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Abstract 
 
Computers are widely used to simulate many physical, chemical and 
biological systems. The simulation of classical physics on computers is one 
such field of study.  
 
Based on the applications, Physics simulations can either be non Real-Time 
(accurate simulations) or Real-Time (approximate simulations). 
This report deals with the basic issues that have to be handled for real time 
physics simulations. ie: consumer level physics simulation software. 
 
A further classification is based on whether the simulation is discrete or 
continuous. Discrete simulations are offer more flexibility to the 
programmer and are mathematically simpler, and therefore, a brief 
introduction is given to continuous simulations and the topic of discrete 
simulation is elaborated upon. 
 
Basic properties of a physical system like position, velocity and forces are 
modeled using vectors. Other scalar properties of a system like mass, friction 
and restitution are also simulated. 
 
Using the above ideas, a slightly more complicated system is constructed. 
This is the Spring – Mass system. A spring with single free mass attached to 
one end and one fixed end, is demonstrated. Then a generalized spring mass 
system with multiple springs attached to multiple masses is also modeled 
and demonstrated. 
 
The concept of collision detection is introduced to deal with the simple case 
of point masses colliding with line segments. An extension and optimization 
of this technique, using a two-phase collision detection approach is also 
introduced. This involves a coarse collision detection stage and a detailed 
collision detection stage, for dealing with complex systems. 
 
Finally, more advanced simulation techniques such as Finite Element 
Method and Inverse Kinematics are introduced. Current trends in physics 
simulation like dedicated physics hardware and physics engines are 
discussed. 
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Introduction 
 
 
 
Computers are widely used to simulate many physical, chemical and 

biological systems. The simulation of classical physics on computers is one 

such field of study. The first electronic computer, the ENIAC was used to 

calculate trajectories of ballistic missiles. These complex calculations 

involved several parameters like density of atmosphere at different altitudes, 

wind currents, the forces due to rotation of the earth etc, which cannot be 

easily factored in during manual calculations. 

 

These days, the major supercomputing applications are in fields like protein 

folding, weather forecasting, crash testing for vehicles, wind tunnel 

simulations etc. 

 

Apart from these High Performance Computing fields, physics simulations 

have found their way onto consumer level hardware like desktops and 

mobile devices. Here the applications for physics simulations lie in 

interactive environments like games, and also in new intuitive and highly 

responsive interfaces like those found on the iPhone, and on the Beryl 

window manager for Linux. 

 

While some of these applications are non real-time, and demand a high 

degree of accuracy, the consumer oriented physics simulations are often 

real-time approximations of the actual physical phenomena. The remainder 

of the report deals with real-time simulation of classical physics, with the 

main application in interactive graphics. 
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Basic Properties of Physical Systems 
 
A physical system has the following properties: 

• Mass 

• Position 

• Velocity 

• Acceleration 

• Force 

 

Out of these, acceleration is a derived attribute, because we can obtain the 

value of acceleration given the force acting on the object and its mass, using 

the equation : 

F= M*A  

The advantage of choosing force over acceleration is that force can be 

directly applied to multiple objects. 

 

Mass is represented as a scalar quantity and the remaining parameters are all 

vector quantities in 2 or 3 dimensions (depending on the scenario). 

Therefore, a point object can be represented in a user-defined data type as 

follows: 

struct vector{ 

float x,y,z; 

} 

struct pointObject{ 

 vector position,velocity,force; 

 float mass; 

}; 
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Relation between the basic parameters 
 
 
 
Force is equal to mass times acceleration: 
 

F=M x a 
 
Velocity is the first derivative of position. 
 

dx/dt=v 
 
Acceleration is the first derivative of velocity. 
 

dv/dt=a 
 
Integrating the above equation between the limits v=U and v=V, we arrive at 
the relation:  
 

V=U+at 
 

This combined with the second equation, gives us: 
 

x=Ut + 0.5 * a * t^2 
 
These equations represent Newton’s laws of motion. They hold true for both 
scalar and vector values of position, velocity and acceleration. 
 
 
The differential equations described above can be used for discrete event 
based simulation for physical systems.  
 
Similarly, their closed form solutions can be used for a continuous 
simulation of the system. 
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Discrete simulation 
 
 
 
The discrete event simulation involves solving the differential equations 
previously discussed, using numerical methods.  
 
There are two well known numerical methods to solve such equations: 
 
Finite Difference Method (Euler’s Method): 
 
This involves approximating the definition of derivative of a function: 
 
F’(x)=lim (h→0) [F(x+h) – F(x)] /h 
 
The approximation involves dropping the limit on the above equation, to get: 
 
F’(x)= [F(x+h) – F(x)] /h 
F(x+h) = h*F’(x)  + F(x) 
 
This allows us to calculate the value of the function F at a new point (x+h), 
when we know the value at x, and the value of F’ (the derivative) at x. 
 
This can be applied to physics simulation as follows: 
 
Consider Velocity (v) is a function of time v(t). Then, we have: 
 
v(t+∆t)= ∆t * v’(t) + v(t). 
 
We know that v’(t) = acceleration at time t. 
 
Similarly, considering position as a function of time x(t), we have: 
 
x(t+∆t) = ∆t * x’(t) + x(t). 
 
Again, x’(t) is the velocity of the object at time t. 
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Implementing the discrete simulation 
 

The above approximations for velocity and position as a function of time can 

now be used, in conjunction with the force equation to implement a 

simulation in any programming language. Consider the following C 

implementation: 

 

const int timeStep = 1; 

while(1) 

{ 

screen.clear(); 

 vector acceleration= object.force / object.mass; 

 object.velocity = (timeStep * acceleration) + object.velocity; 

 object.position = (timeStep * velocity) + object.position; 

 object.draw(screen); 

 sleep(timeStep); 

} 

 

Illustration with constant velocity, then constant acceleration: 
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Spring-Mass Systems 
 

The behavior of a spring mass system is described by Hooke’s Law. 

F=-kx 

Here F is the force exerted on the mass by the spring, when an extension or 

compression of x units is affected on the spring. The value k is the spring 

constant. The natural length of the spring is l units. The mass of the object 

attached to the spring is M. The other end of the spring is attached to an un-

yielding wall. 

 

A modification of the above equation adds damping to the system. The form 

of damping we use here is viscous drag, where the force is inversely 

proportional to the velocity of the mass. A value d is the damping coefficient 

and it is multiplied by the velocity to get the force. Therefore, the spring 

mass equation becomes: 

F=-kx -dv 

 

 

 

 

 
To solve equations of the above type, ie: for oscillating systems, we need to 

use a slightly more accurate solution for the differential equations. The Euler 

method can cause the system to wildly oscillate out of equilibrium. 
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Runge Kutta Method: A Better Approximation 
 

A problem with the finite difference method is that if the time step is large, 

the method can produce some undesirable results. These results can manifest 

even if the parameters like velocity, or acceleration are large. The system 

tends to become highly unstable, even though in actual physical systems, for 

the same parameters, the system would have been stable. 

To mitigate these problems, another popular numerical method is used. This 

is the fourth order Runge-Kutta method (RK4). 

Let an initial value problem be specified as follows. 

 

Then, the RK4 method for this problem is given by the following equations: 

 

where yn + 1 is the RK4 approximation of y(tn + 1), and 

 
 

The main advantage of this method is that the function value is 

approximated halfway between the time intervals. This reduces any 

problems caused by large parameter values. 
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Implementation of RK4 Solver 

 
Below is the implementation of a Runge Kutta 4th order solver, which 

simulates a damped one dimensional spring. The initial condition is the 

extension of the spring mass system, which is given as input vars(0). 

vars(1) and vars(2) are velocity and acceleration components respectively. 

At each stage, a temporary output position, velocity and acceleration are all 

calculated. 

These values are stored in the inp() array, and passed as inputs to the next 

stage of computation. The program calls the step method at each time 

interval. The step method takes the current system state as input and returns 

the changes in the respective state variables as output. The x() array stores 

input variables position, velocity and acceleration, and the change() array 

returns the change in position and change in velocity as its first 2 elements. 

 

Public Const N = 2 
 
Public inp(N) As Double 
Public k1(N) As Double 
Public k2(N) As Double 
Public k3(N) As Double 
Public k4(N) As Double 
Public vars(N) As Double 
 
Public Const springK = 1 
Public Const springD = 1 
 
' Runge-Kutta method for solving differential equations 
' vars = array of variables 
' N = number of variables in array 
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Public Sub step(stepSize As Double) 
    evaluate vars, k1 ' evaluate at time t 
    For i = 0 To N 
        inp(i) = vars(i) + k1(i) * stepSize / 2  
    Next i 
    evaluate inp, k2 
 
    For i = 0 To N 
        inp(i) = vars(i) + k2(i) * stepSize / 2  
    Next i 
     
    evaluate inp, k3 
     
    For i = 0 To N 
        inp(i) = vars(i) + k3(i) * stepSize  
    Next i 
    evaluate inp, k4 
     
    For i = 0 To N 

vars(i) = vars(i) + (k1(i) + 2 * k2(i) + 2 * k3(i) + k4(i)) * stepSize / 6 
    Next i 
End Sub 
 
 
Public Sub evaluate(x() As Double, change() As Double) 
    change(0) = x(1) 
    change(1) = -springK * x(0) - springD * x(1) 
End Sub 
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Complex Simulations using Spring-Mass analogy 
 

It is possible to extend the spring mass system as an approximation to more 

complex physical systems like soft body dynamics simulations, and height 

field based fluid simulations. 

 

A system with multiple masses attached together in a mesh, by multiple 

springs, gives the illusion of soft body physics. This method is similar to the 

finite element method of simulating complex systems as a grid based 

approximation. 

 

The analogy can be taken even further to simulate a height-field of water, to 

generate realistic waves that superimpose, and reflect off obstacles. This is 

done by considering the height field to be a grid of nodes, equally spaced, 

and connected to their neighbors by springs. When one of the nodes is 

displaced, the neighbors also get displaced in an oscillatory manner due to 

the springs connecting them. These oscillations travel throughout the grid 

causing the height field to look like waves in water. 
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Inverse Kinematics 

Inverse kinematics is the process of determining the parameters of a jointed 

flexible object (a kinematic chain) in order to achieve a desired pose. Inverse 

kinematics are also relevant to game programming and 3D animation, where 

a common use is making sure game characters connect physically to the 

world, such as feet landing firmly on top of terrain. 

An articulated figure consists of a set of rigid segments connected with 

joints. Varying angles of the joints yields an indefinite number of 

configurations. The solution to the inverse kinematics problem is to find the 

joint angles given the desired configuration of the figure (i.e., end effectors). 

The general case has no analytic solution. 

Inverse kinematics is a tool utilized frequently by 3D artists. It is often easier 

for an artist to express the desired spatial appearance rather than manipulate 

joint angles directly. For example, inverse kinematics allows an artist to 

move the hand of a 3D human model to a desired position and orientation 

and have an algorithm select the proper angles of the wrist, elbow, and 

shoulder joints. 
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Conclusion 
 

Computers these days are being used to perform increasingly realistic 

simulations of physical phenomena. Even in the realm of physics 

simulations, there are several branches apart from those discussed in this 

report. Thermodynamics simulations involving behavior of materials under 

stresses due to high temperature is one such field. Another is the field of 

optics simulation for realistic graphics and rendering technologies. Graphics 

algorithms that were once restricted to the most powerful workstations and 

render farms, are now being used on desktop hardware in computer games 

and other interactive simulations. Dedicated graphics hardware has fuelled 

this movement.  

 

Another upcoming area is that of dedicated physics hardware. Two of the 

industry’s major players, Intel (which acquired Havok) and nVidia (which 

acquired Ageia) are entering the physics hardware market in a big way. 

 

Physics simulations are also seen on a smaller scale on day to day interactive 

systems like the i-Phone. Modern desktop computing interfaces also have 

the basic elements of physics integrated into them. 

 

At a larger scale, the industry has great demand for physics simulations for 

complex problems like weather forecasting, flight simulators, crash testing 

of vehicles, testing of new materials and alloys, all of which serve to reduce 

the cost of research, development and training. 
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