
3D Reconstruction

R&D Project Report

Submitted by

Sriram Kashyap M S

Roll No: 08305028

Under the guidance of

Prof. Sharat Chandran

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai

2009

Abstract

Traditionally, the input to the graphics system is a scene consisting of geometric primitives, their

material properties and the light sources. These scenes are usually generated using a 3D modeling

package. Often, it is desirable to be able to directly import an existing real object into the virtual

world. One method is to use expensive hardware such as a 3D scanner to extract 3D information.

This project explores the alternate solution to this problem, namely 3D reconstruction using images

captured by cameras.

The goal of this project has been to develop a system which can capture the 3D information

about a given object, using image based methods. This involves capturing images from multiple

viewpoints, calibrating the cameras used for capturing the scene, segmenting the background from

the foreground object in the images captured by the camera, and providing these calibrated images

as input to a visual hull construction system to extract 3D information.

i

Acknowledgement

I thank my guide Prof. Sharat Chandran for his invaluable support and guidance. I thank Biswarup
Choudhary for his insightful suggestions and continued support. I also thank the VIGIL community for
their support, and the SPANN Lab for providing the turntable and motor controller.

ii

Table of Contents

1 Introduction 1

2 Verification 1

3 Capture setup 1

4 Image Segmentation 3

5 Camera calibration 4

5.1 Point correspondences . 4

5.2 Calibration . 6

6 Testing 7

6.1 Toolchain . 7

6.2 Synthetic data . 7

6.3 Real data . 8

7 Future Work 9

8 Conclusion 10

9 References 10

iii

1 Introduction

This project involves capturing images of an object from multiple view points and building a 3D model
(the visual hull of the input images) out of it. This model will be further used to perform image based
rendering of the object from novel viewpoints.

The project augments the initial phase of the existing Image Based Animation framework. The
currently available system has been tested on synthetic inputs from rendered 3D scenes. The main goal
of the project will be to build an image acquisition system which will simplify the process of capturing
images of real-world objects and extracting 3D object information from these images.

The phases involved are as follows:

1. Verification of existing code base: Test the existing visual hull creation system using available
datasets

2. Create a image capture setup: This setup will provide object images and corresponding calibration
images

3. Image Segmentation: The visual hull construction algorithm requires each image pixel to be binary-
classified as background/foreground

4. Camera Calibration: Given a set of images with a calibration pattern in them, compute the camera
matrices corresponding to those views

5. System Integration: Modify the existing system so that it can seamlessly accept data coming in
from the above steps

2 Verification

The first phase involved verifying that the existing system works for other datasets (and not just for those
created by POV-Ray). To do this, I familiarized myself with the existing codebase and user interface. I
imported datasets from a previous 3D reconstruction project and tested if the resulting 3D models were
convincing. Certain assumptions of the original codebase were no longer valid and were rectified. The
most major of these was the assumption that images are taken by moving the camera on the surface of a
sphere of fixed radius around the object. This was modified to allow arbitrary distance between object
and camera.

The knight dataset is a computer generated set of 8 images of a chess knight. The temple dataset is
a set of 16 images from the TempleRing dataset of the University of Middlebury. Both datasets contain
images at a resolution of 640x480.

The results from this reconstruction test are shown below. The reconstructed images are simply point
models and do not contain texture information. The colors seen in the reconstructions here and through
the rest of the report are due to the color coded visualisation of 3d data. The R,G,B components of the
3d points vary with their X,Y,Z coordinates, thereby providing a sensation of depth.

3 Capture setup

The capture setup is an acquisition system for taking images of an object from various viewpoints. It
was decided that we would require a mechanized turn table to make the object rotate at regular intervals
of time. This turntable has been procured from the SPANN lab of the Electrical Dept.

A camera is mounted on a tripod at a fixed height and distance from the table. The table and the
background are covered with a uniform colored diffuse surface (sheets of paper). Ambient lighting is

1

Figure 1: Image acquisition setup

achieved by using flood lights reflected off thermocol sheets from behind the camera. This ensures that
most of the shadows are behind the object and do not show up in the captured images.

A complication that occurs due to the light source behind the camera is that the camera and tripod
now cast diffused shadows on the table surface. To prevent this from causing any problems, a set of basis
images are taken without the object on the table, so we can assume that the camera shadow is now part
of the background.

The desirable features of a camera are:

1. Manual Exposure: Auto exposure causes unexpected intensity variations between views

2. Unlimited burst mode: The ability to take images at regular intervals of time, continuously

3. Resolution: A resolution of greater than 2 mega pixels is desirable, but in practice, even 640x480
is seen to provide acceptable results

The camera used is a Logitech QuickCam Pro 9000 webcam. The disadvantage of using a webcam
is that image quality is much lower (but it is still acceptable for our purposes). The major advantage is
that the camera can be fired by wire (over USB). This means that a script can be written to control the
camera, thereby obtaining greater precision in timing.

To fire the camera at regular intervals of time and save the captured images, OpenCV’s camera toolkit
has been used. OpenCV 1.1 supports setting of camera capture resolution, due to which it was possible
to capture images at low resolutions (640x480) as well as high resolution (960x720).

The turntable is controlled by a stepper motor controller and rotates based on an internal clock which
can be manually configured using a dial on the controller. A marker has been placed on the turntable
axis to specify a standard initial configuration before the start of any capture process.

A note on camera exposure and white balance: Although the webcam used for the experiments
supports manual exposure and white balance, the tool used for image capture may not support these
features. While Logitech’s own tool supports them, a third party tool like OpenCV’s image acquisition
system does not support these custom settings. In such cases, drastic variations in color can be noticed
as the contents of the scene change. This was overcome to some extent by introducing a bright white (or
colored) strip in a corner of the image, as part of the static background. Adding such a feature to the
background ensures that even if no object is placed in the acquisition setup and only the background is
visible, it will not desaturate the image.

2

Figure 2: Image acquisition setup

4 Image Segmentation

Segmentation involves separating the background image from the foreground object. The existing recon-
struction module expects 32 bit png input, with an alpha channel per pixel, which denotes whether the
pixel is background (alpha=0) or not. To do this, I capture a background image which do not contain the
object. This background image is compared pixel by pixel with the images containing the object. Various
criteria that can be used to label a pixel as background have been explored. The simplest form of thresh-
olding is RGB thresholding where RGB components of source and background images are compared and
a threshold is applied. This works well except for the shadow regions near the base of the object. Note
that although there are no hard shadows cast by the light source, shadows appear due to lesser ambient
light at contact points (where the object meets the table). To fix this, an additional threshold function
based on HSV color space was explored. This idea has been discarded because jpeg compression tends
to make the Hue and Saturation very noisy. Instead, it has been found that thresholding on Cb-Cr
components of the image can remove some of the shadow regions.

Note that in the images below, this method is not able to fully remove shadow artifacts near the base
of the object. This is not expected to cause problems in the final reconstruction due to the nature of the
volume intersection operation performed during Visual Hull construction from Silhouettes.If the shadow
artifacts are sufficiently noisy, in the final reconstruction, their effect will be greatly reduced. Testing
with real data has shown that in most cases, a few small patches of spurious 3d data crop up in the final
reconstruction if the segmentation incorrectly marks a few regions of background as foreground. This is
more acceptable than the case where foreground pixels are marked as background, and the entire object
volume gets chopped off at that point. Therefore, the basic idea followed for segmentation has been to
optimistically label pixels as foreground.

The real data tests also showed that varying exposure levels and lighting conditions can drastically
change how the scene looks in different views. This means that a single threshold value is not sufficient
for segmentation. Therefore, we need to vary the threshold adaptively based on the input image. To
do this, the expected ratio of number of foreground pixels to background pixels is sent as input to the
application. This remains relatively constant throughout the process and can be obtained by testing with

3

Figure 3: Original frog image and RGB thresholded image

Figure 4: HSV Thresholding and Cb-Cr thresholding

a sample input image. The algorithm starts off with an initial threshold and iteratively segments the
image, while increasing the threshold in each iteration, until it obtains the expected ratio of foreground
to background pixels.

5 Camera calibration

5.1 Point correspondences

The first step in camera calibration is to find a set of point correspondences (between image and object
spaces). This requires us to capture perspective distorted pictures of a known image and process it to
find features on it that correspond to the actual pattern. This provides us with point correspondences.
It is necessary to find a pattern that works well in practice. The typical calibration pattern is an NxN
chessboard pattern. This will not work for our case because there are situations where the entire pattern
will be inverted. Distinguishing between the pattern and its 180 degree rotated version is hard while
using the chessboard pattern. Therefore, I made a custom pattern with 8x8 black squares, and 2 red
squares (corner markers) for alignment (for example, to find our bearings when the entire pattern is
rotated by 90 degrees). The idea was to get the centers of these 64 black squares and use them for
calibration.

4

Figure 5: Non adaptive and adaptive thresholding for segmentation

To locate the black squares, I used a technique where the axis (the line joining the centers of the red
boxes) would be swept perpendicular to itself, across the board. Each time the axis is shifted by a small
amount, we check how many new boxes have been crossed by the line. If 8 new boxes have been crossed,
we mark that as a column.

Figure 6: Calibration pattern

The problem with this technique, as was seen in later experiments, is that it does not take into
consideration the fact that the entire board has been distorted by a perspective projection. This means
that, after a while, the sweeping axis would gather eight boxes, that do not actually belong to the same
column. So we may have the first 7 boxes from the first column, and the first box of the next column,
while totally missing the last box of the current column. The problem caused by perspective distortion
is that sweeping the axis along a vector perpendicular to it in image space is wrong. The vector that
is perpendicular to it in object space, has been prespective distorted and in image space, it is no longer
perpendicular to the axis.

To fix this problem, two more corner markers were added (in green color). This ensures that we can
locate and uniquely label all four corners of the board. It also means that we can now take into account
the perspective distortion. The sweeping axis is now no longer simply translated. Instead, consider two
primary axes, one formed by the red boxes, and another formed by the green boxes. The sweeping line
is obtained by linearly interpolating between these two axes.

The boxes in the image are identified by thresholding the image using the color of the box we are
looking for and identifying boxlike contours of the expected size. To check if a contour is boxlike, we look
at the ratio of its enclosed area to the area of its bounding box. More robust tests involve simplifying
the contour and checking how many edges the contour has. Another useful test is to check how close
these contours are to the edge of the screen, thereby eliminating outliers.

To identify the various features (red, green, black boxes), I generalised the algorithm so that it would
work with any color and any number of boxes. Thresholding for the boxes is based on the shape of the
histogram. Boxes of a particular color cause peaks in the histogram. This means that thresholding has to

5

Figure 7: Modified calibration pattern

be done at the valley just after the peak, so as to include that particular color of box in the thresholded
image. By evaluating the gradient of the histogram at each point, the algorithm directly jumps from one
valley to another thereby performing faster and more robust thresholding. This process can be improved
by smoothing out the histogram function before performing thresholding operations. Note that while
dealing with black and white images, this technique is accurate, but in the case of grayscale images, it is
an approximation.

Note that the feature that is recorded from these patterns is the center of each black box. This is
different from most other calibration approaches where corners of the boxes are sought. Recording for
the center of each box is more stable and hence was chosen over box corners.

5.2 Calibration

The previous step provides us with a set of point correspondences. To solve this system of equations
and get the projection matrix, the first method I used was the least squares technique, which would fit a
projection matrix to the observed data in a least squares sense. It involves calculating the pseudo inverse
of a matrix X as [(X ′

X)−1
X

′]. I found that this solution does not work for the current problem. The
least squares solver works when our input points lie on two or more different planes. Here, all the inputs
are on a single plane (z=constant). This caused the system to blow up and give either zeros or a very
large numbers in the matrix each time. I found that I could get reasonable re-projection accuracy if i
randomly perturbed the z values by small amounts.

The next method I tried was the pseudo inverse using SVD. It fixed the numerical instability issues
that came with constant z values in the input data. It turns out that the SVD method is more numerically
stable than the regular pseudoinverse techique. To make things better, openCV has already implemented
a SVD based solver for a system of linear equations (cvSolve). This not only ensured correct results, but
vastly simplified the code.

It turns out that these methods cannot be used to calibrate camera matrices in the current scenario
(planar points). The key idea here is that not all 3x4 matrices are calibration matrices. The least
squares method tries to fit a 3x4 matrix to a set of observed values. It does not take into consideration
the additional constraints that an actual camera imposes on the system. In this case, since all the
observed points lie on a single plane, z=0, the components of the projection matrix corresponding to the
’z’ coordinate were all near zero. Therefore, the Z coordinate was always being ignored, and all points
in the scene would be projected as if their Z component was 0.

The third method used to calibrate cameras is the OpenCV camera calibration function (cvCali-
brateCamera). It turns out that this method works well in practice, and can calibrate an entire array
of cameras at once. This means that if I have 100 images taken using the same camera from different
angles, cvCalibrateCamera can extract the intrinsic and extrinsic parameters of the camera all at once.
It takes about a minute now to calibrate all the cameras, once the 3D and corresponding 2D points for
each scene are fed into it.

6

Furthermore, to verify if the matrices that are obtained from cvCalibrateCamera truly what is ex-
pected, I wrote a simple voxel renderer which uses a given 3x4 matrix to render the scene. The disad-
vantage of using a 3x4 matrix is that we dont get the relative z values in image space. ie: there is no
easy way of implementing a z-buffer. But the application is sufficient to visualize what a given camera
matrix is actually doing.

As a final step, I also had to modify a part of the original code that took camera coordinates, and
allow it to take these 3x4 camera matrices that have been computed. One requirement of the system
that is not satisfied by just projection matrices is that we need relative positions of the cameras in world
space. The Image based animation system renders scenes by performing a near neighbour search to
find cameras approximately corresponding to a given novel view, and obtaining texturing information
for the novel view, from these nearby views. To allow this query, we have to pass 3 additional numbers
corresponding to the position of each camera in space. This can be approximated by flipping its view
vector and scaling it to the required distance at which new views will be generated.

6 Testing

6.1 Toolchain

I have written a set of shell scripts that will automate most of the steps involved in the system. They
take as input a set of calibration images, an equal number of object images (all named in alphabetical
sequence), a color config file that specifies the colors of the boxes in the calibration pattern, a background
image, and a file specifying the dimensions of the visual hull to be constructed. A single script invoca-
tion will perform the calibration and segmentation process, select those views that have been properly
calibrated and generate a dataset file for the visual hull construction algorithm.

6.2 Synthetic data

Techniques to capture images, segment them, capture calibration patterns and calibrate the camera setup
have been described in the previous sections. To test these tools, I chose to first develop a synthetic
data set where all parameters can be controlled, and no noise is present in the readings. I built a simple
3D model by displacing points on a sphere to make it look like a spiked shell. It is a fairly complex
model with sharp features and occlusion. I created a synthetic (animated) turntabe on which I placed
a calibration pattern and took a sequence of 27 images around 360 degrees. Then I captured images of
the 3D model. These files form the input to the tool chain. A set of shell scripts have been developed,
that will simplify the process of 3D reconstruction. The steps in the process of reconstruction are:

1. Extract an ordered set of 64 points from each calibration pattern

2. Pass these points to the camera calibration routine to get a set of 3x4 camera matrices

3. Run a segmentation pass on each image of the object to generate png images with the background
set to transparent

4. Create a dataset file with the matrices, the extents of the reconstructed object in 3d space, and
the paths to the segmented files

5. Run the visual hull generation routine on the dataset file to get the final reconstruction

7

Figure 8: Sample input image and resultant visual hull for spiked shell dataset

6.3 Real data

The next stage is to check if the system works for actual data captured by the webcam, with the object
placed on an actual turntable and lit by the indirect light source as described earlier.

One of the key problems is that the turntable has to be aligned to the exact same position while
starting calibration image capture, and object capture. Otherwise the 2 sets of images will not correspond
to each other and we will have wrong calibration data. To fix this, I used the simplest solution possible.
A marker is attached to the axle of the turntable, and another corresponding marker is attached to the
fixed base. Before capturing images, these markers are manually aligned.

Another problem faced here is that when the entire background consists of a single color(blue) sheet,
the camera tends to desaturate the image. Therefore, the background colors as seen when no object is
placed and when an object is placed, are very different. It turns out that the camera performs automatic
white balance and saturation control. So, when it sees only one color in the scene, it desaturates
everything so that the scene turns gray. This was a hurdle because I could no longer get useful background
images. To fix it, I placed a small white strip of paper just within the view frustum of the camera, so that
it would not perform such aggressive white balance. It works better now even without any object on the
table. Another possible solution to this is to set the camera to manual exposure(which may or may not
be possible depending on the camera). More simply, we can use the clone tool from any image processing
software to erase the object from one of the object images, thereby obtaining a good approximation of
the background image. This works very well in practice.

Once the data is obtained, the following process was followed:

1. Extract an ordered set of 64 points from each calibration pattern: This is one of the hardest
problems to fix. When a camera captures images, the colors as captured by the camera are very
different from the color that we perceive. I found that the thresholding functions were failing on
several calibration images. I introduced backtracking so that the threshold can be lowered if we
overshoot and find too many boxes. I also added an option of maximum distance between two
boxes, to prevent 2 parts of the same box from being labeled as 2 different boxes. This fixed
a lot of errors, but there are still problems with a few images. The system was automatically
able to extract calibration parameters for 86 of 89 images in this particular test. The remaining
patterns, for which correspondence information cannot be extracted, are discarded along with their
corresponding object images.

2. Pass these points to the camera calibration routine to get a set of 3x4 camera matrices: This
process works as long as the previous step does not produce erroneous results. Since there is no
simple check that we can perform to find out if the result of the previous step is valid, the output
matrices sometimes turn out to be erroneous. The simplest fix here is to build a tool that will
allow the user to visually verify each camera matrix before it is used to perform reconstruction. A
simple voxel renderer takes a file containing a set of calibration matrices as input and projects a
3D box using the matrices. This projected box is expected to rotate as the turn table rotates. If

8

in some cases the box seems to be out of place or distorted, or entirely missing, the user can delete
the calibration data corresponding to this matrix, and specify to the system that the corresponding
object image should be ignored.

Figure 9: Camera matrix visualisation

3. Run a segmentation pass on each image of the object to generate png images with the background
set to transparent: This step is hard because the camera keeps on adjusting the exposure and white
balance, drastically desaturating the scene in some images. This means that the background image
we are using to segment out the object is no longer truly valid. The key idea with segmentation
is that it should conservatively label pixels as background. This means that it is all right if a few
images have a lot of spurious data, but no image should be missing any data. Since the process of
finding a visual hull involves volume intersections, any random spurious data that is found in some
images will be discarded automatically.

Figure 10: Reconstructed visual hulls of frog dataset

9

7 Future Work

1. Better calibration using optimization techniques like bundle adjustment

2. Textured rendering of visual hull: Although the Image Based Animation codebase has been modified
to support textured rendering, this feature is currently not working and needs some debugging to
fix it.

3. Relighting: The relighting system requires images which have been captured under multiple lighting
conditions, from multiple view points. Currently, it is not possible to supply reliable lighting data
to the system.

8 Conclusion

The reconstruction process is mainly limited by the hardware and drivers. Better exposure and white
balance control will lead to better segmentation, which in turn will lead to more accurate reconstruction.

Another source of error could be slight errors in turntable positioning which eventually add up to
produce a significant negative impact on the result. A technique like bundle adjustment would help to
provide better results in this case.

Visual hull based algorithms require cameras to have good coverage of the hemisphere surrounding
the object. Otherwise, there will be observable differences between the actual object shape and its visual
hull. For example, by restricting ourselves to a single camera elevation, it can be seen that a short
protrusion behind the frog is present in the resulting hull, which is not part of the actual model. More
coverage is the obvious solution, but it can be hard to calibrate the cameras for situations where camera
elevation is too low (and the pattern will almost not be visible).

Further, no view samples are available for the object from the lower hemisphere. This can cause
problems in the animation system, because even though the visual hull assumes that the bottom surface
is flat, since we have no camera samples for the bottom surface, the rendering algorithm will be forced
to output some default colour for such surfaces.

9 References

1. OpenCV camera control and calibration: opencv.willowgarage.com/

2. Image based Animation: http://www.cse.iitb.ac.in/ biswarup/projects/Motion/

10

