Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Static Single Assignment (SSA)

Amey Karkare
Dept of Computer Science and Engg
lIT Kanpur
Visiting [IT Bombay

SSA Form

 Developed by Ron Cytron, Jeanne Ferrante,
Barry K. Rosen, Mark N. Wegman, and F.
Kenneth Zadeck,

—in 1980s while at IBM.
e Static Single Assignment — A variable is
assigned only once in program text

— May be assigned multiple times if program is
executed

SSA Form

* Intermediate representation

e Sparse representation

— Definitions sites are directly associated with use
sites

e Advantage

— Directly access points where relevant data flow
information is avaliable

SSA Form

In SSA Form

— Each variable has exactly one definition

e Each use of a variable is reached by exactly one
definition

— Control flow like traditional programs
— Some magic is needed at join nodes

hlz

SSA Form: Examples

+
=
N -
[
=
+
=

*
o1
- -
H
[
N
+
H

SSA Form: Examples

1 = .

J =
it (1 < 20)
1 =1 +

else
J =1 +2

i
J

¢..,

if (i < 20)

—

=i+ |[d=0+2

\/

print i1,]j

SSA Form: Examples

\L...,

if (i < 20)

— .

1 =1+]

\/

print i1,]j

-

11 = .3
11 = .
!
it (11 < 201

—

i2=il+j1l

j2=j1+2

\/

13 = ¢(12,11)
13 = ¢(1,32)
print 13,j3

SSA Form: Examples

print 1,j;

11 = .;

J1 =

if (i1,< 20)

=11 + j1;

= jJ1 + 2;
o(12, 11);
o1, J2);

print 13, J3;

The “magic” : ¢p-function

e pis used for selection

— One out of multiple values at join nodes

 Not every join node needs a ¢

— Needed only if multiple definitions reach the node

But what does ¢ operation mean in a
machine code?

e (pis a conceptual entity

e No direct translation to machine code
— typically mimicked using “copy” in predecessors
— Inefficient

— Practically, the inefficiency is compensated by
dead code elimination and register allocation
passes

10

¢ Properties

Placed only at the entry of a join node

Multiple ¢-functions could be placed
— for multiple variables
— all such ¢ functions execute concurrently

n-ary ¢ function at n-way join node
xm = ¢(x1,x2,...,xi,...,xn)

xm gets the value of i-th argument xi if
control enters through i-th edge

— Ordering of edges is improtant

11

SSA Form: Example (revisit)

i
J

i...,

if (i < 20)

— .

1 =1+]

j =]

+ 2

\/

print i1,]j

-

11 = .3
11 = .
!
it (11 < 201

—

i2=il+j1l

j2=j1+2

\/

13 = ¢(12,11)
13 = ¢(1.32)
print 13,j3

12

Construction of SSA Form

Assumptions

 Only scalar variables
— Structures, pointers, arrays could be handled
— Refer to publications

14

Dominators

* Nodes x and y in flow graph
e x dominates vy if every path from ENTRY to y
go through x

—xdomy
— partial order?

o xstrictly dominatesyif xdomyandx #vy

— x sdomy

15

Computing Dominators

DOM(n) = {n} U (ﬂ DOM(m))
mepreds(n)
Initial Conditions:
DOM(ny) = {ny}
vn +ny, DOM(n) =N

N is the set of all nodes, ny is ENTRY

NOTE: Efficient methods exist for computing dominators

16

Immediate Dominators and Dominator
Tree

e X isimmediate dominator of y if x is the
closest strict dominator of y

— unique, if it exists
— denoted idom[y]
* Dominator Tree

— A tree showing all immediate dominator
relationships

17

Dominator Tree

BO

} B
Bl < a1
B;/\BAS /\

B2 B3

7N
B /]\
B6

B6
/
B7 M
B7

Control Flow Graph Dominator Tree

18

Dominance Frontier

e Dominance Frontier of x is set of all nodes y

S.t.
— x dominates a predecessor of y AND
— X does not strictly dominate y

e Denoted DF(x)
e Why do you think DF(x) is important for any x?

— Think about information originated in x

19

Computing Dominance Frontier

DF(x) = DFjcqi(x) U U DFup(Z)

z€echildren(x)

DFjpcai(x) = {y € succ(x)|idom(y) # x}
DE,,(z) ={y € DF(z)|idom(y) # parent(z)}

* parent, children in dominator tree, succ in CFG
* parent(z) = x above

20

lterated Dominance Frontier

e DF*(S): Transitive closure of Dominance
frontiers on a set of nodes

DF(S) = U DF (x)

xXES(x)

DF'(S) = DF(S)
DF'1(S) = DF(S U DFY(S))

21

Minimal SSA Form Construction

Compute DF+ set for each flow graph node

Place trivial ¢-functions for each variable in
the node

Rename variables

Why DF+? Why not only DF?

22

Inserting ¢-functions

foreach variable v {
S = ENTRY U {n | v defined In n}
Compute DF+(S)

foreach n 1In DF+(S) {
insert ¢-function for v at start of n

}
}

23

Renaming Variables (Pseudo Code)

Rename from the ENTRY node recursively
— maintain a rename stack of var — var,,,¢;,, mapping

For node n

— For each assignment (x =...) in n

* If non-phi assighment, Rename any use of x with the Top
mapping of x from the rename stack

* Push the x = x, on rename stack
e i=i+1

For successors of n
— Rename ¢ operands through succ edge index

Recursively rename for all child nodes in the
dominator tree

For each assignment (x =...) in n
— Pop x = --- from the rename stack

24

	Program Analysis�https://www.cse.iitb.ac.in/~karkare/cs618/�
	SSA Form
	SSA Form
	SSA Form
	SSA Form: Examples
	SSA Form: Examples
	SSA Form: Examples
	SSA Form: Examples
	The “magic” : ϕ-function
	But what does ϕ operation mean in a machine code?
		ϕ Properties
	SSA Form: Example (revisit)
	Construction of SSA Form
	Assumptions
	Dominators
	Computing Dominators
	Immediate Dominators and Dominator Tree
	Dominator Tree
	Dominance Frontier
	Computing Dominance Frontier
	Iterated Dominance Frontier
	Minimal SSA Form Construction
	Inserting ϕ-functions
	Renaming Variables (Pseudo Code)

