Improving search order for reachability analysis of timed automata

Frédéric Herbreteau

Joint work with: Thanh-Tung Tran and Igor Walukiewicz LaBRI CNRS UMR 5800, Univ. Bordeaux, Bordeaux INP

> AVeRTS workshop, Bengaluru 19th December 2015

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

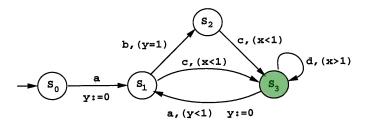
Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

Timed Automata [AD94]



Run:

$$\begin{pmatrix} s_0 \\ 0.0 \\ 0.0 \end{pmatrix} \xrightarrow{0.3} \begin{pmatrix} s_0 \\ 0.3 \\ 0.3 \end{pmatrix} \xrightarrow{a} \begin{pmatrix} s_1 \\ 0.3 \\ 0.0 \end{pmatrix} \xrightarrow{0.4} \begin{pmatrix} s_1 \\ 0.7 \\ 0.4 \end{pmatrix} \xrightarrow{c} \begin{pmatrix} s_3 \\ 0.7 \\ 0.4 \end{pmatrix}$$

• A run is **accepting** if it ends in a accepting state.

The problem we are interested in ...

Problem (Emptiness/State reachability)

Given a TA, does there exist an accepting run?

The problem we are interested in ...

Problem (Emptiness/State reachability)

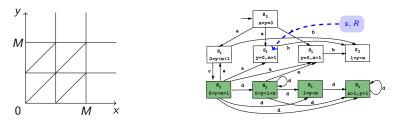
Given a TA, does there exist an accepting run?

Theorem ([AD94, CY92]) This reachability problem is PSPACE-complete

This talk: heuristics to improve reachability checking

First solution to this problem: region graph

Key idea: Quotient the space of valuations w.r.t. a **finite bisimulation relation**

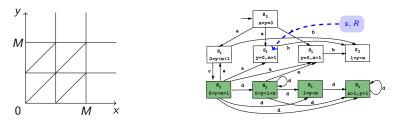


Theorem (Sound and complete [AD94])

Region equivalence preserves **reachability** for all automata with constants bounded by \boldsymbol{M}

First solution to this problem: region graph

Key idea: Quotient the space of valuations w.r.t. a **finite bisimulation relation**

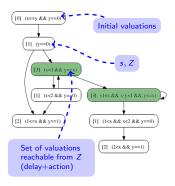


Theorem (Sound and complete [AD94])

Region equivalence preserves **reachability** for all automata with constants bounded by \boldsymbol{M}

However, there are $\mathcal{O}(|X|!.M^{|X|})$ many regions

A more efficient solution: zone graph ZG(A)



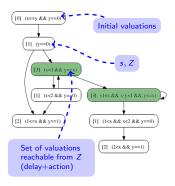
- Reachability graph $(s, Z) \Rightarrow (s', Z')$
- Zone: set of valuations defined by conjunctions of constraints:

e.g. $(x - y \ge 1) \land y < 2$

 Efficient representation of zones by DBMs

Theorem (Sound and complete [DT98]) Zone graph preserves state reachability

A more efficient solution: zone graph ZG(A)



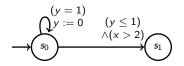
- Reachability graph $(s, Z) \Rightarrow (s', Z')$
- Zone: set of valuations defined by conjunctions of constraints:

e.g. $(x - y \ge 1) \land y < 2$

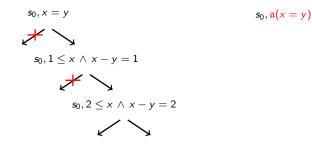
 Efficient representation of zones by DBMs

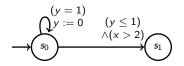
Theorem (Sound and complete [DT98]) Zone graph preserves state reachability

However, ZG(A) may be infinite!

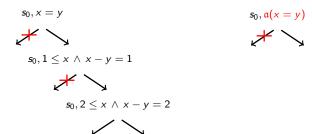


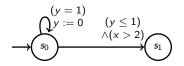
Key idea: abstract each zone in a **sound** manner, i.e. $Z \subseteq \mathfrak{a}(Z)$ and every $v' \in \mathfrak{a}(Z)$ is simulated by some $v \in Z$



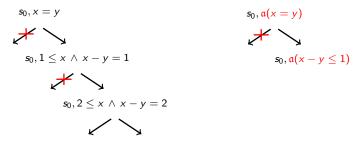


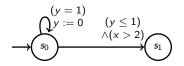
Key idea: abstract each zone in a **sound** manner, i.e. $Z \subseteq \mathfrak{a}(Z)$ and every $v' \in \mathfrak{a}(Z)$ is simulated by some $v \in Z$



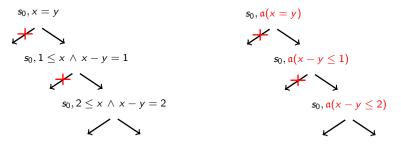


Key idea: abstract each zone in a **sound** manner, i.e. $Z \subseteq \mathfrak{a}(Z)$ and every $v' \in \mathfrak{a}(Z)$ is simulated by some $v \in Z$

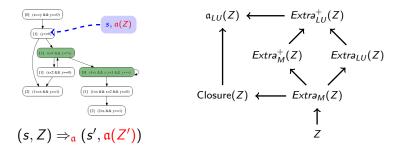




Key idea: abstract each zone in a **sound** manner, i.e. $Z \subseteq \mathfrak{a}(Z)$ and every $v' \in \mathfrak{a}(Z)$ is simulated by some $v \in Z$



Abstract Zone Graph $ZG^{\mathfrak{a}}(A)$



Theorem ([Bou04, BBLP06])

All these abstractions are finite, sound and complete

- ► A has an accepting run iff ZG^a(A) has a reachable green state
- ► and ZG^a(A) is finite

Standard reachability algorithm

```
function reachability_check(A)
1
        W := \{(s_0, \mathfrak{a}(Z_0))\}; P := W // \text{Invariant}: W \subseteq P
2
3
       while (W \neq \emptyset) do
4
5
           take and remove a node (s, Z) from W
           if (s is accepting in A)
6
             return Yes
7
           else
8
              for each (s, Z) \Rightarrow_{\mathfrak{a}} (s', Z') // Z' = \mathfrak{a}(post(Z))
9
                 if (s', Z') \notin P
10
                    add (s', Z') to W and to P
11
       return No
12
```

- Algorithm reachability_check terminates and it is correct
- Any search policy can be implemented in line 5.

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

Introducing node subsumption

Node subsumption:

$$(s,Z)\subseteq (s',Z')$$
 iff $s=s'$ and $Z\subseteq Z'$

Theorem

Node subsumption \subseteq is a simulation relation for ZG(A) and $ZG^{\alpha}(A)$

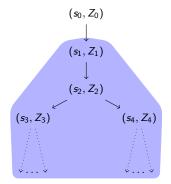
Reachability algorithms:

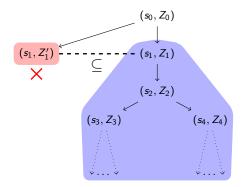
- do not need to visit subsumed nodes
- ▶ need only **store maximal nodes** w.r.t. subsumption ⊆

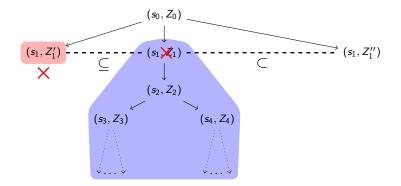
Reachability algorithm with node subsumption

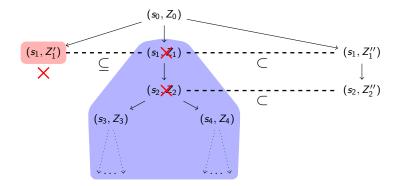
```
function reachability_check(A)
1
       W := \{(s_0, \mathfrak{a}(Z_0))\}; P := W
2
3
       while (W \neq \emptyset) do
4
5
         take and remove a node (s, Z) from W
          if (s is accepting in A)
6
            return Yes
7
         else
8
9
            for each (s, Z) \Rightarrow_{\mathfrak{a}} (s', Z') // Z' = \mathfrak{a}(post(Z))
               if (s', Z') is not subsumed by any node in P
10
                 add (s', Z') to W and to P
11
                  remove all nodes subsumed by (s', Z') from P and W
12
       return No
13
```

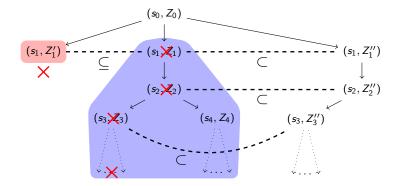
- Algorithm reachability_check terminates and it is correct
- Implemented in state-of-the-art tool UPPAAL
- Node subsumption is frequent due to abstractions

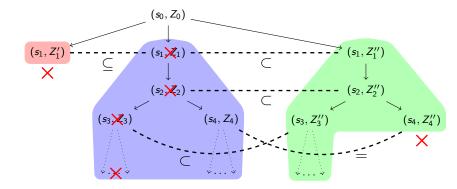


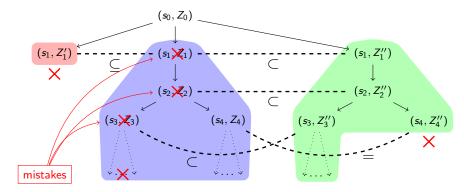












However, this algorithm is sensitive to the search order

Timed automata and the reachability problem

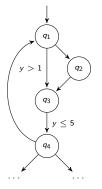
Reachability algorithm with subsumption

Limiting the impact of mistakes

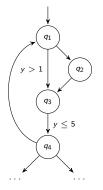
Avoiding mistakes

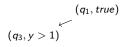
Combining the two strategies

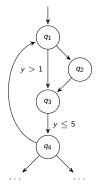
Conclusion and future work

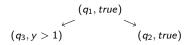


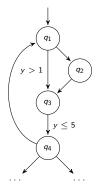
 $(q_1, true)$

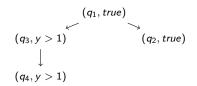


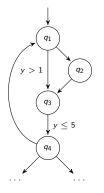


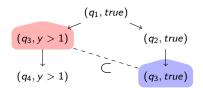


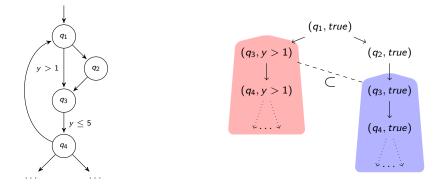








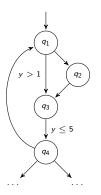


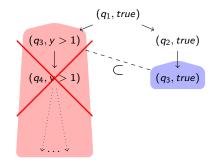


Goal: stop waiting nodes in the subtree of a subsumed node

First solution: subtree erasing

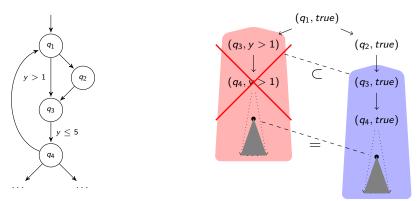
When a mistake is detected, **erase the entire subtree** of the subsumed node





First solution: subtree erasing

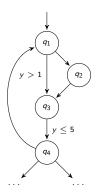
When a mistake is detected, **erase the entire subtree** of the subsumed node



Leads to **visiting same node many times** as equal nodes are frequent

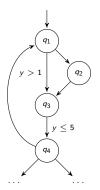
Better approach: give priority to big nodes

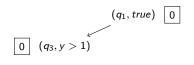
Priority among waiting nodes (default: 0)



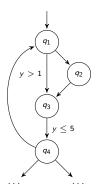
Better approach: give priority to big nodes

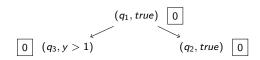
Priority among waiting nodes (default: 0)



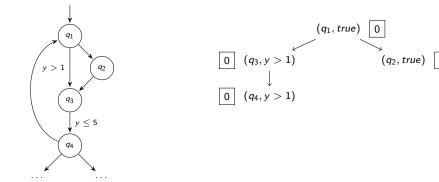


Priority among waiting nodes (default: 0)

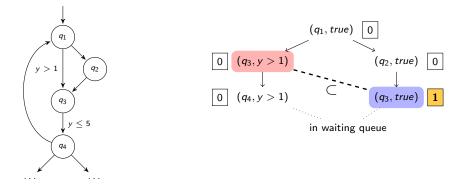




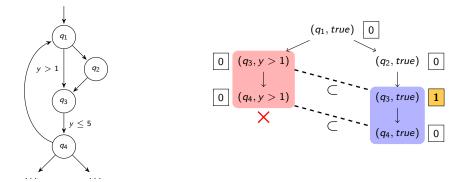
Priority among waiting nodes (default: 0)



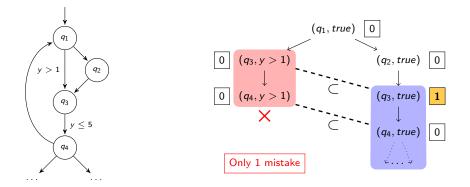
- Priority among waiting nodes (default: 0)
- **Big nodes** get higher priority than small waiting nodes



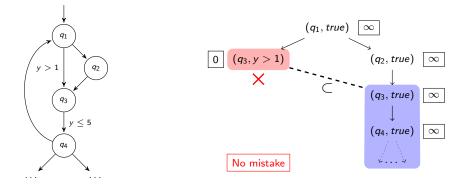
- Priority among waiting nodes (default: 0)
- ▶ Big nodes get higher priority than small waiting nodes



- Priority among waiting nodes (default: 0)
- **Big nodes** get higher priority than small waiting nodes



- Priority among waiting nodes (default: 0)
- ▶ Big nodes get higher priority than small waiting nodes
- True zone nodes get priority ∞



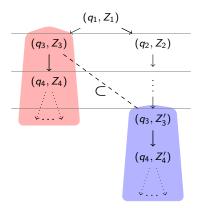
Algorithm with subsumption-based priority

```
function reachability_check(A)
1
      W := \{(s_0, \mathfrak{a}(Z_0))\}; P := W
2
3
       while (W \neq \emptyset) do
4
         take and remove a node (s, Z) with highest priority from W
5
         if (s is accepting in A)
6
7
            return Yes
         else
8
            for each (s, Z) \Rightarrow_{\mathfrak{a}} (s', Z') // Z' = \mathfrak{a}(post(Z))
9
              if (s', Z') is not subsumed by any node in P
10
                 add (s', Z') to W and to P
11
                 update priority of (s', Z') w.r.t. subsumed nodes
12
                 remove all nodes subsumed by (s', Z') from P and W
13
      return No
14
```

- Algorithm reachability_check terminates and it is correct
- Updating priorities requires to maintain P as a reachability tree

Limit of this approach

Efficiency relies on early detection of mistakes



Timed automata and the reachability problem

Reachability algorithm with subsumption

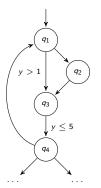
Limiting the impact of mistakes

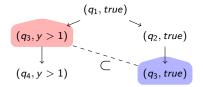
Avoiding mistakes

Combining the two strategies

Conclusion and future work

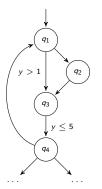
The origin of mistakes

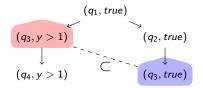




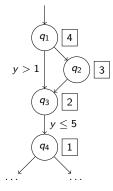
 Join states in A with incoming paths of different lengths

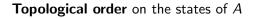
The origin of mistakes

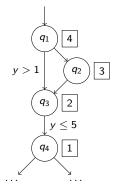


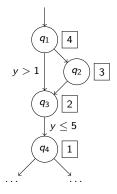


- Join states in A with incoming paths of different lengths
- Solution: wait for "all" paths to join in such states before exploring any further

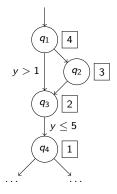




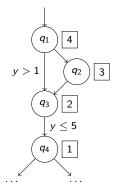


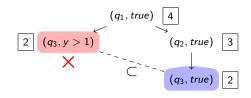


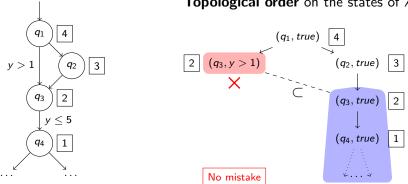
$$(q_1, true)$$
 4
2 $(q_3, y > 1)$



$$(q_1, true) \underbrace{4}_{(q_3, y > 1)} (q_2, true) \underbrace{3}_{(q_2, true)}$$



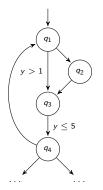




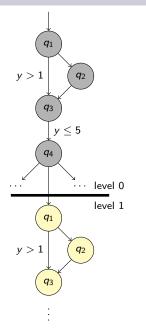
Topological order on the states of A

Topological ordering guarantees absence of mistake for acyclic automata

Automata with cycles

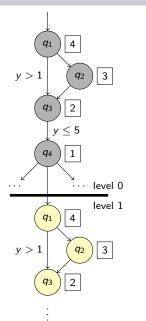


Automata with cycles



Solution: Topological order on the **unfolding** of *A*

Automata with cycles



Solution: Topological order on the **unfolding** of *A*

Simulated as follows:

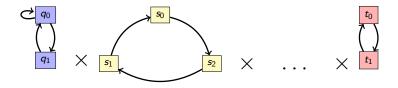
- Compute a topological order on A with broken cycles (DFS on A)
- Transitions in A from low priority state to high priority state moves to next level
- Nodes subsumption ignores levels

Algorithm with topological-based priority

```
function reachability_check(A)
1
       \operatorname{level}(s_0, \mathfrak{a}(Z_0)) := 0
2
       W := \{(s_0, \mathfrak{a}(Z_0))\}; P := W
3
4
5
       while (W \neq \emptyset) do
         take and remove a node (s, Z) with lowest level,
6
                    then highest topological ordering from W
7
          if (s is accepting in A)
8
            return Yes
9
          else
10
            for each (s, Z) \Rightarrow_{\mathfrak{a}} (s', Z') // Z' = \mathfrak{a}(post(Z))
11
               if (s', Z') is not subsumed by any node in P
12
                  if (s', Z') has higher topological ordering than (s, Z)
13
                    level(s', Z') := level(s, Z) + 1
14
15
                  else
                    level(s', Z') := level(s, Z)
16
                  add (s', Z') to W and to P
17
                  remove all nodes subsumed by (s', Z') from P and W
18
       return No
19
```

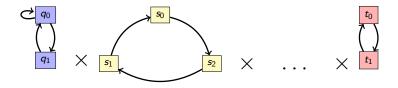
- Algorithm reachability_check terminates and it is correct
- Topological ordering computed in linear time over A

Networks of automata



How to get topological ordering for the network of automata?

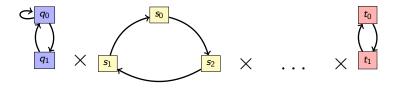
Networks of automata



How to get topological ordering for the network of automata?

Computing the product automaton is too expensive

Networks of automata



How to get topological ordering for the network of automata?

- Computing the product automaton is too expensive
- Topological ordering/level is defined pointwise
 - ► $(q_0, ..., q_n) \leq_{topo} (q'_0, ..., q'_n)$ iff $q_i \leq_{topo}^i q'_i$ for every i
 - level increases whenever it increases for one of the processes

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

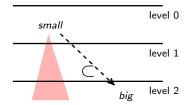
Subsumption-based priority is **expensive**:

- ► Requires to maintain *P* as a **reachability tree**
- Updating priority nodes requires to explore the tree

Subsumption-based priority is **expensive**:

- ► Requires to maintain *P* as a **reachability tree**
- Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

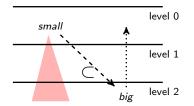


► The big node is late

Subsumption-based priority is **expensive**:

- ► Requires to maintain *P* as a **reachability tree**
- Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

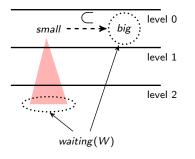


- ► The big node is late
- Let move "big" at the same level than "small"

Subsumption-based priority is **expensive**:

- ► Requires to maintain *P* as a **reachability tree**
- Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level



- ► The big node is late
- Let move "big" at the same level than "small"
- "big" now has priority over waiting subsumed nodes thanks to level and "topological ordering"

Algorithm with combined strategies

```
function reachability_check(A)
1
      \operatorname{level}(s_0, \mathfrak{a}(Z_0)) := 0
2
      W := \{(s_0, \mathfrak{a}(Z_0))\}; P := W
3
4
5
      while (W \neq \emptyset) do
         take and remove a node (s, Z) with true zone, or
6
             lowest level then highest topological ordering from W
7
         if (s is accepting in A)
8
            return Yes
9
         else
10
            for each (s, Z) \Rightarrow_{\mathfrak{a}} (s', Z') // Z' = \mathfrak{a}(post(Z))
11
               if (s', Z') is not subsumed by any node in P
12
                 if (s', Z') subsumes some node in P and/or W
13
                   level(s', Z') := min level of subsumed nodes
14
                 else if (s', Z') has higher topo. ordering than (s, Z)
15
                   level(s', Z') := level(s, Z) + 1
16
                 else
17
                  level(s', Z') := level(s, Z)
18
                 add (s', Z') to W and to P
19
                 remove all nodes subsumed by (s', Z') from P and W
20
      return No
21
```

Algorithm reachability_check terminates and it is correct

	BFS+subsumption		1st strategy	2nd strategy	combined
	visited	mistakes	mistakes	mistakes	mistakes
FDDI10	10219	9694	159	0	0
FDDI15	320068	318908	426	0	0
CSMA8	6238	358	1655	0	0
CSMA9	15842	1515	7367	0	0
Fischer8	40536	15456	0	15456	0
Fischer9	135485	54450	0	54450	0
Lynch9	147005	54450	0	54450	0
Lynch10	473198	186600	0	186600	0
CR4	75858	22161	7393	24130	4468
CR5	1721836	620903	154388	675779	111389
Flexray	881214	228265	2704	228265	4592

The "combined" algorithm also gives significant gains in memory

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

 Existing approaches (sweepline method,...) focus on saving memory by trading running time

- Existing approaches (sweepline method,...) focus on saving memory by trading running time
- Efficient search order for reachability in timed automata
 - improves both on **memory and running time**

- Existing approaches (sweepline method,...) focus on saving memory by trading running time
- Efficient search order for reachability in timed automata
 - improves both on **memory and running time**
- Simple modification of existing algorithm
 - can serve as a replacement for Breadth-First Search

- Existing approaches (sweepline method,...) focus on saving memory by trading running time
- Efficient search order for reachability in timed automata
 - improves both on **memory and running time**
- Simple modification of existing algorithm
 - can serve as a replacement for Breadth-First Search
- Validated on standard benchmarks and real examples
 - **no mistake** on most models
 - some of the remaining mistakes are unavoidable
 - robust to randomized models

► Efficient implementation

• use a priority queue for the set W of waiting nodes

Efficient implementation

• use a priority queue for the set W of waiting nodes

- Beyond strategies based on the structure of automata
 - detect "promising nodes" based on abstractions

Efficient implementation

• use a priority queue for the set W of waiting nodes

- Beyond strategies based on the structure of automata
 - detect "promising nodes" based on abstractions

- Extensions to other models
 - hybrid automata, Petri nets with reset arcs, ...

Thank you!

References

R. Alur and D.L. Dill.

A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.

G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek.

Lower and upper bounds in zone-based abstractions of timed automata. Int. Journal on Software Tools for Technology Transfer, 8(3):204–215, 2006.

P. Bouyer.

Forward analysis of updatable timed automata. Form. Methods in Syst. Des., 24(3):281–320, 2004.

C. Courcoubetis and M. Yannakakis.

Minimum and maximum delay problems in real-time systems. Form. Methods Syst. Des., 1(4):385-415, 1992.

C. Daws and S. Tripakis.

Model checking of real-time reachability properties using abstractions. In *TACAS'98*, volume 1384 of *LNCS*, pages 313–329. Springer, 1998.