Calibrated Image Acquisition for Multi-view 3D Reconstruction

Sriram Kashyap M S

Guide: Prof. Sharat Chandran

Indian Institute of Technology, Bombay

April 2009

< ∃⇒

Given pictures of an object, how can I place the object in a virtual environment?

프 🕨 🗉 프

Given pictures of an object, how can I place the object in a virtual environment?

2

Traditional Graphics

- Render a 3D world on a 2D screen
- The world is authored using modeling tools, by artists

< ≣ ▶

Traditional Graphics

- Render a 3D world on a 2D screen
- The world is authored using modeling tools, by artists

.≣⇒

Sriram Kashyap 3D Reconstruction 4/42

< 🗗

★ E ► < E ►</p>

æ

Monocular reconstruction

Salzmann et al. Local deformation models for monocular 3D shape recovery. CVPR 2008

Sriram Kashyap 3D Reconstruction 4/42

<ロ> (四) (四) (日) (日) (日)

Stereo Reconstruction

http://www.cs.washington.edu/homes/indria/project/CSE576finalproject/

< 臣 > < 臣 > □

3

Multi-view Reconstruction

vision.middlebury.edu

n 6/42

・回 と く ヨ と く ヨ と

æ

- Given a camera, a silhouette defines a back-projected generalized cone that contains the actual object
- Each camera gives us one such generalized cone
- The intersection of these cones is the Visual Hull

- Given a camera, a silhouette defines a back-projected generalized cone that contains the actual object
- Each camera gives us one such generalized cone
- The intersections of these cones is the Visual Hull

- Given a camera, a silhouette defines a back-projected generalized cone that contains the actual object
- Each camera gives us one such generalized cone
- The intersections of these cones is the Visual Hull

- Given a camera, a silhouette defines a back-projected generalized cone that contains the actual object
- Each camera gives us one such generalized cone
- The intersections of these cones is the Visual Hull

Simulating multiple cameras

- Object is placed on a turntable
- Camera is fixed
- Camera captures frames as the table rotates

Issues in visual hull construction

- Image segmentation: Obtain silhouette information from images
- Camera calibration: Find the camera projection matrix for each camera

Segmentation

Background Subtraction

- Capture object and background images
- If background and object image pixels are similar, mark pixel as background
- Similarity tests performed in RGB and YCbCr color spaces

Segmentation

Background Subtraction

- Capture object and background images
- If background and object image pixels are similar, mark pixel as background
- Similarity tests performed in RGB and YCbCr color spaces

3D Reconstruction

Sriram Kashyap

13/42

Segmentation

Segmented image

< 日 > < 四 > < 回 > < 回 > < 回 > <

æ

- We are using a webcam
- Camera exposure, white balance, noise, compression artifacts
- What is the correct threshold value? This may vary from image to image

Adaptive thresholding

Can we provide more information to the system?

< ∃⇒

< ≣ >

2

Can we provide more information to the system?

- Ratio of object pixels to total number of pixels remains within certain bounds
- Provide the expected upper bound for this ratio

Can we provide more information to the system?

- Ratio of object pixels to total number of pixels remains within certain bounds
- Provide the expected upper bound for this ratio
- Start with a low threshold value
- Increase the threshold till the ratio is below this upper bound

Adaptive thresholding

Sriram Kashyap 3D Reconstruction 17/42

Camera Calibration

Calibration

Find the projection matrix corresponding to each camera view

イロン イヨン イヨン

3

Camera Calibration

Calibration

Find the projection matrix corresponding to each camera view

- Find a set of 2D to 3D point correspondences
- Use existing tools to compute matrices from these correspondences

< (T) >

< 注→ < 注→

Point Correspondences

Point Correspondences

Calibration Pattern

イロト イポト イヨト イヨト

æ

- Feature to find: Centers of black squares
- Centers are easier to find and more robust against errors
- Fix an absolute ordering of boxes
- Use colored boxes to find orientation
- Thresholding to locate the boxes
- Find centers of these boxes

Calibration Pattern

æ

Black threshold, first pass

Black threshold, second pass

Sriram Kashyap 3D Reconstruction 24/42

Green threshold, first pass

Sriram Kashyap 3D Reconstruction 25/42

Green threshold, second pass

Sriram Kashyap 3D Reconstruction 26/42

Green threshold, final pass

Labeled calibration pattern

Camera Calibration

- In some cases, the algorithm may explicitly fail(vision is uncertain)
- Discard such views automatically

- In some cases, the algorithm may explicitly fail(vision is uncertain)
- Discard such views automatically
- In some cases, the algorithm may fail silently (returns an incorrect, but mathematically valid matrix)
- Cannot automatically discard such views, although tools can be written to help find bad views

Visualizing a camera matrix							
$\left(\begin{array}{c} 216.201\\ 36.6629\\ -0.69624\end{array}\right)$	634.052 -52.2481 0.685745	-44.0839 394.727 -0.212142	3922.02 3119.24 12.13				

Sriram Kashyap 3D Reconstruction 30/42

Visualizing a camera matrix

(591.256	-313.573	-52.8837	3893.9	١
	-5.06723	-59.6318	-395.35	3148.67	
	-0.0399772	0.974564	-0.220515	11.9781	,

Sriram Kashyap 3D Reconstruction 31/42

Actual object

< 日 > < 四 > < 回 > < 回 > < 回 > <

æ

Reconstruction

Reconstruction

Sriram Kashyap 3D Reconstruction 34/42

Reconstruction

Reconstruction

Reconstruction

Reconstruction

・ロト ・回 ト ・ヨト ・ヨー

Reconstruction

Reconstruction

(ロ) (回) (E) (E) (E)

Future Work

- **1** Better calibration using optimization techniques
- 2 Textured rendering of visual hull
- 3 Image based Relighting support

References

- OpenCV camera control and calibration: opencv.willowgarage.com/
- Image based Animation: http://www.cse.iitb.ac.in/ biswarup/projects/Motion/