3D Reconstruction

R&D Project Manual

Sriram Kashyap M S
Roll No: 08305028

Under the guidance of

Prof. Sharat Chandran

Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Mumbai

2009

Table of Contents

1 Introduction

2 List of tools

2.1 Tmage Capture o e e
2.2 Pattern Finder e
2.3 Camera Calibration e e
2.4 Matrix visualizer e e e e e e e
2.5 Segmentation e
2.6 Patheditor e
3 Usage
3.1 Preparing the dataset L e
3.2 Basicoperation Lo e e
3.3 Troubleshooting e
3.4 Notes e

1

Introduction

This project involves capturing images of an object from multiple view points and building a 3D model
(the visual hull of the input images) out of it. This model will be further used to perform image based
rendering of the object from novel viewpoints.

The project augments the initial phase of the existing Image Based Animation framework. The
currently available system has been tested on synthetic inputs from rendered 3D scenes. The main goal
of the project will be to build an image acquisition system which will simplify the process of capturing
images of real-world objects and extracting 3D object information from these images.

The phases involved are as follows:

1.

Create a image capture setup: This setup will provide object images and corresponding calibration
images

Image Segmentation: The visual hull construction algorithm requires each image pixel to be binary-
classified as background/foreground

Camera Calibration: Given a set of images with a calibration pattern in them, compute the camera
matrices corresponding to those views

System Integration: Modify the existing system so that it can seamlessly accept data coming in
from the above steps

This document describes the tools written as part of the reconstruction project, and the process of
using these tools.

2

2.1

List of tools

Camera Control(cam.o): Used to capture a sequence of images from any connected webcam
(streaming video device)

Pattern Finder(points.o): Used to locate calibration pattern features in a given image

Calibration Tool(cvCalib.o): Camera calibration tool, to generate camera matrices from point
correspondences

Matrix Visualizer(render.o): Visual representation of generated camera matrices (a manual verifi-
cation tool)

Segmentation (segment.o): Background subtraction utility

PathEditor (patheditor.o): Modified 3d reconstruction and relighting tool

Image Capture

Usage: ./cam.o <number of images> <delay(sec)> [width] [height]

1.

The captured images will be output to the current directory, with sequential 3 digit names (000.png,
001.png...)

The delay can be fractional. For example, 1.5 is a valid number

The delay is only the minimum delay between capture of frames. If the capture device is slow, the
actual time between frames can be longer. It is advisable to set this depending on how fast the
actual camera is, so that the time between each frame is constant.

4. The width and height are only indications of desired capture dimensions. The camera can choose to
ignore these values if it does not support them. In such cases, a fallback resolution is automatically
chosen by the camera driver (usually 640x480)

2.2 Pattern Finder

Usage: ./pattern <inputfile> [mode 0/1...] [debugmode 0-2] [threshold 0-255]

1. inputfile: The first line of this file contains the name of the image file to be read. Remaining lines
can contain other data depending on the mode

2. mode: Mode 0 is default calibration mode. It is no longer used. Any number greater than zero
specifies the number of calibration squares to search for. This project uses 64 as the mode param-
eter. In this case, the program outputs the (x,y) positions of the centers of black squares in the
image

3. debugmode: 0=Silent mode, 1=Basic debug mode, 2=Full debug mode
4. threshold: Starting threshold for finding boxes. Not required (default 0)

5. Other Inputs: color.conf: This conf file should be present in the same directory as pattern finder,
and contain 3 RGB values (9 integers). The first 3 numbers denote RGB values of the black squares,
the next 3 numbers denote RGB colors for red boxes, and the next 3 numbers denote RGB colors
for green boxes. Note that the names black, red and green are used for convenience and the colors
need not actually be these values.

2.3 Camera Calibration

Usage: ./cvCalib.o <2d-datafile> <3d-datafile> <numPoints> <numImages> <width> <height>

The output is a list of numImages number of camera matrices (3x4) followed by a 3 component
inverted view vector each.

1. 2d-datafile: Contains 2d point values (x and y separated by spaces/newlines) for N images

2. 3d-datafile: Contains corresponding 3d point values (x and y separated by spaces/newlines). These
values are same for all images.

3. numPoints: Number of points specified in the 3d-datafile
4. numImages: Number of images for which 2d points are specified in 2d-datafile

5. width and height: Width and height of input images from which 2d-Datafile was generated

2.4 Matrix visualizer

Usage: ./render.o <numMatrices>

This tool renders a square centered at 0,0 and of 2 units length, using a list of camera matrices
specified in a datafile named “camlist”.

The numMatrices parameter specifies how many matrices should be rendered. To render the next
matrix, set focus on the render window and press any key.

Note that this tool takes as input the matrices generated by the calibration tool. Therefore, it assumes
there will be 3 extra numbers after every 12 numbers (view vector is attached to each 3x4 matrix). These
3 numbers should be there, and will be ignored.

2.5

Segmentation

Usage: segment.o <RGB threshold> <CbCr threshold> <foreground Ratio> [list of images]

This tool subtracts the image 'back.png’ (which is assumed to be present in the current directory)
from the list of images and generates images with transparent backgrounds, each suffixed with “.seg.png”.

1.

2.6

RGB threshold: Specifies starting threshold for pixel difference based on RGB values (typically 30,
can be zero if foreground Ratio is known)

CbCr threshold: Specifies starting threshold for pixel difference based on CbCr values (typically 5
to 10, can be zero if foreground Ratio is known)

Foreground Ratio: Maximum ratio of number of foreground pixels to total pixels in image. Use
this to adaptively segment the images. If the ratio is unknown, set it to 1, and experiment with
various values of RGB and CbCr thresholds to find the ratio.

List of Images: paths to images that should be segmented. The segmented output images have
suffixes as described above, and are created in current directory. The background pixels in these
images have alpha =0, remaining pixels have alpha=1.

Patheditor

This section describes internal changes to the patheditor tool. For full documentation, refer to the
original patheditor manual.

The input format for dataset file has changed. Earlier, the dataset contained a list of xyz coordinates
of the cameras. Now it contains 15 floating point numbers delimited by spaces/tabs, per camera. The
first 12 numbers are the 3x4 matrices for the cameras and the next 3 numbers denote the inverted view
vector of the camera (approximating the position of the camera).

3 Usage

3.1

1.

Preparing the dataset

Capturing N images of calibration pattern and N corresponding images of the object (use cam.o as
described above)

. Place the calibration images under

data/<dataset name>/cam/
Place the object images under
data/<dataset name>/obj/
Create a file
data/<dataset name>/dimensions
which contains the visual hull resolution (points/unit distance), and the starting and ending values

of x, y, z for the bounding box surrounding the object to be reconstructed. Refer to the patheditor
manual for more information.

3.2

3.3

Create a file
data/<dataset name>/color.conf

which contains the color values as described in the Pattern Finder section

Create a file
data/<dataset name>/back.png

which contains the background image to be used for background subtraction. Note that all the
images in cam directory, obj directory and the file back.png must have same dimensions, and must
be png files.

Basic operation

Execute
./run.sh <dataset name> all <threshold ratio>

where dataset name is the name of the directory inside “data” directory, under which the dataset
is stored, “all” denotes that all processing should be performed, and Threshold ratio is as described
in the segmentation section.

After processing, the script will output a line: “dataset file: ...”. This is the path to the dataset
file which will be required for the patheditor tool.

The patheditor will automatically be launched. Select the perspective view, press “h” key, and
follow the instructions to generate a visual hull.

Troubleshooting

Sometimes, the visual hull obtained by the above process can be grossly incorrect. To fix this follow the
steps detailed below:

1.

Run
./camtest <dataset name>

This will start up the matrix visualiser. Check manually whether each matrix is behaving as
required. Note down the sequence numbers of each incorrect matrix (these numbers are displayed
in the console).

Open
data/<dataset name>/passed.txt
This file contains a list of valid calibration images. Remove those sequence numbers that were

found to be incorrect in the previous step. Remember that the sequence numbers obtained in
previous step are zero based.

Open
data/<dataset name>/matrices.txt

Delete those lines in this file that correspond to the sequence numbers of the incorrect matrices.
Note here that the line numbers usually start from 1, while the sequence numbers are Zero based.

Now run

./sequence.sh
./dataset.sh

to re-select the images and re-generate the dataset file.
Run
./run.sh <dataset name>
Note that the “all” parameter is missing. This means the entire process need not be repeated.

Only the patheditor is restarted and visual hull construction can be performed as specified in the
last step of “Basic Operation” section.

Notes

1. To generate color.conf file, open any calibration pattern image in a picture editor, pick the red and

green colors and check for their RGB values. Note that if you have black squares, it is best to
ignore the actual RGB value and specify it as 0 0 0 in the color.conf file.

To generate back.png, the normal method is to take an image of the setup without any object on
the turntable. But this may produce washed out results depending on the camera. An alternative
method is to open an image which has the object + background in a image editor and use the clone
tool to manually remove the object. This is found to be simple and effective.

