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The Abstract Syntax

t := x – Variable

| λx .t – Abstraction

| t t – Application

Parenthesis, (. . . ), can be used for grouping and scoping.
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Conventions

λx .t1t2t3 is an abbreviation for λx .(t1t2t3), i.e., the scope of
x is as far to the right as possible until it is

terminated by a ) whose matching ( occurs to the left pf λ,

OR

terminated by the end of the term.

Applications associate to the left: t1t2t3 to be read as

(t1t2)t3 and not as t1(t2t3)

λxyz.t is an abbreviation for λxλyλz.t which in turn is

abbreviation for λx .(λy .(λz.t)).
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α-renaming

The name of a bound variable has no meaning except for

its use to identify the bounding λ.

Renaming a λ variable, including all its bound occurrences,

does not change the meaning of an expression. For

example, λx .x x y is equivalent to λu.u u y

But it is not same as λx .x x w

Can not change free variables!
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β-reduction (Execution Semantics)

if an abstraction λx .t1 is applied to a term t2 then the result
of the application is

the body of the abstraction t1 with all free occurrences of

the formal parameter x replaced with t2.

For example,

(λfλx .f (f x)) g
β

−→ λx .g (g x)
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Caution

During β-reduction, make sure a free variable is not

captured inadvertently.

The following reduction is WRONG

(λxλy .x)(λx .y)
β

−→ λy .λx .y

Use α-renaming to avoid variable capture

(λxλy .x)(λx .y)
α

−→ (λuλv .u)(λx .y)
β

−→ λv .λx .y
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Exercise

Apply β-reduction as far as possible

1. (λx y z. x z (y z)) (λx y . x) (λy .y)

2. (λx . x x)(λx . x x)

3. (λx y z. x z (y z)) (λx y . x) ((λx . x x)(λx . x x))
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Church-Rosser Theorem

Multiple ways to apply β-reduction

Some may not terminate

However, if two different reduction sequences terminate
then they always terminate in the same term

Also called the Diamond Property

Leftmost, outermost reduction will find the normal form if it

exists
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Programming in λ Calculus

Where is the other stuff?

Constants?

Numbers

Booleans

Complex Types?

Lists

Arrays

Don’t we need data?

Abstractions act as functions as well as data!
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Numbers: Church Numerals

We need a “Zero”

“Absence of item”

And something to count

“Presence of item”

Intuition: Whiteboard and Marker

Blank board represents Zero

Each mark by marker represents a count.

However, other pairs of objects will work as well

Lets translate this intuition into λ-expressions
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Numbers

Zero = λm w . w

No mark on the whiteboard

One = λm w . m w

One mark on the whiteboard

Two = λm w . m (m w)

. . .

What about operations?

add, multiply, subtract, divide, . . . ?
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Operations on Numbers

succ = λx m w . m (x m w)

Verify: succ N = N + 1

add = λx y m w . x m (y m w)

Verify: add M N = M + N

mult = λx y m w . x (y m) w

Verify: mult M N = M * N

karkare, CSE, IITK/B CS618 13/24

More Operations

pred = λx m w . x (λg h. h (g m))(λu. w)(λu. u)

Verify: pred N = N - 1

nminus = λx y . y pred x

Verify: nminus M N = max(0, M - N) – natural subtraction
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Church Booleans

True and False

Intuition: Selection of one out of two (complementary)

choices

True = λx y . x

False = λx y . y

Predicate:

isZero = λx . x (λu.False) True
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Operations on Booleans

Logical operations

and = λp q. p q p

or = λp q. p p q

not = λp t f .p f t

The conditional operator if

if c et ef reduces to et if c is True, and to ef if c is False

if = λc et ef . (c et ef )
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More. . .

More such types can be found at

https://en.wikipedia.org/wiki/Church_encoding

It is fun to come up with your own definitions for constants

and operations over different types

or to develop understanding for existing definitions.
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We are missing something!!

The machinery described so far does not allow us to define
Recursive functions

Factorial, Fibonacci, . . .

There is no concept of “named” functions

So no way to refer to a function “recursively”!

Fix-point computation comes to rescue
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Fix-point and Y -combinator

A fix-point of a function f is a value p such that f p = p

Assume existence of a magic expression, called

Y -combinator, that when applied to a λ-expression, gives

its fixed point

Y f = f (Y f )

Y -combinator gives us a way to apply a function

recursively
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Recursion Example: Factorial

fact = λn. if (isZero n) One (mult n (fact (pred n)))

= (λf n. if (isZero n)One (mult n (f (pred n)))) fact

fact = gfact

fact is a fixed point of the function

g = (λf n. if (isZero n)One (mult n (f (pred n))))

Using Y-combinator,

fact = Y g
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Factorial: Verify

fact 2 = (Y g) 2

= g (Y g) 2 – by definition of Y-combinator

= (λfn. if (isZero n) 1 (mult n (f (pred n)))) (Y g) 2

= (λn. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2

= if (isZero 2) 1 (mult 2 ((Y g)(pred2)))

= (mult 2 ((Y g) 1))

. . .

= (mult 2 (mult 1 (if (isZero 0) 1 (. . .))))

= (mult 2 (mult 1 1))

= 2
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Recursion and Y -combinator

Y-combinator allows to unroll the body of loop

once—similar to one unfolding of recursive call

Sequence of Y -combinator applications allow complete

unfolding of recursive calls

BUT, what about the existence of Y -combinator?
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Y -combinators

Many candidates exist

Y1 = λf . (λx . f (x x)) (λx . f (x x))

Y = λabcdefghijklmnopqstuvwxwzr .r(thisisafixedpointcombinator)

Yfunny = TTTTT TTTTT TTTTT TTTTT TTTTT T

Verify that (Y f ) = f (Y f ) for each
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Summary

A cursory look at λ-calculus

Functions are data, and Data are functions!

Not covered but important to know: The power of λ

calculus is equivalent to that of Turing Machine (“Church

Turing Thesis”)
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