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Knaster-Tarski Fixed Point Theorem 
Let 𝑓: 𝑆 → 𝑆 be a monotonic function on a 
complete lattice (S,  ∨,  ∧). Define 
• 𝑟𝑟𝑟 𝑓 = 𝑣 𝑣 ∈ 𝑆, 𝑓 𝑣 ≤ 𝑣}, pre fix-points 
• 𝑒𝑒𝑒 𝑓 = 𝑣 𝑣 ∈ 𝑆, 𝑓 𝑣 ≥ 𝑣}, post fix-points 
• 𝑓𝑓𝑓 𝑓 = 𝑣 𝑣 ∈ 𝑆, 𝑓 𝑣 = 𝑣}, fix-points 

Then, 
• ∧ 𝑟𝑟𝑟 𝑓 ∈ 𝑓𝑓𝑓(𝑓) , ∧ 𝑟𝑟𝑟 𝑓 = ∧ 𝑓𝑓𝑓(𝑓)  
• ∨ 𝑒𝑒𝑒 𝑓 ∈ 𝑓𝑓𝑓(𝑓),   ∨ 𝑒𝑒𝑒 𝑓 = ∨ 𝑓𝑓𝑓(𝑓) 
• 𝑓𝑓𝑓(𝑓) is a complete lattice  3 



Application of Fixed Point Theorem 

• 𝑓: 𝑆 → 𝑆 a monotonic function 
• (𝑆,Λ) is a finite height semilattice, 
• ⊤ is top element 
• 𝑓0 𝑥 = 𝑥, 𝑓𝑖+1 𝑥 = 𝑓 𝑓𝑖 𝑥 , 𝑖 ≥ 0 

• The greatest fixed point of 𝑓 is 𝑓𝑘(⊤) 
where 𝑓𝑘+1 ⊤ = 𝑓𝑘 ⊤  
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Fixed Point Algorithm 

// monotonic f on a meet semilattice 
x := ⊤ ; 
 
while (x != f(x)) x := f(x); 
 
return x;  
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Resemblance to Iterative Algorithm 
(Forward) 

OUT[entry] = InfoENTRY; 
for (other blocks B) OUT[B] = ⊤; 
while (changes to any OUT) { 

  for (each block B) { 

    IN(B) = ∧ predecessors P of B OUT(P); 
          OUT(B) = fB(IN(B)); 
  } 

} 
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Iterative Algorithm 
• fB(x) = X – kill(B) ∪ gen(B) 
• BACKWARD: 

– Swap IN and OUT everywhere 
– Replace ENTRY by EXIT 
– Replace predecessors by successors 

• In other words 
–  just “invert” the flow graph!! 
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Solutions 

• IDEAL solution = meet over all executable 
paths from entry to a point (ignore 
unrealizable paths)  

• MOP = meet over all paths from entry to 
a given point, of the transfer function 
along that path applied to InfoENTRY. 

• MFP (maximal fixedpoint ) = result of 
iterative algorithm. 
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Maximum Fixedpoint 

• Fixedpoint  = solution to the equations used in 
iteration: 

      IN(B) = ∧ predecessors P of B OUT(P); 
      OUT(B) = fB(IN(B)); 
• Maximum  = any other solution is ≤ the result 

of the iterative algorithm (MFP). 
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MOP and IDEAL 
• All solutions are really meets of the result 

of starting with InfoENTRY and following 
some set of paths to the point in 
question. 

• If we don’t include at least the IDEAL 
paths, we have an error. 

• But try not to include too many more. 
– Less “ignorance,” but we “know too much.” 
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MOP Versus IDEAL 

• Any solution that is ≤ IDEAL accounts for 
all executable paths (and maybe more 
paths), and is therefore conservative 
(safe), even if not accurate. 
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MFP Versus MOP --- (1) 
• Is MFP ≤ MOP? 

– If so, then MFP ≤ MOP ≤ IDEAL, 
therefore MFP is safe. 

• Yes, but … requires two assumptions 
about the framework: 

1. “Monotonicity.” 
2. Finite height   
 no infinite chains … < x2 < x1 < x < … 
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MFP Versus MOP --- (2) 

• Intuition: If we computed the MOP 
directly, we would compose 
functions along all paths, then take a 
big meet. 

• But the MFP (iterative algorithm) 
alternates compositions and meets 
arbitrarily. 
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Good News! 

• The frameworks we’ve studied so far 
are all monotone. 
–Easy proof for functions in Gen-Kill 

form. 
• And they have finite height. 

–Only a finite number of defs, variables, 
etc. in any program. 
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Two Paths to B That Meet Early 
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ENTRY B 

Since f(x ∧ y) ≤ f(x) ∧ f(y), it is as if 
we added nonexistent paths. 

f 
OUT = x 

OUT = y 

IN = x∧y 

OUT = f(x∧y  

In MFP, Values x and y 
get combined too soon. 

f(x) 

f(y) 

MOP considers paths 
independently and combines 
at the last possible moment. 

OUT = f(x) ∧ f(y) 



Distributive Frameworks 

• Distributivity: 
𝑓 𝑥 ∧ 𝑦 = 𝑓 𝑥 ∧ 𝑓(𝑦) 

 
• Stronger than monotonicity 

–Distributivity ⇒ monotonicity  
–But reverse is not true. 
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Even More Good News! 

• The 4 example frameworks are 
distributive. 

• If a framework is distributive, then 
combining paths early doesn’t hurt. 
– MOP = MFP. 
– That is, the iterative algorithm computes a 

solution that takes into account all and only 
the physical paths. 
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