
1

Classical Physics Simulation

Seminar Report

Submitted in partial fulfillment of the requirements for

Seminar

of

VIII Semester BE (CSE)
(Visveswaraiah Technological University)

Submitted by

Sriram Kashyap M S

1MS04CS095

April 2008

M. S. Ramaiah Institute Of Technology
Department of Computer Science and Engineering

Bangalore-560054

2

Certificate

This is to certify that Mr./Ms. Sriram Kashyap M S, 1MS04CS095 has

satisfactorily completed the seminar on Classical Physics Simulation

prescribed by Visveswaraiah Technological University for VIII Semester

(CSE) in the year 2008.

Internal Guide Examiners :

1.

2.

3

Acknowledgement

I would like to thank Dr. V K Ananthashayana, Mrs. Anitha

Kanvalli and Dr. K G Srinivasa for the guidance and support they

provided during my preparation for the seminar. I would also thank

the faculty and support staff of the Computer Science department

of MS Ramaiah Institute of Technology, for their and support and

encouragement.

4

Abstract

Computers are widely used to simulate many physical, chemical and
biological systems. The simulation of classical physics on computers is one
such field of study.

Based on the applications, Physics simulations can either be non Real-Time
(accurate simulations) or Real-Time (approximate simulations).
This report deals with the basic issues that have to be handled for real time
physics simulations. ie: consumer level physics simulation software.

A further classification is based on whether the simulation is discrete or
continuous. Discrete simulations are offer more flexibility to the
programmer and are mathematically simpler, and therefore, a brief
introduction is given to continuous simulations and the topic of discrete
simulation is elaborated upon.

Basic properties of a physical system like position, velocity and forces are
modeled using vectors. Other scalar properties of a system like mass, friction
and restitution are also simulated.

Using the above ideas, a slightly more complicated system is constructed.
This is the Spring – Mass system. A spring with single free mass attached to
one end and one fixed end, is demonstrated. Then a generalized spring mass
system with multiple springs attached to multiple masses is also modeled
and demonstrated.

The concept of collision detection is introduced to deal with the simple case
of point masses colliding with line segments. An extension and optimization
of this technique, using a two-phase collision detection approach is also
introduced. This involves a coarse collision detection stage and a detailed
collision detection stage, for dealing with complex systems.

Finally, more advanced simulation techniques such as Finite Element
Method and Inverse Kinematics are introduced. Current trends in physics
simulation like dedicated physics hardware and physics engines are
discussed.

5

Contents

• Acknowledgements

• Abstract

1. Introduction : 06

2. Basic properties of Physical Systems : 07

3. Relation between the basic parameters : 08

4. Discrete Simulation : 09

5. Implementing the discrete simulation : 10

6. Spring Mass System : 11

7. Runge-Kutta Method : 12

8. Implementation of an RK4 solver. : 13

9. Complex Simulations using Spring-Mass Analogy : 15

10. Inverse Kinematics : 16

11. Conclusion : 17

12. Bibliography : 18

13. Slides : 19

6

Introduction

Computers are widely used to simulate many physical, chemical and

biological systems. The simulation of classical physics on computers is one

such field of study. The first electronic computer, the ENIAC was used to

calculate trajectories of ballistic missiles. These complex calculations

involved several parameters like density of atmosphere at different altitudes,

wind currents, the forces due to rotation of the earth etc, which cannot be

easily factored in during manual calculations.

These days, the major supercomputing applications are in fields like protein

folding, weather forecasting, crash testing for vehicles, wind tunnel

simulations etc.

Apart from these High Performance Computing fields, physics simulations

have found their way onto consumer level hardware like desktops and

mobile devices. Here the applications for physics simulations lie in

interactive environments like games, and also in new intuitive and highly

responsive interfaces like those found on the iPhone, and on the Beryl

window manager for Linux.

While some of these applications are non real-time, and demand a high

degree of accuracy, the consumer oriented physics simulations are often

real-time approximations of the actual physical phenomena. The remainder

of the report deals with real-time simulation of classical physics, with the

main application in interactive graphics.

7

Basic Properties of Physical Systems

A physical system has the following properties:

• Mass

• Position

• Velocity

• Acceleration

• Force

Out of these, acceleration is a derived attribute, because we can obtain the

value of acceleration given the force acting on the object and its mass, using

the equation :

F= M*A

The advantage of choosing force over acceleration is that force can be

directly applied to multiple objects.

Mass is represented as a scalar quantity and the remaining parameters are all

vector quantities in 2 or 3 dimensions (depending on the scenario).

Therefore, a point object can be represented in a user-defined data type as

follows:

struct vector{

float x,y,z;

}

struct pointObject{

 vector position,velocity,force;

 float mass;

};

8

Relation between the basic parameters

Force is equal to mass times acceleration:

F=M x a

Velocity is the first derivative of position.

dx/dt=v

Acceleration is the first derivative of velocity.

dv/dt=a

Integrating the above equation between the limits v=U and v=V, we arrive at
the relation:

V=U+at

This combined with the second equation, gives us:

x=Ut + 0.5 * a * t^2

These equations represent Newton’s laws of motion. They hold true for both
scalar and vector values of position, velocity and acceleration.

The differential equations described above can be used for discrete event
based simulation for physical systems.

Similarly, their closed form solutions can be used for a continuous
simulation of the system.

9

Discrete simulation

The discrete event simulation involves solving the differential equations
previously discussed, using numerical methods.

There are two well known numerical methods to solve such equations:

Finite Difference Method (Euler’s Method):

This involves approximating the definition of derivative of a function:

F’(x)=lim (h→0) [F(x+h) – F(x)] /h

The approximation involves dropping the limit on the above equation, to get:

F’(x)= [F(x+h) – F(x)] /h
F(x+h) = h*F’(x) + F(x)

This allows us to calculate the value of the function F at a new point (x+h),
when we know the value at x, and the value of F’ (the derivative) at x.

This can be applied to physics simulation as follows:

Consider Velocity (v) is a function of time v(t). Then, we have:

v(t+∆t)= ∆t * v’(t) + v(t).

We know that v’(t) = acceleration at time t.

Similarly, considering position as a function of time x(t), we have:

x(t+∆t) = ∆t * x’(t) + x(t).

Again, x’(t) is the velocity of the object at time t.

10

Implementing the discrete simulation

The above approximations for velocity and position as a function of time can

now be used, in conjunction with the force equation to implement a

simulation in any programming language. Consider the following C

implementation:

const int timeStep = 1;

while(1)

{

screen.clear();

 vector acceleration= object.force / object.mass;

 object.velocity = (timeStep * acceleration) + object.velocity;

 object.position = (timeStep * velocity) + object.position;

 object.draw(screen);

 sleep(timeStep);

}

Illustration with constant velocity, then constant acceleration:

11

Spring-Mass Systems

The behavior of a spring mass system is described by Hooke’s Law.

F=-kx

Here F is the force exerted on the mass by the spring, when an extension or

compression of x units is affected on the spring. The value k is the spring

constant. The natural length of the spring is l units. The mass of the object

attached to the spring is M. The other end of the spring is attached to an un-

yielding wall.

A modification of the above equation adds damping to the system. The form

of damping we use here is viscous drag, where the force is inversely

proportional to the velocity of the mass. A value d is the damping coefficient

and it is multiplied by the velocity to get the force. Therefore, the spring

mass equation becomes:

F=-kx -dv

To solve equations of the above type, ie: for oscillating systems, we need to

use a slightly more accurate solution for the differential equations. The Euler

method can cause the system to wildly oscillate out of equilibrium.

12

Runge Kutta Method: A Better Approximation

A problem with the finite difference method is that if the time step is large,

the method can produce some undesirable results. These results can manifest

even if the parameters like velocity, or acceleration are large. The system

tends to become highly unstable, even though in actual physical systems, for

the same parameters, the system would have been stable.

To mitigate these problems, another popular numerical method is used. This

is the fourth order Runge-Kutta method (RK4).

Let an initial value problem be specified as follows.

Then, the RK4 method for this problem is given by the following equations:

where yn + 1 is the RK4 approximation of y(tn + 1), and

The main advantage of this method is that the function value is

approximated halfway between the time intervals. This reduces any

problems caused by large parameter values.

13

Implementation of RK4 Solver

Below is the implementation of a Runge Kutta 4th order solver, which

simulates a damped one dimensional spring. The initial condition is the

extension of the spring mass system, which is given as input vars(0).

vars(1) and vars(2) are velocity and acceleration components respectively.

At each stage, a temporary output position, velocity and acceleration are all

calculated.

These values are stored in the inp() array, and passed as inputs to the next

stage of computation. The program calls the step method at each time

interval. The step method takes the current system state as input and returns

the changes in the respective state variables as output. The x() array stores

input variables position, velocity and acceleration, and the change() array

returns the change in position and change in velocity as its first 2 elements.

Public Const N = 2

Public inp(N) As Double
Public k1(N) As Double
Public k2(N) As Double
Public k3(N) As Double
Public k4(N) As Double
Public vars(N) As Double

Public Const springK = 1
Public Const springD = 1

' Runge-Kutta method for solving differential equations
' vars = array of variables
' N = number of variables in array

14

Public Sub step(stepSize As Double)
 evaluate vars, k1 ' evaluate at time t
 For i = 0 To N
 inp(i) = vars(i) + k1(i) * stepSize / 2
 Next i
 evaluate inp, k2

 For i = 0 To N
 inp(i) = vars(i) + k2(i) * stepSize / 2
 Next i

 evaluate inp, k3

 For i = 0 To N
 inp(i) = vars(i) + k3(i) * stepSize
 Next i
 evaluate inp, k4

 For i = 0 To N

vars(i) = vars(i) + (k1(i) + 2 * k2(i) + 2 * k3(i) + k4(i)) * stepSize / 6
 Next i
End Sub

Public Sub evaluate(x() As Double, change() As Double)
 change(0) = x(1)
 change(1) = -springK * x(0) - springD * x(1)
End Sub

15

Complex Simulations using Spring-Mass analogy

It is possible to extend the spring mass system as an approximation to more

complex physical systems like soft body dynamics simulations, and height

field based fluid simulations.

A system with multiple masses attached together in a mesh, by multiple

springs, gives the illusion of soft body physics. This method is similar to the

finite element method of simulating complex systems as a grid based

approximation.

The analogy can be taken even further to simulate a height-field of water, to

generate realistic waves that superimpose, and reflect off obstacles. This is

done by considering the height field to be a grid of nodes, equally spaced,

and connected to their neighbors by springs. When one of the nodes is

displaced, the neighbors also get displaced in an oscillatory manner due to

the springs connecting them. These oscillations travel throughout the grid

causing the height field to look like waves in water.

16

Inverse Kinematics

Inverse kinematics is the process of determining the parameters of a jointed

flexible object (a kinematic chain) in order to achieve a desired pose. Inverse

kinematics are also relevant to game programming and 3D animation, where

a common use is making sure game characters connect physically to the

world, such as feet landing firmly on top of terrain.

An articulated figure consists of a set of rigid segments connected with

joints. Varying angles of the joints yields an indefinite number of

configurations. The solution to the inverse kinematics problem is to find the

joint angles given the desired configuration of the figure (i.e., end effectors).

The general case has no analytic solution.

Inverse kinematics is a tool utilized frequently by 3D artists. It is often easier

for an artist to express the desired spatial appearance rather than manipulate

joint angles directly. For example, inverse kinematics allows an artist to

move the hand of a 3D human model to a desired position and orientation

and have an algorithm select the proper angles of the wrist, elbow, and

shoulder joints.

17

Conclusion

Computers these days are being used to perform increasingly realistic

simulations of physical phenomena. Even in the realm of physics

simulations, there are several branches apart from those discussed in this

report. Thermodynamics simulations involving behavior of materials under

stresses due to high temperature is one such field. Another is the field of

optics simulation for realistic graphics and rendering technologies. Graphics

algorithms that were once restricted to the most powerful workstations and

render farms, are now being used on desktop hardware in computer games

and other interactive simulations. Dedicated graphics hardware has fuelled

this movement.

Another upcoming area is that of dedicated physics hardware. Two of the

industry’s major players, Intel (which acquired Havok) and nVidia (which

acquired Ageia) are entering the physics hardware market in a big way.

Physics simulations are also seen on a smaller scale on day to day interactive

systems like the i-Phone. Modern desktop computing interfaces also have

the basic elements of physics integrated into them.

At a larger scale, the industry has great demand for physics simulations for

complex problems like weather forecasting, flight simulators, crash testing

of vehicles, testing of new materials and alloys, all of which serve to reduce

the cost of research, development and training.

18

Bibliography

• http://www.myphysicslab.com (Physics simulations as Java Applets)

• http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations

• http://www.harveycartel.org/metanet/tutorials/tutorialA.html (Collision

detection and handling)

• http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/num/wid

as/history.html (Finite Element Method)

• http://freespace.virgin.net/hugo.elias/models/m_ik.htm (Inverse

Kinematics tutorial)

Commercial Physics Solutions:

• http://www.ageia.com/ (Ageia PhysX SDK and Hardware- nVidia)

• http://www.havok.com/ (Havok Physics Engine- Intel)

• http://www.pixeluxentertainment.com/ (Digital Molecular Matter: Real

time FEM on desktop hardware)

19

Slides

20

Slides

21

Slides

