Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Constant Propagation

Amey Karkare

Dept of Computer Science and Engg

IIT Kanpur

Visiting IIT Bombay

karkare@cse.iitk.ac.in
karkare@cse.iitb.ac.in

Constant Propagation

 Replace expressions that evaluate to same constant "c" every time they are executed, by the value "c"

2

DF Framework for ConstProp

- Domain
 - For a single variable v of type t, all possible constant values of type t
 - T and \bot ?
- Semilattice?

DFF for CP

- NAC: not a constant
 - If variable is inferred not to be a constant
 - Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value ...
- UNDEF: No definition of the variable is seen yet – nothing known!

4

NAC vs UNDEF

- NAC ⇒ too many definitions seen to declare the variable is NOT constant
- UNDEF ⇒ too few definitions seen to declare anything about the variable
- T is UNDEF; ⊥ is NAC

CP Meet (Λ)

- UNDEF Λ c = c NAC Λ c = NAC - Recall $T\Lambda$ x = x and $\bot \Lambda$ x = \bot
- c ∧ c = c
- c1 \(\cdot c2 = \text{NAC} \)

6

CP Semilattice

• Infinite Domain, but finite height

CP Semilattice

- Previous figure semilattice for one variable
- CP Semilattice = Product of all such semilattices
- Each semilattice has a finite height

8

OUT Information

(Informal Representation)

- 1. x = c // const
 - $-\{x -> c\}$
- 2. x = y + z
 - $If {y \rightarrow c1, z \rightarrow c2} in IN then {x \rightarrow c1+c2}$
 - If $\{y \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$
 - If $\{z \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$
 - {x -> UNDEF} // y is UNDEF or z is UNDEF
- 3. x = complicated unhandled expr>
 - $-\{x = NAC\}$

9

Nondistributivity of CP

All paths: B0-B1-B3 B0-B2-B3 z is 5 along both paths Meet Λ results in z = NAC

(Exercise)

MOP: z is a constant 5

MFP: z is NAC MFP not equal to MOP

11

Monotonicity of CP

- Case analysis on transfer function f
- NAC ≤ c ≤ UNDEF
- Case (1) and (3) has "constant" f
- Case (2):
 - Fix z (One of UNDEF, c2, NAC)
 - Vary y over UNDEF, c1, NAC
 - Confirm that x does not "increase"
 - Do this for all z's.
 - Similarly, fix y and vary z.

10