Classical Physics Simulation

Seminar Report

Submitted in partial fulfillment of the requiremerfor
Seminar
of

VIl Semester BE (CSE)
(Visveswaraiah Technological University)

Submitted by

Sriram Kashyap M S
1M S04CS095

April 2008

M. S. Ramaiah I nstitute Of Technology
Department of Computer Science and Engineering
Bangalore-560054

Certificate

This is to certify that Mr./Ms. Sriram Kashyap M S, 1IMS04CS0Béas
satisfactorily completed the seminar dflassical Physics Simulation
prescribed by Visveswaraiah Technological Univgrédar VIII Semester

(CSE) in the year 2008.

Internal Guide Examiners :
1.

2.

Acknowledgement

| would like to thank Dr. V K Ananthashayana, Mwnitha

Kanvalli and Dr. K G Srinivasa for the guidance augbport they
provided during my preparation for the seminarolid also thank
the faculty and support staff of the Computer Soeedepartment
of MS Ramaiah Institute of Technology, for theidasupport and

encouragement.

Abstract

Computers are widely used to simulate many physicaemical and
biological systems. The simulation of classical by on computers is one
such field of study.

Based on the applications, Physics simulationsetidner be non Real-Time
(accurate simulations) or Real-Time (approximateusations).

This report deals with the basic issues that haveethandled for real time
physics simulations. ie: consumer level physicautation software.

A further classification is based on whether theuwation is discrete or
continuous. Discrete simulations are offer morexifidity to the

programmer and are mathematically simpler, and etbex, a brief
introduction is given to continuous simulations ahe topic of discrete
simulation is elaborated upon.

Basic properties of a physical system like posijtieelocity and forces are
modeled using vectors. Other scalar propertiessystgem like mass, friction
and restitution are also simulated.

Using the above ideas, a slightly more complicagstem is constructed.
This is the Spring — Mass system. A spring witlgrfree mass attached to
one end and one fixed end, is demonstrated. Thyameralized spring mass
system with multiple springs attached to multiplasses is also modeled
and demonstrated.

The concept of collision detection is introducedigal with the simple case
of point masses colliding with line segments. Ateasion and optimization
of this technique, using a two-phase collision d@éba approach is also
introduced. This involves a coarse collision detecistage and a detailed
collision detection stage, for dealing with comp$gstems.

Finally, more advanced simulation techniques sushFaite Element
Method and Inverse Kinematics are introduced. Guirteends in physics
simulation like dedicated physics hardware and jgBysngines are
discussed.

8.

9.

Contents

Acknowledgements
Abstract

Introduction

. Basic properties of Physical Systems

Relation between the basic parameters
Discrete Simulation

Implementing the discrete simulation
Spring Mass System

Runge-Kutta Method

Implementation of an RK4 solver.

Complex Simulations using Spring-Mass Analogy

10.Inverse Kinematics

11.Conclusion

12.Bibliography

13.Slides

06

07

08

09

10

11

12

13

15

16

17

18

19

| ntr oduction

Computers are widely used to simulate many physicaemical and
biological systems. The simulation of classical by on computers is one
such field of study. The first electronic computére ENIAC was used to
calculate trajectories of ballistic missiles. Thesemplex calculations
involved several parameters like density of atmesplat different altitudes,
wind currents, the forces due to rotation of theheatc, which cannot be

easily factored in during manual calculations.

These days, the major supercomputing applicatiomsnafields like protein
folding, weather forecasting, crash testing for ielels, wind tunnel

simulations etc.

Apart from these High Performance Computing fielalsysics simulations
have found their way onto consumer level hardwake Hesktops and
mobile devices. Here the applications for physiasiugations lie in
interactive environments like games, and also w meuitive and highly
responsive interfaces like those found on the iBha@and on the Beryl

window manager for Linux.

While some of these applications are non real-tiame demand a high
degree of accuracy, the consumer oriented physicslaions are often
real-time approximations of the actual physicalmgmeena. The remainder
of the report deals with real-time simulation o&sdical physics, with the

main application in interactive graphics.

Basic Properties of Physical Systems

A physical system has the following properties:

Mass
Position
Velocity
Acceleration

Force

Out of these, acceleration is a derived attriboéeause we can obtain the

value of acceleration given the force acting ondbgct and its mass, using

the equation :

F= M*A

The advantage of choosing force over accelerasidinat force can be

directly applied to multiple objects.

Mass is represented as a scalar quantity and temang parameters are all

vector quantities in 2 or 3 dimensions (dependimghe scenario).

Therefore, a point object can be represented seadefined data type as

follows:

struct vector{

}

float x,y,z;

struct pointObject{

vector position,velocity,force;

float mass;

Relation between the basic parameters

Force is equal to mass times acceleration:
F=M x a

Velocity is the first derivative of position.
dx/dt=v

Acceleration is the first derivative of velocity.
dv/dt=a

Integrating the above equation between the lim#d and v=V, we arrive at
the relation:

V=U+at
This combined with the second equation, gives us:
x=Ut+0.5*a*t"2
These equations represent Newton’s laws of mofibey hold true for both
scalar and vector values of position, velocity andeleration.
The differential equations described above candeed or discrete event

based simulation for physical systems.

Similarly, their closed form solutions can be usmda continuous
simulation of the system.

Discrete smulation

The discrete event simulation involves solving th#erential equations
previously discussed, using numerical methods.

There are two well known numerical methods to selveh equations:

Finite Difference Method (Euler's Method):

This involves approximating the definition of dexfive of a function:
F'(X)=lim @0 [F(x+h) — F(xX)] /h

The approximation involves dropping the limit or @ibove equation, to get:

F'(X)= [F(x+h) — F(X)] /h
F(x+h) = h*F'(x) + F(x)

This allows us to calculate the value of the fumttF at a new point (x+h),
when we know the value at x, and the value of liré derivative) at x.

This can be applied to physics simulation as fodow
Consider Velocity (v) is a function of time v(t)h&n, we have:

V(t+Aat)= At * v'(t) + v(t).

We know that v’(t) = acceleration at time t.

Similarly, considering position as a function ohé x(t), we have:

X(t+4t) = At * X'(t) + x(t).

Again, X'(t) is the velocity of the object at tinhe

| mplementing the discrete smulation

The above approximations for velocity and posi@sra function of time can
now be used, in conjunction with the force equationimplement a
simulation in any programming language. Considee fobllowing C

implementation:

const int timeStep = 1,

while(1)

{
screen.clear();
vector acceleration= object.force / object.mass;
object.velocity = (timeStep * acceleration) + otfjeelocity;
object.position = (timeStep * velocity) + objeaisition;
object.draw(screen);
sleep(timeStep);

[llustration with constant velocity, then constaoteleration:

-0-0-0-

x=10 x=15
t O t 1 t=2 t=3
® -0 - O
= x=5 x=15
t=0 t=1 t=2

10

Spring-M ass Systems

The behavior of a spring mass system is descrippddoloke’s Law.

F=-kx
HereF is the force exerted on the mass by the springyvam extension or
compression of units is affected on the spring. The vakue the spring
constant. The natural length of the springusits. The mass of the object
attached to the spring M. The other end of the spring is attached to an un-

yielding wall.

A modification of the above equation adds dampmthe system. The form
of damping we use here is viscous drag, wheredtoe fis inversely
proportional to the velocity of the mass. A vatlis the damping coefficient
and it is multiplied by the velocity to get the ¢er Therefore, the spring

mass equation becomes:

F=-kx -dv

To solve equations of the above type, ie: for teailg systems, we need to
use a slightly more accurate solution for the défgial equations. The Euler

method can cause the system to wildly oscillateobequilibrium.

11

Runge Kutta Method: A Better Approximation

A problem with the finite difference method is thiathe time step is large,

the method can produce some undesirable resukseTifesults can manifest
even if the parameters like velocity, or acceleratare large. The system
tends to become highly unstable, even though mehgthysical systems, for

the same parameters, the system would have bd#a.sta

To mitigate these problems, another popular nuraemethod is used. This

is the fourth order Runge-Kutta method (RK4).

Let an initial value problem be specified as follow

yf = f(t!y)r y(fﬂ) = Yo-

Then, the RK4 method for this problem is given lwy following equations:

h
Yn+1 = Yn E(kl b 2kg + 2k + ky)
t.n+1 - t.n | h
wherey, . 1 is the RK4 approximation oft, + 1), and

ki=f (tﬂ 1 yﬂ)

h h
ko= f (t-n | i,yﬂ | ikl)

h h
ffa=f(t-n | 5 Yn | 55’-2)
Ili%::1_-: f(tn | h-, Yn hki)

The main advantage of this method is that the fanctvalue is
approximated halfway between the time intervals.isTheduces any

problems caused by large parameter values.

12

| mplementation of RK4 Solver

Below is the implementation of a Runge Kuttd drder solver, which
simulates a damped one dimensional spring. Thelirgbndition is the
extension of the spring mass system, which is gasemput vars(0).

vars(1l) and vars(2) are velocity and acceleratmnponents respectively.

At each stage, a temporary output position, vejoaitd acceleration are all
calculated.

These values are stored in the inp() array, andeghas inputs to the next
stage of computation. The program calls the stephaoeat each time
interval. The step method takes the current systate as input and returns
the changes in the respective state variables ipsitodhe x() array stores
input variables position, velocity and acceleratiand the change() array

returns the change in position and change in Wgl@d its first 2 elements.

Public Const N =2

Public inp(N) As Double
Public k1(N) As Double
Public k2(N) As Double
Public k3(N) As Double
Public k4(N) As Double
Public vars(N) As Double

Public Const springK = 1
Public Const springD =1

' Runge-Kutta method for solving differential egoias

'vars = array of variables
"N = number of variables in array

13

Public Sub step(stepSize As Double)
evaluate vars, k1 ' evaluate at time t
Fori=0To N

inp(i) = vars(i) + k1(i) * stepSize / 2
Next i
evaluate inp, k2

Fori=0ToN
inp(i) = vars(i) + k2(i) * stepSize / 2
Next i

evaluate inp, k3

Fori=0ToN

inp(i) = vars(i) + k3(i) * stepSize
Next i
evaluate inp, k4

Fori=0To N
vars(i) = vars(i) + (k1(i) + 2 * k2(i) + 2 * k3(i)+ k4(i)) * stepSize / 6
Next i
End Sub

Public Sub evaluate(x() As Double, change() As Dxub
change(0) = x(1)
change(1) = -springK * x(0) - springD * x(1)

End Sub

14

Complex Simulations using Spring-M ass analogy

It is possible to extend the spring mass systeamaapproximation to more
complex physical systems like soft body dynamicsusations, and height

field based fluid simulations.

A system with multiple masses attached togethea imesh, by multiple
springs, gives the illusion of soft body physichisTmethod is similar to the
finite element method of simulating complex systeass a grid based

approximation.

The analogy can be taken even further to simuldieight-field of water, to

generate realistic waves that superimpose, andctediff obstacles. This is
done by considering the height field to be a gfich@des, equally spaced,
and connected to their neighbors by springs. Whea af the nodes is
displaced, the neighbors also get displaced insaillatory manner due to
the springs connecting them. These oscillationgetrghroughout the grid

causing the height field to look like waves in wate

15

Inverse Kinematics

Inverse kinematics is the process of determinimgg@irameters of a jointed
flexible object (a kinematic chain) in order to emte a desired pose. Inverse
kinematics are also relevant to game programming3@hanimation, where
a common use is making sure game characters cophgsically to the

world, such as feet landing firmly on top of temai

An articulated figure consists of a set of rigidgsents connected with
joints. Varying angles of the joints yields an ihdie number of

configurations. The solution to the inverse kindosaproblem is to find the
joint angles given the desired configuration of figere (i.e., end effectors).

The general case has no analytic solution.

Inverse kinematics is a tool utilized frequently3iy artists. It is often easier
for an artist to express the desired spatial appearrather than manipulate
joint angles directly. For example, inverse kindogtallows an artist to
move the hand of a 3D human model to a desirediposand orientation
and have an algorithm select the proper anglehefwrist, eloow, and

shoulder joints.

16

Conclusion

Computers these days are being used to perforneasitigly realistic
simulations of physical phenomena. Even in the nieaf physics
simulations, there are several branches apart ffmse discussed in this
report. Thermodynamics simulations involving bebawf materials under
stresses due to high temperature is one such #gidther is the field of
optics simulation for realistic graphics and remugitechnologies. Graphics
algorithms that were once restricted to the mosteotul workstations and
render farms, are now being used on desktop haedimacomputer games
and other interactive simulations. Dedicated gregplmardware has fuelled

this movement.

Another upcoming area is that of dedicated physasiware. Two of the
industry’s major players, Intel (which acquired ldi&y and nVidia (which

acquired Ageia) are entering the physics hardwadket in a big way.

Physics simulations are also seen on a smallez scatlay to day interactive
systems like the i-Phone. Modern desktop compuitmeyrfaces also have

the basic elements of physics integrated into them.

At a larger scale, the industry has great demangltgsics simulations for
complex problems like weather forecasting, fligimdators, crash testing
of vehicles, testing of new materials and alloyspfiwhich serve to reduce

the cost of research, development and training.

17

Bibliography

» http://www.myphysicslab.com (Physics simulationsaga Applets)

» http://en.wikipedia.org/wiki/Numerical_ordinary_f#fential_equations

* http://www.harveycartel.org/metanet/tutorials/tisbh.html (Collision
detection and handling)

* http://www.sv.vt.edu/classes/MSE2094 NoteBook/98&Raoj/num/wid
as/history.html (Finite Element Method)

* http://freespace.virgin.net/hugo.elias/models/mtik. (Inverse

Kinematics tutorial)

Commercial Physics Solutions:

* http://www.ageia.com/ (Ageia PhysX SDK and HardevarVidia)

* http://www.havok.com/ (Havok Physics Engine- Intel)

* http://www.pixeluxentertainment.com/ (Digital Moldar Matter: Real
time FEM on desktop hardware)

18

Gaming*

Teaching
Aids

Slides

Prototyping

B
Weather
Prediction

&

Moving
©-0-0-0-
=l (o] wm1i =15
= t=1 =3 =]

Object moving in one dimension {x as), at constant velocity,

Velocity » = F distance unite’ fmie wmit

wehilés {1){

position = position + veloclty® imeScale;
sheep{timescale);

19

Scope of Classical Physics

Projectiles

I'-l'_laehinas

Fluids

Sptles

Jerk, snap, crackle and pop!!

Properties: Fe
= Mass M ;‘:ﬂmnw
* Position o
* Velocity e/t I*mﬂﬂmim
« Acceleration?? 1elfxdit Postmass;
* Force?? mﬂm'_"
vector3d force;
Moving Faster
- - @
w=l mh ¥l
=G i =2

Ofject starts from rest, and accelerates along x axis.
Enitlzl Vigdocity v = 0 Distance unie’ Tiee unid
Accelermtion a = 5 Felocaty wmits’ Time unn

while (1){
valocity = velocity # acceleration®timeScale;
position = position velocity* timeScale;
sleep(tirmeScalel;

Slides

But... something is wrong!! Solving problems: The easy way

. « Finite Difference Method (Euler method)
v dx/dt lam ..o [fix)~ il S)
Ax = xx,

Thi approximeation involves dropping the limit.
lim .4/ At ~dxidt '

S
L) - fixhd £ = O

. Thits fanmeula works well for small vahsss of he A fine grasned simul
So, is Ax — dx?? ﬁmmﬂl:b:psufhhm:am.n: =
What about velocity? . _
Is dv = dv?? 1. Very general technique, 1t works as long as each o' derhvative can
be eapressed as a function of the lower onder (n-1) devivatives.
2. Fast, and smple. The fastest wiy of sohing difl eqrs.
Springs “As the extension, so the force”
A spring s an object that can be — i : o
t ity deformed, T —— i
R = > W
It exerts a force proportional to _,_._ : _—
this deformation, and tries to — = i =
get back to its natural state, == s .f - .FCJC d ¥
— - k= Spring Constant
S o d = Damping coefficient
~— ..—_ x=Extensionof the spring
..._'i_‘j e I= Force exerted by spring on its ends
o = v=velocity of motion of the end point
— e

Solving problems: The hard way Continuous Simulation

* 4% grder Runge-Kutta:
Assurne the initial value prokdem:
¥y, and vty <ye
Then, the numerical solution is given by:
Fota Fn (R0 2kt 2yt 3y 1y

Here k;kyk; and k, are slopes at the
beginning, middle and end of the
interval ‘k'. These slopes are averaged
by giving higher weights to the slopes
atthe middle.

20

ks it possible to simulate continuous physics on 3 computer?
MNewton's Laws: v+ a®f
Simply calculate the values of v a.n;# .s:.“and- keep incrementing ¢
by the required time scale,
lsn't this simpler?
It is simpler, bat with these problerms:
1. Chosed form solution needed for the system.
2. How do we handle discontinuities in space?

—

3 e
w(t) = y/od + (vofe}? sinfet + tan~! %] ‘:ﬂ:;mf"“

Collision Detection

It irvohoes checking at esch time instant,
for overlapping or intersecting objects.

Broad Phase:
Here, each object s approximated by
A "Bounding Box®, These bawes arg
chedoed repeatedly for distance
betweon each other and overfaps.,

Narrow Phase:
The position of sach point is tracked
with respect 1o each wall. When the
point gets too close to the wall, or ks
going to cross it, a collislon oocurs,

Dots and crosses

A refresher on Vector basics:
Let vl and v2 be vectors in 30 space.
Thiey have components in x, y and 2 axes,

Dot Product:
vix T vl +
vig " vy
wlz®wle

Cross Product:
x=vly* vilz-wvlz"viy
yewlz®* vix-vin® iy =)
T=vla * vily-wily ® vilx

Inverse Kinematics

Slides

Restitution and friction
Handling Collision:

Step 1: Separate the components of welocity
parafie! and perpendicular to the wall, Let

these components be W, and V.
ey Step 2 Muktiply V, by a Friction Factor,
T, Step 3: Multiply ¥, by a Restitution Factor,

Thie final velocity is the sum of these:

V.Aﬁ' P’P 'frkrrmu' ¥ F"., * resfiiulion

A simplified version of the Finite
Elgment Method can be used 0
simuiate soft bodies, that can
deform.

This technbgue Imolves
approximating the entire object a5
a mesh corsisting of seversl
nodes, each having mass, and
connected together by springs.

Scalar

Vector

Bibliography

Irvverse Kinemathos (1K) Is the process of determining the parameters

of & jointed flexible object {a kinematic chain) in order 1o achieve a

desired pose.

K technigues are
used in Robotics, to
move the armg
[joints) of a robot to
thie required pasition,

Inverse kinematics are
also relevant to garme
programming and 3D
animation.

= hitip e rmyphysicslab.com

* hitp:/fen wikiprdia ongfwikdNursercal_ordinany_ditierential_squations

= hitpfwesw hanveycariel o 1 atcrals LA himi fobject
crdlisiong)

= gy st oduycladses IMSED00A_Notefleok S PP ropinum, widad
Mrdstory himl {Findte Eleenend bethod)

= hittp:/fera ageta comy’ (Agets Phys SOK snd Hardeare- nitidia)

= hitpwses hareclk coenf (Havelk Physies Engine- Intel]
= hittp:/fwsw plesiunen tertainment. ocom)’ (Digital Molecular Matter)

21

