Kanpur
Visiting IIT Bombay

Available Expressions

* Expression e is available at a point p:

—Every path from entry to p has at least one
evaluation of e

—There is no assignment to any component
variable of e after last evaluation of e prior
top

* Expression e is generated by its evaluation

* Expression e is killed by assignment to its
component variables

Available Expr Analysis

gen(s1) = {y+z}
kill(s1) =€, //E,: set of all expressions having x as a component

out(s1) = in(s1) - kill(s1) U gen(s1)
THIS MAY NOT WORK IN GENERAL! WHY?

Available Expr Analysis

INCORRECT FORMULATION

out(s1) =in(s1) - kill(s1) U gen(s1)

gen(sl) = {x+z}

kill(s1) =E, //E, : set of all expressions having x as
a component

8/5/2016

Available Expr Analysis

INCORRECT FORMULATION
(52} = infs)—killls1) U (s1)
gen{st)={x+z}
a-component

Available Expr Analysis

CORRECT FORMULATION
out(s1) = in(s1) - kill(s1) U gen(s1)
gen(sl) ={rhs | lhsis not part of rhs }

kill(s1) =E,, //E,: set of all expressions having
Ilhs as a component

Available Expr Analysis
| |

S

¥
gen(s) = gen(s2) U (gen(s1) — kill(s2))
kill(s) = kill(s2) U (kill(s1) — gen(s2))
in(s1) =in(s)
in(s2) = out(s1)
out(s) = out(s2)

Analysis of Structured Programs
[}

S

D

1

gen(s) = gen(s1) N gen(s2)
kill(s) = kill(s1) U kill(s2)
in(s1) =in(s2) =in(s)
out(s) = out(s1) N out(s2)

8/5/2016

Availablle Expr Analysis

S z = xX*y;

// is x*y available
// here?

do {} while(.);

v

gen(s) = gen(s1)

kill(s) = kill(s1)
in(s1) =in(s) m ger out(s1)

out(s) = out(s1)

Again: Conservative Analysis

S

* Assumption: All paths are feasible.
— Consider: if (true) s1; else s2
—s2 is never executed
gen(s) = gen(s1) o gen(sl) N gen(s2)
kill(s) = kill(s1) < kill(s1) W kill(s2)

Again: Conservative Analysis
[|

S

* Thus: true gen (s) o analysis gen(s)
true kill (s) < analysis kill(s)
* True is what is computed at run time

* This is SAFE estimate
— prevents optimization
— but no wrong optimization

Available Expressions

* Expr e is available at the start of a block
—It is available at the end of all
predecessors
m(B) =M P is pred of B OUt(P)
* Expr e is available at the end of a block

—either it is generated by the block

—oritis available at the start of the block and
not killed by the block

out(B) = in(B) —kill(B) W gen(B)

8/5/2016

Available Expressions

* Kill & gen known for each block.

* A program with N blocks has 2N
equations with 2N unknowns
—solution is possible.

—iterative approach (on next slide)

for each block B {
out(B) = U; // u = “universal” set of all exprs
}
out(Entry) = ¢; // remember reaching defs?
change = true;
while (change) {
change = false;
for each block B other than Entry {
in(B) =N P is pred of B OUt(P);
oldOut = out(B);
out(B) = in(B) - kill(B) v gen(B);
it (oldOut != out(B)) then {
change = true;

Some Issues

* What is the set of all expressions?
* How to compute it efficiently?
* Why Entry block is initialized differently?

}
3
hs
14
Available Expressions
. | Bock | GEN | K|
) l B1 {a*b, c+d} 0
— S B2 {ord) fa*b)
ﬂi B3 {a*b} {
; B4 {a*b} {c+d}
..=c+d
B2 | a=a*b
83 pia U = {a*b, c+d}
Cei2) We are not interested in other
expressions/variables
B4 c=a*b

[T |

8/5/2016

Available Expressions

init In

Available Expressions

init In

Out U 1)

U

U

Available Expressions

init In

U 1°) U U

?

{a*b,c+d}

Available Expressions

init In
Out U U

In [0} {a*b,c+d}

Out {a*b,c+d} {c+d}

U

U

8/5/2016

Available Expressions

In

U U U U
[} {a*b,c+d} {c+d}
{a*b,c+d} {c+d} {a*b,
c+d}

Available Expressions

init In
Out U U

In [0) {a*b,c+d}

Out {a*b,c+d} {c+d}

U

{c+d}

{a*b,
c+d}

U

{c+d}

fa*b}

Available Expressions

init In

U U U U
[0) {a*b,c+d} {c+d} {c+d}
{a*b,c+d} {c+d} {a*b, {a*b}
c+d}
¢ {a*b} {e+d} {c+d}
{a*b,c+d} {c+d} {a*b, {a*b}
c+d}

Available Expressions

init In
Out U U

In [0} {a*b,c+d}

Out {a*b,c+d} {c+d}

In [0) {a*b}

Out {a*b,c+d} {c+d}

In [} {a*b}

Out {a*b,c+d} {c+d}

U

{c+d}

{a*b,
c+d}

{c+d}

{a*b,
c+d}

{c+d}

{a*b,
c+d}

U

{c+d}

fa*b}

{c+d}

fa*b}

{c+d}

fa*b}

8/5/2016

Available Expressions: Bitvectors

* . .
a*b c+d bits for each expression

B.
..=a*b

o 11 11 11
(00 11 01

B2 | =c+d

a=a*b
L 11 01 11
8 / 00 10 01

| .= a*b |
" 1 o1 1
. c= a*b s

I 00 10 01
‘\ EXIT} ‘ 11 01 11

1| 1
(In - - - -

11

01
10
01
10
01

10

Available Expressions: Bitvectors

iN(B) = M p g pred o 8 OUL(P)
out(B) = in(B) —kill(B) W gen(B)
* With bit vectors,
iN(B) = A pi pred of 8 OUL(P)
out(B) = (in(B) A —kill(B)) v gen(B)
* Bitwise A, v, — operations.

Available Expressions: Application

* Common subexpression elimination in a
block B
— Expression e available at the entry of B
— e is also computed at a point pin B

— Components of e are not modified from entry
of Btop

* eis “upward exposed” in B

* Expressions generated in B are “downward
exposed”’

Recap: Summary of Reaching

Definitions
gen={d, | d, in B defines variable x and is not
followed by another definition of x in B}
kill ={ d, | block contains some definition of x }
iN(B) = Up s pred o 8 OUt(P)
out(B) = in(B) —kill(B) W gen(B)
meet (A) operator is U
Initialization:
out(Bg,,) = Entry Info = ¢
out(B) = ¢

8/5/2016

Summary of Available Expressions

gen = downward exposed expressions

kill = { e, | block contains some definition of x }
in(B) = M pi pred of 8 OUL(P)

out(B) = in(B) —kill(B) W gen(B)

meet (A) operator is M

Initialization:

out(Bg,,) = Entry Info = ¢

out(B)=U

Comparing Reaching Definition and
Available Expressions Analysis

 Class Discussion about
—Similarities
—Differences

Summary of Available Expressions

* What if we Initialize:
out(B,y) = Entry Info = ¢
out(B) = ¢

* We might miss some expressions
that are available

* Loose on opportunity to optimize!

What are the expressions available at B2
when out(B) initialized with
iU ii)o
ENTRY
Bl =a*b

.= c+d

N —

<]

’ | —

B2 _=a*b
.= c+d

8/5/2016

Live Variable Analysis

* Avariable x is live at a point p if

—There is a point p’ along some path in
the flow graph starting at p to the EXIT

—Value of x could be used at p’

—There is no definition of x between p
and p’ along this path

* Otherwise x is dead at p

Live Variable Analysis: Gen

* gen(B)

* Set of variables whose values may
be used in B prior to any definition

* Also called “use(B)”

* “upward exposed” use of a
variable is generated by B

Live Variable Analysis: Kill

* kill(B)

* Set of variables defined in B prior
to any use

* Also called “def(B)”

* “upward exposed” definition of a
variable kills its liveness in B

Live Variable Analysis

out(B) = U gicsucc of g IN(S)
in(B) = out(B) —kill(B) W gen(B)
Alt: in(B) = out(B) — def(B) W use(B)
* With bit vectors,
out(B) =V s succof g IN(S)
in(B) = (out(B) A —kill(B)) v gen(B)
* Bitwise A, v, — operations.

8/5/2016

8/5/2016

Very Busy Expressions Very Busy Expression

* Expression e is very busy at a point p * Practice Assignment

—Every path from p to exit has at least

one evaluation of e —Set the data flow equations for

—There is no assignment to any Very Busy Expression

component variable of e before first —Hint: Available Expression
evaluation of e following p Analysis

* Also called Anticipable expression

10

