Program Analysis https://www.cse.iitb.ac.in/~karkare/cs618/

Foundations of Data Flow Analysis

Amey Karkare
Dept of Computer Science and Engg
IIT Kanpur
Visiting IIT Bombay

Taxonomy of Dataflow Problems

Confluence→ Direction↓	U	\cap
Forward	Reaching Definition	Available Expressions
Backward	Live Variables	Very Busy Expressions

Taxonomy of Dataflow Problems

- Categorized along several dimensions
 - -the information they are designed to provide
 - the direction of flow
 - -confluence operator
- Four kinds of dataflow problems, distinguished by
 - the operator used for confluence or divergence
 - data flows backward or forward

When does Data Flow Analysis Works?

- Suitable initial values and boundary conditions
- Suitable domain of values
 - -Bounded, Finite
- Suitable meet operator
- Suitable flow functions
 - monotonic, closed under composition
- But what is "SUITABLE"?

Why Data Flow Analysis Works?

- Suitable initial: dary dary condition
- Suita'
 - P
- Lattice Theory • Su
- Sui
 - nposition -monc
- But what is "SUITABLE"?

Partially Ordered Sets

- Posets
- S : a set
- ≤ : a relation
- (S, \leq) is a poset if $\forall x, y, z \in S$
 - $-x \le x$ (reflexive)
 - $-x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetric)
 - $-x \le y$ and $y \le z \Rightarrow x \le z$ (transitive)

Chain

- Linear Ordering
- Poset where every pair of elements is comparable
- $x1 \le x2 \le ... \le xk$ is a chain of length k
- We are interested in chains of **finite** length

Observation

- Any finite nonempty subset of a poset has minimal and maximal elements
- Any finite nonempty chain has unique minimum and maximum elements

Semilattice

- Set S and meet Λ
- $\forall x, y, z \in S$
 - $-x \wedge x = x$ (idempotent)
 - $-x \wedge y = y \wedge x$ (commutative)
 - $-x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (associative)
- Partial order for semilattice
 - $-x \le y$ if and only if $x \land y = x$
 - Reflexive, antisymmetric, transitive

Border Element

- Top Element (T)
 - $-\forall x \in S, x \land T = T \land x = x$
- (Optional) Bot Element (⊥)
 - $-\forall x \in S, x \land \bot = \bot \land x = \bot$

10

Familiar (semi)lattices

- Powerset for a set S, 2^S
- Meet \wedge is \cap
- Partial Order is ⊆
- Top element is *S*
- Bottom element is Ø

Familiar (semi)lattices

- Powerset for a set S, 2^S
- Meet ∧ is ∪
- Partial Order is ⊇
- Top element is Ø
- Bottom element is S, the universal set

Greatest Lower bound

- glb of x and y is an element g s.t.
 - $-g \le x$
 - $-g \le y$
 - -If z ≤ x and z ≤ y then z ≤ g
- x Λ y is glb of x and y (Prove!)

1.2

Lattice Diagrams

- Graphical view of posets
- Elements = nodes in the graph
- If x < y then x is depicted lower than y in the diagram
- An edge between x and y (x lower than y) implies x < y and no other element z s.t. x
 z < y (i.e. transitivity excluded)

15

Semi (?)-Lattice

- We can define symmetric concepts:
 - $-\ge$ order
 - -V, Join operation
 - Least upper bound (lub)
- A complete lattice has both meet and join
 - Powerset lattice
- We will talk about "meet" semi-lattices only

14

Lattice Diagram

Lattice of superset relation $x \land y$ (glb): the highest z for which there are paths downward from both x and y.

What if we have a large number of elements?

- Combine simple lattices to build a complex one
- Superset lattices for singletons

 Combine to form superset lattice for multielement sets

7

Product Lattice

- (S, Λ) is product lattice of (S₁, Λ₁) and (S₂, Λ₂)
 - $-S = S_1 \times S_2$ (domain)
 - -For (a₁,a₂) and (b₁,b₂) ∈ S
 - $(a_1,a_2) \wedge (b_1,b_2) = (a_1 \wedge_1 b_1, a_2 \wedge_2 b_2)$
 - $(a_1, a_2) \le (b_1, b_2)$ iff $a_1 \le_1 b_1$ and $a_2 \le_2 b_2$
 - $-\leq$ relation follows from Λ
- Product of lattices is associative
- Λ_1 , Λ_2 , ... are called component lattices

Product Lattice

19

Height of a Semilattice

- Length of a chain x1 ≤ x2 ≤ ... ≤ xk
 is k
- K = max over length of all chains in the semilattice
- Height of semilattice = K-1

Data Flow Analysis Framework

- (D, S, Λ, F)
- D: direction, Forward or Backward
- (S, Λ): Semilattice Domain and meet
- F: family of transfer functions, S->S

21

Transfer Functions

- F: family of functions, S -> S. Includes
 - functions suitable for the boundary conditions (constant transfer functions for ENTRY and EXIT nodes)
 - -Identity function I: $I(x) = x \ \forall x \in S$
- Closed under composition
 - $-f, g \in F, h(x) = g(f(x)) \Rightarrow h \in F$

22

Monotonic Functions

- (S,≤): a poset
- f: S->S is monotonic iff $\forall x, y \in S \quad x \le y \Rightarrow f(x) \le f(y)$
- Composition preserves monotonicity
 - —If f and g are monotonic, h = f.g, then h is also monotonic

23

Monotone Frameworks

- (D, S, Λ , F) is monotone if the family F consists of monotonic functions only $f \in F$, $x, y \in S$ $x \le y \Rightarrow f(x) \le f(y)$
- Equivalently $f \in F, x, y \in S \ f(x \land y) \le f(x) \land f(y)$ —Proof: Exercise

A Fixed Point Theorem

- $f: S \longrightarrow S$ a monotonic function
- (S, Λ) is a finite height semilattice,
- T is top element
- $f^{0}(x) = x, f^{i+1}(x) = f(f^{i}(x)), i \ge 0$
- The greatest fixed point of f is $f^k(T)$ where $f^{k+1}(T) = f^k(T)$

Fixed Point Algorithm

```
// monotonic f on a meet semilattice x := T;
```

while (x != f(x)) x := f(x);

return x;