Program Analysis

https://www.cse.iitb.ac.in/~karkare/cs618/

Static Single Assignment (SSA)
(continued)

Amey Karkare
Dept of Computer Science and Engg
IIT Kanpur
Visiting IIT Bombay

Complexity of Construction

R =max(N,E,A, M)

N: nodes, E: edges in flow graph
A: number of assighnments

M: number of use of variables
Computation of DF: O(R?)
Computation of SSA: O(R?)

In practice, worst case is rare.
Practical complexity: O(R)

Linear Time Algo for ¢-functions

* By Sreedhar and Gao, in POPL'95
* Uses a new data structure called DJ-graph

* Linear time is achieved by careful ordering of
nodes in the DJ-graph

— DF for a node is computed only once an reused
later if required.

X=.. X=

=X =X

y=.. y=

z=.. z=

‘ =\V =y
=z

Original Program

8/28/2016

X2 =..

. =X2

y2

z2 =

J
. =y2

x3=¢p(x1,x2)
y3=0(yly2)
z3 = (z1,22)

..=123

Minimal SSA form

Variants of SSA Form

* Minimal SSA still contains extraneous -

functions
— Inserts some @-functions where they are dead

— Would like to avoid inserting them

¢ Pruned SSA
¢ Semi-Pruned SSA

8/28/2016

Pruned SSA

* Only insert @-functions where their value is
live
— Inserts fewer @-functions

— Costs more to do
— Requires global Live variable analysis

x1=.. X2 =..
.=x1 =x2
yl=.. y2
z1=.. 72 =

! |
‘ =yl .=y2

z3 = (z1,22)
..=23

Pruned SSA form

Semi-pruned SSA

* Semi-pruned SSA: discard names used in only
one block

— Total number of ¢-functions between minimal and
pruned SSA

— Needs only local Live information

— Non-locals can be computed without iteration or
elimination

y3 =olyly2)
z3 = (z1,22)
..=23

Semi-pruned SSA form

10

Computing Non Locals

for each block B {
defined = {}
for each instructionv=xopy {
if x not in defined
non_locals = non_locals U {x}
if y not in defined
non_locals = non_locals U {y}
defined = defined U {v}
}
}

SSA to Executable

At some point, we need executable code
— Need to fix up the @-function
Basic idea

— Insert copies in predecessors to mimick -
function

— Simple algorithm
* Works in most cases, but not always
— Adds lots of copies
* Many of them will be optimized by later passes

8/28/2016

| x0=... ‘ | x1=... ‘

N

x2 = $(x0, x1)
e =x2

1]

x0=... x1=...
x2 =x0 x2 =x1

\/

Lost Copy Problem

x=1 | x1=1 |
y =X x2 = @(x1,x3)
X =x+1 x3=x2+1

print y print x2

Program SSA from with copy propagation

Lost Copy Problem

PROBLEM!!!

print x2

After @-function removal

Lost Copy Problem: Solutions

xi=1 x1=1

x2=x1 x2 =x1
: ﬁ
:3:(:2” x3=x2+1 <2 = x3
x2 = X3 \]
print t \ print x2

Solution 1: Temporary use Solution 2: Critical Edge Split

8/28/2016

Swap Problem

a=1 al=1
b=2 bl1=2
L 1
a a2 = @(al,b2)
b b2 = @(b1,a2)
X

print b print a2

Program SSA from with copy propagation

Swap Problem

al=1; bl1=2
a2=al;b2=>bl

l

PROBLEM!!!

Fix requires compiler to detect
and break dependency from
output of one ¢-function to
input of another @-function.

print a2 May require temporary if cyclic
R — dependency exists.

After @-function removal

SSA Form for Optimizations

* SSA form can improve and/or speed up many
analyses and optimizations
— (Conditional) Constant propagation
— Dead code elimination
— Value numbering
— PRE
— Loop Invariant Code Motion
— Strength Reduction

8/28/2016

