
Splat Based Raytracing

M.Tech Seminar Report

Submitted by

Sriram Kashyap M S

Roll No: 08305028

Under the guidance of

Prof. Sharat Chandran

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai

2008

Abstract

Splat based raytracing refers to the use of raytracing techniques to visualise point models. Point
models have surfaces represented by unconnected points, rather than triangles. The use of triangles
for rendering is efficient as long as the model complexity is low, and each triangle contributes to a
significantly large area of the screen. As triangle based models become increasingly complex, the
individual triangles become smaller and smaller, till each triangle contributes to a single pixel on the
screen. At this stage, the overhead of using triangles to represent the model is unjustified. Point
based models are efficient alternatives for representing such complex objects because they do not
maintain connectivity information between primitives.

Raytracing is a rendering technique that simulates the behaviour of rays of light in a scene. It is
widely used in polygonal scenes to simulate realistic lighting models. The use of raytracing greatly
enhances the realism of rendered output. In this report, we discuss the concept of point models and
splats, and how existing raytracing techniques can be extended to splat based models. This includes
the construction of splats from point data and ray-splat intersections. We also examine how the
Phong shading model (Phong splats) can be used to improve the normal vector estimate at the point
of intersection.

i

Acknowledgement

I thank my guide Prof. Sharat Chandran for his invaluable support and guidance. I thank Rhushabh
Goradia for the long and insightful discussions we had on point based rendering and raytracing. I also
thank the VIGIL community for their support and suggestions.

ii

Table of Contents

1 Introduction 1

1.1 Point Based Rendering . 1

1.2 Raytracing . 1

1.3 Motivation . 3

2 Splat Generation 4

2.1 Splat Growth . 4

2.2 Splat Density . 5

3 Ray-Splat Intersection 6

3.1 Generating Octrees . 7

3.2 Ray-Splat intersection . 7

4 Surface Normals 9

4.1 Phong Splats . 9

4.2 Computing Normal Fields . 10

4.3 Blending Normal Fields . 11

4.4 Resolution Scaling . 12

5 Results 13

6 Conclusion 14

iii

1 Introduction

1.1 Point Based Rendering

In the recent years, the complexity of 3D model geometry has increased to a great extent. Though
triangles are currently the most popular display primitives, as geometry becomes more complex, the
triangles become smaller, until a point where the overhead associated with triangles is no longer justified,
given that they only occupy sub-pixel areas in image space.

Point sampled geometry refers to an object model that comprises entirely of points. This means
that rather than containing a continuous surface representation, the model has a set of discrete samples
(points) that represent its surface. Such point data can be acquired from 3D scanners and range finders.
Discarding edge (connectivity) information from triangle based models also provides us with point models.

Points as display primitives were initially popular in particle systems like smoke, fire and fluid ren-
dering. But it has also been proposed that points can be viewed as generalised primitives which can
represent arbitrary objects. Using points as rendering primitives was first introduced by Levoy et al
[2]. Later research aimed at efficient and high-quality rendering of complex models. Most recently,
various applications dealing with point-based geometry have been intensively discussed including shape
acquisition and authoring, high quality rendering, simplifiation, as well as shape editing. Techniques for
multi-resolution representation of point models [4], texture filtering for point data [7] and accelerated
rendering of point models using graphics hardware [1] have also been developed.

Figure 1: Point based (left) and splat based representation of a sculpture. Note that the splats are not
fully represented in the image, and for the sake of clarity, only about 20% of the splats have been shown
in the figure above. (Source: [6])

Pure point representations are discrete samplings of the input geometry and hence proper reconstruc-
tion filters have to be applied in order to enable hole-free rendering. Approaches applied in image space
simply render large points as squares or circles. Object space approaches use (disk-shaped or elliptical)
surface splats, quadratic or higher order patches to reconstruct the surface geometry. In this report,
we focus on techniques based on splats, which are flat circular surfaces of known dimension, color and
orientation. These splats can be seen as piecewise approximations of the surface of the object. Note that
even though each splat individually represents a surface, we have no global surface information about
the model. This is because each splat is independent of its neighbours, and is not connected in any way
with other splats. Thus, given two splats, we cannot decide with certainty, whether they belong to the
same surface or not.

1.2 Raytracing

Ray tracing is a technique for generating an image by tracing the path of light through pixels in an
image plane. The technique is capable of producing a very high degree of photorealism. It is capa-

1

n

(x,y,z)

r

Figure 2: Representation of a circular splat, with radius ‘r’, normal vector ‘n’ and center at (x,y,z)

ble of simulating a wide variety of optical effects, such as reflection, refraction, scattering and global
illumination.

Viewpoint

Image Plane

Object

Light
Source

Figure 3: Schematic representation of raytracing

In raytracing, rays are traced from the camera, through each pixel on the image plane, into the
object space. Each such ray hits an object, and either gets reflected, refracted or absorbed. The effects
of reflection and refraction can be simulated by recursively tracing these rays through the scene, a certain
number of times. The depth to which such recursion is performed is called the raytracing depth.

Figure 3 shows a ray (red line) emitted by the camera towards the image plane. This ray determines
what color is drawn at the pixel that it intersects on the image plane. The ray hits an object and
emits secondary rays called the reflection (red) and refraction (blue) rays. In case the object is purely
Lambertian (ie: it reflects light uniformly in all directions) and opaque, these rays are not cast. To
determine the illumination due to direct light at this point, a third type of ray, known as the shadow
ray (shown in black), is emitted. One shadow ray is emitted in the direction of each light source in the
scene. If this shadow ray is interrupted before it hits the intended light source, it means that the point
under consideration is not directly lit by that light source. The final color of the pixel is obtained by
blending the colors obtained by the reflected and refracted rays, and then modulating it with the light
intensity at the point.

2

Thus the basic raytracing algorithm can be written as follows:

• Send out primary rays from the camera position through the center of each pixel of the image onto
the scene

• Compute the intersection of the primary rays with the objects of the scene using ray-splat inter-
sections

• From the intersection points, send out secondary rays (shadow, reflection and refraction rays)

• Recurse reflection and refraction rays till ray-trace depth

Figure 4: Result of raytracing on a Point Model (Stanford Bunny). (source: [5])

1.3 Motivation

As mentioned earlier, as geometry complexity grows, the overhead of mainiaining mesh connectivity
information in the case of triangles becomes unacceptable. In such situations, it becomes easier to deal
with the simpler representation offered by point models.

Furthermore, there are several situations where points are inherently better model primitives than
triangles. For instance, objects like water, trees and smoke lend themselves to better point representations
than mesh representations.

Finally, 3D scanners and range finders naturally acquire point models. These scanned models tend
to have extremely high resolution, thus providing several million point samples over the surface of the
object. In such situations, again, it is better to retain the point based representation of such objects,
than to convert them to triangle models.

Given the simplicity of points and the growing complexity of the geometric models, it is useful to
extend rendering algorithms for photo-realistic image synthesis and physically based lighting simulation,
to point models. In this light, realistic shading models like phong shading have also been adapted for
use in point models. Further, techniques have been developed to allow raytracing of point based models,
thus leading to realistic shadows, specular effects and global illumination, which provide photorealistic
results.

3

2 Splat Generation

Point models by themselves cannot be rendered on screen, because points are zero dimensional entities.
To physically represent them on screen, we need to reconstruct the surface represented by these points.
The conversion of point sample data into surface splats with normal vectors and spatial extent, can be
considered as a surface reconstruction technique which generates a hole-free piecewise linear approxima-
tion of the input data. The surface splatting approach is based on computing a surface normal at each
sample’s surface point and a radial or elliptical expansion tangential to the surface. The generated discs
are the splats. They are supposed to overlap in order to cover the entire surface of the scanned object.
Another popular technique, the point set surface approach, is based on the moving least-squares surface
definition. The surface is locally reconstructed by fitting a polynomial to the sample points within a
small neighborhood surrounding a given point. The given point is projected onto an implicitely defined
polynomial surface. The point set surface is defined as the set of points that project onto themselves. The
splatting approach is much simpler in its mathematical formulation, but the point-set-surface approach
generates continuous surface representations. However, when looking into computation complexity, the
algorithms of splat-based approaches are much less computationally intense.

If each point is represented as a splat, we will have as many splats as there are points in the input
model. Typically, input models consist of millions of data points. As with any other rendering primitive,
the costs of rendering point models are proportional to the number of primitives that we use to represent
a given object. Thus, complexity reduction for point-sampled geometry is also important.

Let a surface S be given by a set of sample points P which are suffciently dense in the sense that they
form a representative sample of S. Then there exists a constant k such that fitting a least squares plane
to any point pi and its k nearest neighbors yields a reliable estimate of the surface normal direction at
pi. We denote by Nk(pi) the set of k nearest neighbors to pi measured by Euclidian distance and the
graph N = (P ; E) represents this non-symmetric neighborhood relation where the edge (i; j) belongs to
E if and only if pj ∈ Nk(pi). The actual distance di =‖ pi − pk ‖ to the kth neighbor can be used as an
estimate for the local sampling density. The graph structure of N can be computed effciently by using
a hierarchical binary space partition.

2.1 Splat Growth

Threshold

Figure 5: Splat Growth

Starting with a seed point pi we first estimate the local normal direction ni by fitting a least squares
plane to pi and its k nearest neighbors. Then we grow the splat by adding neighboring sample points in
the order of their projected distances to pi. For each new point pj we compute the signed distance

hj = nT
i (pj − pi) (1)

and the growing stops as soon as the error becomes larger than a predefined threshold, ǫ. The center of

4

the splat is then set to

ci = pi +
hmin + hmax

2
ni (2)

where hmin and hmax are the minimum and maximum projected distances of points from the splat. The
radius is set to

ri = (pj − ci) − nT
i (pj − ci)ni (3)

where pj has the largest projected distance before the prescribed error tolerance is violated. The splat
growing procedure can be implemented quite efficiently by breadth first traversal of the neighborhood
graph N .

After a maximum circular splat ti seeded at the point sample pi is generated, it is optionally possible
to continue the growing procedure into the minimum curvature direction to obtain an elliptical splat
which better adapts to the local anisotropic surface curvature while still keeping the error tolerance. In
addition to the center ci and normal ni we need two tangent vectors ui and vi representing the major
and minor axes of the elliptical splat.

2.2 Splat Density

The number of splats that needed to cover the surface depends on the value of ǫ, the error threshold.
However, since each splat represents a collection of points, the number of splats should ideally be much
lesser than the number of points. Identifying which splats should be generated and how many should be
generated is not a trivial task. Wu and Kobbelt [6] point out that generating a set of splats that cover
all points of P does not suffice, as there may still occur holes in areas between the points. They propose
to first use a greedy approach to find a set of splats that covers the surface and then relax their positions
to generate redundant splats that can be removed. A simpler approach is proposed by Linsen et al. [3],
based on the relative distances to the splat centers. Let Sj be the splat that covers the point pi and
its k nearest neighbors q1...qk, sorted by increasing distance to pi. To not generate holes in the surface,
these k nearest neighbors should also include all natural neighbors of pi. If the natural neighbors of one
of the points ql, l ∈ {1...k}, are also among the k nearest neighbors of pi, no splat needs to be generated
starting from ql. The smaller the distance of a neighbor ql to point pi is, the higher are the chances that
the natural neighbors are already among the neighbors of pi.

Inactive Points

Active Points

r

kr

Figure 6: Splat Density Control. Points labelled as inactive have already been covered and no splats will
be generated at these points.

This leads to the following criterion: If splat Sj is generated starting from point pi, then no splats
need to be generated starting from points within the projected distance krj from the splat center, where
k ∈ [0, 1] is a factor that defines the percentage of the splat’s radius used for the criterion. The factor k is
globally defined for all points. The resulting factor krj varies from point to point because rj is different
at each point. The optimal choice for k is a value such that the generated splats cover the entire surface
and have minimal overlap. Such an optimal choice is hard to determine, but it is possible to find a value
such that the generated splats cover the surface with acceptably low overlap.

5

3 Ray-Splat Intersection

The fundamental operations in Raytracing include:

• Ray-surface intersection

• Reflection/Refraction based on surface normal

Ray splat intersection involves identifying the splat that is hit first by a given ray. The brute force
approach to this problem involves computing the point along the ray where each splat intersects the ray,
and based on the distance of these intersection points from the ray origin, choosing the splat which first
intersects the ray. This ray-splat intersection test has to be performed for each ray from the camera
(atleast one for each pixel in image space), for all the recursively generated rays (due to reflection and
refraction), and to find out which light sources are directly affecting a given point (shadow rays). This
process turns out to be inefficient when dealing with the large datasets of complex point models.

In order to process computations of ray-splat intersections efficiently, we use an octree for storing the
splats. An octree is a three dimensional tree data structure in which each internal node has up to eight
children. Octrees are most often used to partition a three dimensional space by recursively subdividing
it into eight octants.

Octrees can be used to accelerate the ray-splat intersection tests as follows. Each splat is inserted into
a leaf node of an octree. The ray intersects with the root node of the octree. The leaf node corresponding
to this intersection can be computed in O(log(n)) where n is the number of levels in the tree. In a given
leaf node, only a small fraction of the total number of splats needs to be checked for intersections with
the ray. This is better than checking each splat for intersection with the incident ray.

Octree of Splats

Image plane

Ray

Viewpoint

Figure 7: Ray-Splat intersection accelerated by an Octree

6

3.1 Generating Octrees

The algorithm to populate an octree with the given splats is as follows:

• Start with an empty octree which is the bounding box of the entire scene

• Iteratively insert each splat into that leaf cell that contains the center of the splat

• When one leaf cell contains more than the predefined maximum number of splats, the cell gets
subdivided

• After the entire tree is built, insert the splats into all leaf cells they intersect

The first three steps of this algorithm will build an octree where each splat belongs to exactly one
leaf node. This leaf node contains the center of the splat. But as it can be seen in figure 8, in several
cases, a splat can span multiple octrees. In such situations, if we do not add the splat to each leaf that
it spans, the rendered output will have several artifacts and holes in it.

The final step in the algorithm ensures that once the basic octree has been developed, each splat is
checked against every leaf node in the tree, and in case of intersection, the splat is added to that leaf node
as well. This means that, after the algorithm completes execution, each splat may belong to one or more
leaves in the octree. This ensures that all ray-splat intersections are properly detected and computed.

Figure 8: (a) Splat spanning multiple leaves of an octree. (b) and (c) represent the cases where the
leaf-splat intersection test succeeds and fails respectively. (source: [3])

The exact test for whether a circular splat intersects a given leaf node can be computationally intensive
to perform. A proposed simplification is that we can approximate the circular splat by a bounding square.
The four corners of the square can now be tested against each face of the bounding cube of the leaf node,
to check whether the splat is to be included in the leaf.

3.2 Ray-Splat intersection

Once the entire octree has been built and populated by splats, the ray-splat intersection algorithm is as
follows:

• Each ray is tested for intersection against the root node

• Find the leaf cell at the point of intersection

• Check for splat intersections in this leaf

• If there are no intersections, move to next leaf in ray direction

7

• Else compute the precise intersection point with the splat(s)

The ray-splat intersection algorithm described does not work perfectly for splats. Specifically, two
common problems need to be handled:

• Rays can intersect multiple splats from the same surface. We need to choose which splat to consider
in such situations

• Reflected rays can intersect with overlapping sections of neighbouring splats from the same surface,
causing rendering artifacts

Figure 9: Cases where the basic ray-splat intersection algorithm fails. (source: [3])

The first illustration in figure 9 is an example of a situation where the ray intersects two neighbouring
splats, and both intersection points are very close to each other (indicating that they may be on the
same surface). The simplest solution here is to pick the splat which is intersected first, but it turns out
that the first intersection is very near the edge of the splat. The proposed solution is to pick that splat,
where the intersection point is closest to the center of the splat.

The second illustration refers to a situation where a ray, reflected from the surface of a splat, immidi-
ately intersects with another overlapping splat which belongs to the same surface. This causes rendering
artifacts because the splats are supposed to represent a smooth and continuous surface. To fix this
problem, all intersections within a distance ǫ of the ray origin are ignored.

8

4 Surface Normals

Raytracing involves shooting out secondary rays from the ray-splat intersection points. To identify the
direction in which these rays should be emitted, we need the surface normal at the intersection point.
But each splat has only a single normal vector, using the same normal vector for all points on the splat
surface is not desirable. It causes each splat to look flat. We can draw a parallel between this effect in
point models and triangular models.

The most basic shading model used in traditional rendering is Flat Shading. This means that a single
normal vector is used to light an entire primitive. As a result, the entire surface defined by the primitive
has the same color, and models tend to look blocky under such shading. A similar situation can be seen
in point models when using opaque splats with no blending.

An improvement over this model is the gourard shading model. Here, the color values are computed
at vertices of a triangle and the color at each point within a triangle is computed by interpolating these
colors. This causes the entire primitive to be filled by a gradient of color. This is similar to the effect
obtained by using gaussian blending in splats. Blending tends to create a color gradient between adjacent
splats, and smoothens out the output.

A further improvement in quality can be obtained by using the Phong shading model. Here, the
normal vector at each point on the primitive is approximated by interpolating nearby vertex normals.
This normal vector is used to compute the light intensity at the pixel. Phong splatting [1] extends this
idea to splat based rendering systems.

Figure 10: Comparision of Flat, Gourard and Phong Shading models used to shade the surface of a
sphere

4.1 Phong Splats

Finding the normal vector at a point p on the splat requires us to estimate the normal vector using the
normals of the input point data in the neighbourhood of p. The proposed technique is to use the input
point normals to estimate the parameters of a linear normal field over the splat. By evaluating the field
at any point on the surface of the splat, we can obtain the approximate normal vector at that point.

A Phong splat is defined by its center cj and two orthogonal principal tangent directions uj and vj.
The normal field Nj is specified by a center normal nj and two scalar values αj and βj . The normal of
a point q(u,v) on the splat Sj is: Nj(u, v) = nj + uαjuj + vβjvj.

To efficiently store the normal vector parameters, a slight modification is suggested, to the way a
normal vector is represented. Consider the splat surface S, and an imaginary plane parallel to S, at unit
distance away from S. Any normal vector from the center of S will intersect the imaginary plane at a
corresponding point (x, y, 1) as shown in figure 13.

This means that to represent any normal vector on the splat surface, we need only two parameters
(x, y), instead of the usual three.

9

Points

Splat with
Single Normal

Splat with
Normal Field

Figure 11: Building an approximate normal field on each splat, using the normal vectors of the input
points in that region

uj

vj
nj

(u,v)

(0,0)

Figure 12: Phong Splat

4.2 Computing Normal Fields

To calculate the normal field for a given splat, we need to fit a linear vector field to the normal vectors
of all the points that belong to the splat, in a least squares sense.

Let the center normal for the jth splat be nj = (xc, yc). Then, for any point pi = (ui, vi) on the
surface of the splat, the normal at this point is Nj(ui, vi) = (xi, yi). The vectors uj and vj are the
orthogonal basis vectors defining the surface of the splat. Using the above definitions, we can define a
linear model for the normal field at point pi on splat Sj as:

Nj(ui, vi) = nj + uiαuj + viβvj (4)

The above equation can be separated into two components, along the basis vectors uj and vj, and
can be written as:

xc + uiα = xi

yc + viβ = yi

10

(0,0,0)

n

(x,y,1)

Figure 13: Representation of normals: Each normal vector is represented by 2 parameters (x,y), formed
by intersecting the normal with an offset tangent plane

These equations are solved for (xc, yc), α and β in the least squares sense. The parameters xi, yi,
ui and vi are available for each of the N input points that belongs to the splat Sj . Since the system is
overdetermined, it can only be solved approximately.

4.3 Blending Normal Fields

Figure 14: Discontinuity in normal field due to overlapping splats. (source: [3])

When two splats Si and Sj overlap, the normal field needs to be continuous across the point of
intersection y shown in figure 14. The reason for this is that the value of the normal field as evaluated
on each splat will generally be different. If this situation is not handled, at every point where two splats
overlap, we will see artifacts in the form of a sudden difference in lighting. To prevent this, instead
of evaluating the normal field at a single splat, we evaluate the field for all the splats that the ray
intersects and perform weighted averaging of the results. The weight assigned to each splat’s normal
field contribution is proportional to the distance of the ray-splat intersection point from the center of
the splat. This intuition is formalised below:

Let S1, ...Sp be all the splats that are hit by a ray within a small environment ξ around the intersection
point. Let (u1, v1), ...(up, vp) be the coordinates of the ray intersection points. Let n1, ...np be the normals
at the intersection points. Then, the normal n at the intersection point is given by:

n =
Σp

i=1(1− ‖ (ui, vi) ‖2)ni

Σp
i=1(1− ‖ (ui, vi) ‖2)

(5)

It can be seen that the normal field values at the edges of each splat are dependent not only on the
input normals of those points that belong to the splat, but also on normals of points at a certain distance
from the edge of the splat. Thus, it is useful if two different radii are used for each splat, one for the
actual splat size, and another, slightly larger radius for calculating the normal field (figure 15).

11

Splat Radius

Normal Interpolation Radius

Point Data

Figure 15: Different extents(radii) for the splat and the normal field computation

4.4 Resolution Scaling

The effect of interpolating the normal as compared to rendering with a single normal per splat can be
seen in the sequence of images in figure 16. Note that the splat count is for the entire model, and not
just for the head shown here. The actual number of splats in the visible scene is closer to about 10% of
the reported number.

Figure 16: Resolution Scaling for Phong Splatting. Gaussian Blending(above) vs Phong Splatting(below)
: 350k(left), 110k(middle) and 35k(right) Splats. (source: [1])

12

5 Results

Figure 17: Splat Based Raytracing for the Buddha and Skeleton Hand Dataset. (source: [3])

13

6 Conclusion

Point based rendering techniques have advanced to a considerable extent in the past few years enough
to be able to perform most tasks that can be accomplished through traditional rendering methods. In
certain cases (like the complex models in the Digital Michelangelo Project), point model rendering has
been found to be more efficient than traditional rendering. The extension of techniques like texture
filtering, Phong shading and raytracing to point based models are steps towards more efficient and
realistic rendering algorithms for point models.

But point based rendering is not without its drawbacks. Lack of connectivity information is often
touted as a step towards efficient representation of geometry, but this requires that implementations rely
heavily on thresholds to distinguish between different surfaces.

Point based representations are generally efficient only for dense and complex models. In situations
where we have to represent large flat surfaces, point based representations are not as concise as their
triangle based counterparts. It can be argued here that splats can be grown to large radii, thereby
overcoming such limitations, but this only serves to blur the distinction between splats and triangles. A
better alternative is to use hybrid rendering techniques which use points and triangles together, thereby
augmenting the strengths of point based rendering and traditional rendering methods.

Techniques such as clipping lines for splats have also been suggested, thereby giving rise to high
quality representations of sharp edges in objects such as machine parts. Still, it is not a simple task
to automate the production of such clip lines, as most splat generation techniques assume that normal
vector data in input points is unreliable. This is because 3D scanners generally provide only a point
cloud, and not the normal vectors at these points. Thus, normal vectors are inferred by fitting least
squares planes to groups of points.

As it stands today, triangle based rendering is very well established and current algorithms for triangle
rendering are far more efficient. The subject of this report has been raytracing in point based models,
but it turns out that current state of the art raytracing implementations for meshes are faster than
those for point models. Existing graphics hardware have been optimised for triangle mesh rendering,
and most areas where point rendering would be naturally well suited, already have highly optimised
triangle based solutions. For example, triangle meshes in tandem with various tricks of texture mapping
have been successfully used in rendering fluids, particles, gases, fire etc. Therefore, currently, there is no
advantage of point based raytracing as compared to traditional methods. This is expected to change as
more interest is generated in the graphics community about point based rendering methods.

14

References

[1] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. Eurographics Symposium on

Point Based Graphics, pages 25–32, 2004.

[2] Mark Levoy and Turner Whitted. The use of points as a display primitive. University of North

Carolina at Chapel Hill Technical Report, 85-022.

[3] Lars Linsen, Paul Rosenthal, and Karsten Muller. Splat-based ray tracing of point clouds. Journal

of WSCG, 15(1-3), 2007.

[4] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point rendering system for large
meshes. Proceedings of SIGGRAPH 2000, pages 343–352, 2000.

[5] Gernot Schaufler and Henrik Wann Jensen. Ray tracing point sampled geometry. Rendering Tech-

niques, pages 319–328, 2000.

[6] Jianhua Wu and Leif Kobbelt. Optimized sub-sampling of point sets for surface splatting. Computer

Graphics Forum, pages 643–652, 2004.

[7] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Surface splatting. In
Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 371–378. ACM
Press / ACM SIGGRAPH, 2001.

15

