Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Static Single Assignment (SSA)

Amey Karkare

Dept of Computer Science and Engg

IIT Kanpur

Visiting IIT Bombay

karkare@cse.iitk.ac.in

karkare@cse.iitb.ac.in

SSA Form

- Developed by Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
 - in 1980s while at IBM.
- Static Single Assignment A variable is assigned only once in program text
 - May be assigned multiple times if program is executed

2

SSA Form

- Intermediate representation
- Sparse representation
 - Definitions sites are directly associated with use sites
- Advantage
 - Directly access points where relevant data flow information is available

SSA Form

- In SSA Form
 - Each variable has exactly one definition
 - Each use of a variable is reached by exactly one definition
 - Control flow like traditional programs
 - Some magic is needed at join nodes

SSA Form: Examples

```
i = 0;
...
i = i + 1;
...
j = i * 5;
...
i1 = 0;
...
i2 = i1 + 1;
...
j1 = i2 + 1;
...
...
```

-

SSA Form: Examples

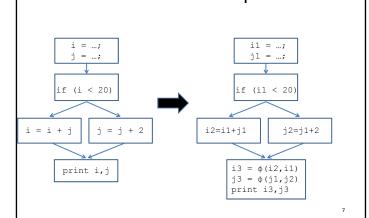
```
i = ...;
j = ...;
if (i < 20)
    i = i + j;
else
    j = j + 2;

print i,j;</pre>

i = ...;
j = ...;
print i,j;
```

.

SSA Form: Examples



SSA Form: Examples

```
i = ...;
j = ...;
```

The "magic" : ϕ -function

- φ is used for selection
 - One out of multiple values at join nodes
- Not every join node needs a φ
 - Needed only if multiple definitions reach the node

9

But what does φ operation mean in a machine code?

- φ is a conceptual entity
- No direct translation to machine code
 - typically mimicked using "copy" in predecessors
 - Inefficient
 - Practically, the inefficiency is compensated by dead code elimination and register allocation passes

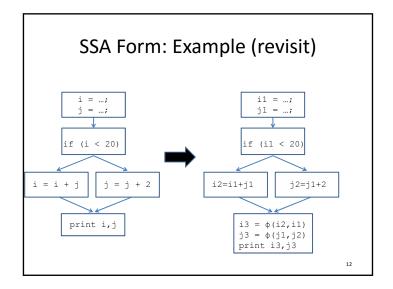
10

φ Properties

- Placed only at the entry of a join node
- $\bullet\,$ Multiple $\phi\text{-functions}$ could be placed
 - for multiple variables
 - all such ϕ functions execute concurrently
- n-ary φ function at n-way join node

$$xm = \phi(x_1, x_2, \dots, x_i, \dots, x_n)$$

- xm gets the value of i-th argument xi if control enters through i-th edge
 - Ordering of edges is improtant



Construction of SSA Form

13

Dominators

- Nodes x and y in flow graph
- x dominates y if every path from ENTRY to y go through x
 - x dom y
 - partial order?
- x strictly dominates y if x dom y and $x \neq y$
 - x sdom y

15

Assumptions

- Only scalar variables
 - Structures, pointers, arrays could be handled
 - Refer to publications

14

Computing Dominators

$$DOM(n) = \{n\} \cup (\bigcap_{m \in preds(n)} DOM(m))$$

Initial Conditions:

$$DOM(n_0) = \{n_0\}$$

$$\forall n \neq n_0 \ DOM(n) = N$$

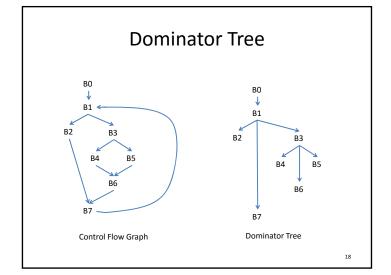
N is the set of all nodes, n_0 is ENTRY

NOTE: Efficient methods exist for computing dominators

Immediate Dominators and Dominator Tree

- x is immediate dominator of y if x is the *closest* strict dominator of y
 - unique, if it exists
 - denoted idom[y]
- Dominator Tree
 - A tree showing all immediate dominator relationships

17



Dominance Frontier

- Dominance Frontier of x is set of all nodes y s.t.
 - x dominates a predecessor of y AND
 - x does not strictly dominate y
- Denoted DF(x)
- Why do you think DF(x) is important for any x?
 - Think about information *originated* in x

19

Computing Dominance Frontier

$$DF(x) = DF_{local}(x) \cup \bigcup_{z \in \text{chil} dren(x)} DF_{up}(z)$$

$$DF_{local}(x) = \{ y \in succ(x) | idom(y) \neq x \}$$

$$DF_{uv}(z) = \{ y \in DF(z) | idom(y) \neq parent(z) \}$$

- * parent, children in dominator tree, succ in CFG
- * parent(z) = x above

Iterated Dominance Frontier

• *DF*⁺(*S*): Transitive closure of Dominance frontiers on a set of nodes

$$DF(S) = \bigcup_{x \in S(x)} DF(x)$$

$$DF^{1}(S) = DF(S)$$

$$DF^{i+1}(S) = DF(S \cup DF^{i}(S))$$

21

Minimal SSA Form Construction

- Compute DF+ set for each flow graph node
- Place $trivial \phi$ -functions for each variable in the node
- Rename variables
- Why DF+? Why not only DF?

22

Inserting φ-functions

```
foreach variable v {
   S = ENTRY U {n | v defined in n}
   Compute DF+(S)
   foreach n in DF+(S) {
    insert \( \phi\)-function for v at start of n
   }
}
```

23

Renaming Variables (Pseudo Code)

- Rename from the ENTRY node recursively
 - maintain a rename stack of $var \rightarrow var_{version}$ mapping
- For node n
 - For each assignment (x = ...) in n
 - If non-phi assignment, Rename any use of x with the Top mapping of x from the rename stack
 - Push the $x \rightarrow x_i$ on rename stack
 - i=i+1
- For successors of n
 - Rename ϕ operands through succ edge index
- Recursively rename for all child nodes in the dominator tree
- For each assignment (x = ...) in n
 - Pop $x \rightarrow \cdots$ from the rename stack