Improving search order for reachability
analysis of timed automata

Frédéric Herbreteau
Joint work with: Thanh-Tung Tran and lgor Walukiewicz
LaBRI CNRS UMR 5800, Univ. Bordeaux, Bordeaux INP

AVeRTS workshop, Bengaluru
19th December 2015

1/34



Outline

Timed automata and the reachability problem
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Timed Automata [AD94]
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» A run is accepting if it ends in a accepting state.
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The problem we are interested in ...

Problem (Emptiness/State reachability)

Given a TA, does there exist an accepting run?
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The problem we are interested in ...

Problem (Emptiness/State reachability)

Given a TA, does there exist an accepting run?

Theorem ([AD94, CY92])
This reachability problem is PSPACE-complete

This talk: heuristics to improve reachability checking
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First solution to this problem: region graph

Key idea: Quotient the space of valuations w.r.t. a finite
bisimulation relation

y

M

0 M X
Theorem (Sound and complete [AD94])

Region equivalence preserves reachability for all automata with
constants bounded by M
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First solution to this problem: region graph

Key idea: Quotient the space of valuations w.r.t. a finite
bisimulation relation

y

M

0 M X

Theorem (Sound and complete [AD94])

Region equivalence preserves reachability for all automata with
constants bounded by M

However, there are O(|X|!.MIXI) many regions
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A more efficient solution: zone graph ZG(A)

» Reachability graph

_____

Initial valuations ( / /
5,2) = (s, 2')
i _
: » Zone: set of valuations
% . S
o) G deflned'by conjunctions of
] ] constraints:

U
(Ill (l<=x && Y::l)) ([II (1<x && x<2 && y::O)]
7
1

Set of valuations
reachable from Z

(delay-+action) » Efficient representation of
zones by DBMs

eg. (x—y>1)Ay<?2

Theorem (Sound and complete [DT98])
Zone graph preserves state reachability
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A more efficient solution: zone graph ZG(A)

» Reachability graph

_____

Initial valuations ( / !
s,Z)=(s',2')
i _
s » Zone: set of valuations
: ) ) ,
o) G deflned'by conjunctions of
i ] constraints:

U
(m (l<=x && y::])} ([I] (l<x && x<2 && y::O}]
7
1

Set of valuations
reachable from Z

(delay-+action) » Efficient representation of
zones by DBMs

eg. (x—y>1)Ay<?2

Theorem (Sound and complete [DT98])
Zone graph preserves state reachability

However, ZG(A) may be infinite!
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Solution: finite, sound and complete abstraction

(y=1)
y:=0 (y<1)

e /\(X>2)

Key idea: abstract each zone in a sound manner, i.e. Z C a(Z)
and every v/ € a(Z) is simulated by some v € Z

S0, X =Y s0, a(x = y)

AN

s, 1 <xAx—y=1

AN

50,2<XxAx—y=2

N
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Solution: finite, sound and complete abstraction

(y=1)
y:=0 (y<1)
A(x > 2)

Key idea: abstract each zone in a sound manner, i.e. Z C a(Z
and every v/ € a(Z) is simulated by some v € Z

s0,x =y s0,0(x = ¥)
AN AN
s, l<xAx—y=1 so,a(x —y <1)
AN AN
50,2<XANXx—y=2 so,a(x —y <2)

N N
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Abstract Zone Graph ZG%(A)

ary(Z) ¢—— Extraf,(2)

7N

Extra};(Z) Extra;y(Z)

N

Closure(Z) ¢—— Extray(Z)

T

(s,2) = (s',a(2")

Theorem ([Bou04, BBLP06])
All these abstractions are finite, sound and complete

» A has an accepting run iff ZG%(A) has a reachable green
state

» and ZG%(A) is finite
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Standard reachability algorithm

function reachability_check(A)
W = {(so,a(Z))}; P := W //Invariant: W C P

1
2
3
4 while (W #0) do

5 take and remove a node (s,Z) from W
6 if (s is accepting in A)

7 return Yes

8

9

else
for each (s,Z)=a(s',2Z') // Z' = a(post(Z))
10 if (s,Z)Y¢P
11 add (s',Z') to W and to P
12 return No

» Algorithm reachability_check terminates and it is correct

» Any search policy can be implemented in line 5.
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Outline

Reachability algorithm with subsumption
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Introducing node subsumption

Node subsumption:

(s,2)C(s',Z") iff s=s"andZC 7

Theorem

Node subsumption C is a simulation relation for ZG(A) and
ZG(A)

Reachability algorithms:
» do not need to visit subsumed nodes

» need only store maximal nodes w.r.t. subsumption C
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Reachability algorithm with node subsumption

1 function reachability_check(A)

2 W = {(s0,a(Z%))}; P = W

3

4 while (W #0) do

5 take and remove a node (s,Z) from W

6 if (s is accepting in A)

7 return Yes

8 else

9 for each (s,Z)=a(s',Z') // Z' = a(post(Z))

10 if (s,Z') is not subsumed by any node in P
11 add (s',Z') to W and to P

12 remove all nodes subsumed by (s’,Z’) from P and W
13 return No

» Algorithm reachability_check terminates and it is correct
» Implemented in state-of-the-art tool UPPAAL

» Node subsumption is frequent due to abstractions
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(s0, Z0)
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How the algorithm works

/ (507 ZO)

(s1,2]) Bl (s19%1) =-------- R (s1,2{")
X | l

(2025) =====---=-=-=-=---=---- (s2,2Y)

- ~ C - ~
(539Z3) (s3,24) (s3,2f) (58,2}
~~~\~. '. —::»::: D —"“‘¢ X

C - e —

mistakes D vy Vv

However, this algorithm is sensitive to the search order
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Timed automata and the reachability problem
Reachability algorithm with subsumption
Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work
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Limiting the impact of mistakes

e (g1, true)
4,

15/34



Limiting the impact of mistakes

(g1, true)
O -

(q?ny > 1)

15/34



Limiting the impact of mistakes

(g1, true)
O S

(g3, > 1) (g2, true)

15/34



Limiting the impact of mistakes

(g1, true)
O S

(g3, > 1) (g2, true)

|
(qa,y > 1)

15/34



Limiting the impact of mistakes

(g1, true)
r ~
(q37y > 1) . (q27 true)
(qwy > 1) " (qs.true)

15/34



Limiting the impact of mistakes

(g1, true)
O S

(g3, > 1) (g2, true)

vt | C !
(q4’},/,> 1) (g3, true)

y <5 ¥y (qa, true)

Goal: stop waiting nodes in the subtree of a subsumed node
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First solution: subtree erasing

When a mistake is detected, erase the entire subtree of the
subsumed node

l (g1, true)
' ~
e (g3,y > 1) (g2, true)
y>1 © ey )
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First solution: subtree erasing

When a mistake is detected, erase the entire subtree of the
subsumed node

l (q1, true)
« ~
e (g3,y > 1) (q2, true)
ret C | (g3, true)
(=) l
(qa, true)
Y S 5 =~ Sl

Leads to visiting same node many times as equal nodes are
frequent
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Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)

e (g1, true) @

17/34



Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)

e (g1, true) @
—
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Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)

e (g1, true) @
0 @r>t e 8
(g3,y > 1) (g2, true)
y>1
(=) |
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Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)

» Big nodes get higher priority than small waiting nodes

(g1, true) @

— ™~
@ (‘313,}’>1)~ (g2, true) @
| N
(0] (@ey>1 & (qa true)

in waiting queue
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Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)

» Big nodes get higher priority than small waiting nodes

(g1, true) @
— ™~
[0] (as.y>1) (2, true) [0]
|

L T
@ (ga,y > 1) _ C (g3, true)
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Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)

» Big nodes get higher priority than small waiting nodes

e (q1, true) @
— ™~
. o] (qs,yl>1)\\\~ (qzvltrue) 0]

(+ [0] (asy>1) _ " (g3, trve)
y <5 “ l

X
< 7 @ me) [o]

Only 1 mistake Cooa ¥
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Better approach: give priority to big nodes

» Priority among waiting nodes (default: 0)
» Big nodes get higher priority than small waiting nodes

» True zone nodes get priority co

e (q1, true)
— ~

o1 e [0] (@y>1) . (g2, true)
, X ~‘~C~ . l

(g3, true)
y <5 l

o (qa, true)
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Algorithm with subsumption-based priority

function reachability_check(A)
W = {(s0,a(Z%))}; P = W

1
2
3
4 while (W #0) do

5 take and remove a node (s,Z) with highest priority from W
6 if (s is accepting in A)

7 return Yes

8

9

else
for each (s,Z)=a(s',2Z') // Z' = a(post(Z))
10 if (s,Z') is not subsumed by any node in P
11 add (s',Z') to W and to P
12 update priority of (s/,Z'’) w.r.t. subsumed nodes
13 remove all nodes subsumed by (s’,Z’) from P and W
14 return No

» Algorithm reachability_check terminates and it is correct

» Updating priorities requires to maintain P as a reachability
tree
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Limit of this approach

Efficiency relies on early detection of mistakes

(91, 21)
~
(g3, Z3) (92, 22)
R l
(qi,?%) \Ef\\\ :
F ~
Yoo (a3, Z3)
|

(ga, Z‘{)

A
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Timed automata and the reachability problem
Reachability algorithm with subsumption
Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work
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The origin of mistakes

(g1, true)
— ~
(a3, > 1) i (g2, true)
! e
(qa,y > 1) (g3, true)

» Join states in A with incoming
paths of different lengths
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The origin of mistakes

(g1, true)
« >~
(g3, > 1) i (g2, true)
! e
(q47y > 1) (q37 true)

» Join states in A with incoming
paths of different lengths

» Solution: wait for “all” paths to

join in such states before exploring
any further
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Acyclic automata

Topological order on the states of A
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Acyclic automata

Topological order on the states of A
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Acyclic automata

Topological order on the states of A

(g1, true)
'S ~
(g3,y > 1) (g2, true)
\ |

1 (g3, true)
|
(q4,_t_rue)

Topological ordering guarantees absence of mistake for acyclic
automata
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Automata with cycles
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Automata with cycles

Solution: Topological order on the
unfolding of A

- level 0

level 1
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Automata with cycles

Solution: Topological order on the
unfolding of A

Simulated as follows:

» Compute a topological order on A
with broken cycles (DFS on A)

- level 0

» Transitions in A from low priority
state to high priority state moves
to next level

level 1

» Nodes subsumption ignores levels
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Algorithm with topological-based priority

function reachability_check(A)

level(sp, a(Zp)) := 0
W = {(s0,a(2))}; P = W

while (W #0) do
take and remove a node (s,Z) with lowest level ,
then highest topological ordering from W
if (s is accepting in A)
return Yes
else
for each (s,Z) =4 (s,2Z") // Z' = a(post(Z))
if (s/,Z') is not subsumed by any node in P
if (s,Z') has higher topological ordering than (s,2)

level(s’,Z’) := level(s,Z) +1
else
level(s’, Z'") := level(s, Z)

add (s’,Z') to W and to P
remove all nodes subsumed by (s’,Z’) from P and W
return No

» Algorithm reachability_check terminates and it is correct

» Topological ordering computed in linear time over A
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Networks of automata

@] X [s] (=] X ... X |u

How to get topological ordering for the network of automata?
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Networks of automata

@] X [s] (=] X ... X |u

How to get topological ordering for the network of automata?

» Computing the product automaton is too expensive

» Topological ordering/level is defined pointwise

> (dos-+++dn) Stopo (@hs - -+ 0l) If G <iopo 1 for every i

» level increases whenever it increases for one of the processes
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Timed automata and the reachability problem
Reachability algorithm with subsumption
Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work
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Another version of subsumption-based priority

Subsumption-based priority is expensive:

» Requires to maintain P as a reachability tree

» Updating priority nodes requires to explore the tree
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Another version of subsumption-based priority

Subsumption-based priority is expensive:

» Requires to maintain P as a reachability tree

» Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

level 0 . .
small A » The big node is late
. A
“ : - ”"
AN P level 1 > Let move “big" at the same level
Y :
. than “small”
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Another version of subsumption-based priority

Subsumption-based priority is expensive:

» Requires to maintain P as a reachability tree

» Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

. level 0

small - === big : » The big node is late
level 1 > Let move “big" at the same level
than “small”
........... level 2
Ve » “big" now has priority over
\ / waiting subsumed nodes thanks
waiting (W) to level and “topological ordering”
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Algorithm with combined strategies

function reachability check(A)
Ievel(so,a(Zo)) =
= {(s, (Zo))} P =W

1
2

3

4

5 while (W #0) do
6 take and remove a node (s,Z) with true zone, or

7 lowest level then highest topological ordering from W
8 if (s is accepting in A)

9 return Yes

10 else

11 for each (s,Z)=a(s',2Z') // Z' = a(post(Z))

12 if (s,Z') is not subsumed by any node in P

13 if (s',Z') subsumes some node in P and/or W

14 level(s’,Z') := min level of subsumed nodes

15 else if (s’,Z') has higher topo. ordering than (s,2)
16 level(s’, Z') := level(s,Z) + 1

17 else

18 level(s’, Z') := level(s, Z)

19 add (s’,Z’) to W and to P

20 remove all nodes subsumed by (s,Z’) from P and W
21 return No

» Algorithm reachability_check terminates and it is correct
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Experiments

BFS+subsumption 1st strategy | 2nd strategy | combined

visited  mistakes mistakes mistakes mistakes

FDDI10 10219 9694 159 0 0
FDDI15 320068 318908 426 0 0
CSMAS8 6238 358 1655 0 0
CSMA9 15842 1515 7367 0 0
Fischer8 40536 15456 0 15456 0
Fischer9 135485 54450 0 54450 0
Lynch9 147005 54450 0 54450 0
Lynch10 473198 186600 0 186600 0
CR4 75858 22161 7393 24130 4468
CR5 1721836 620903 154388 675779 111389
Flexray 881214 228265 2704 228265 4592

The “combined” algorithm also gives significant gains in memory
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Conclusion

» Existing approaches (sweepline method,...) focus on saving
memory by trading running time
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Conclusion

v

Existing approaches (sweepline method,...) focus on saving
memory by trading running time

v

Efficient search order for reachability in timed automata
» improves both on memory and running time

v

Simple modification of existing algorithm
» can serve as a replacement for Breadth-First Search

v

Validated on standard benchmarks and real examples

» no mistake on most models
» some of the remaining mistakes are unavoidable
» robust to randomized models

31/34



Future work

» Efficient implementation
» use a priority queue for the set W of waiting nodes

32/34



Future work

» Efficient implementation
» use a priority queue for the set W of waiting nodes

» Beyond strategies based on the structure of automata
» detect “promising nodes" based on abstractions

32/34



Future work

» Efficient implementation
» use a priority queue for the set W of waiting nodes

» Beyond strategies based on the structure of automata
» detect “promising nodes" based on abstractions

» Extensions to other models
» hybrid automata, Petri nets with reset arcs, ...
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Thank you!
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