
Improving search order for reachability
analysis of timed automata

Frédéric Herbreteau
Joint work with: Thanh-Tung Tran and Igor Walukiewicz

LaBRI CNRS UMR 5800, Univ. Bordeaux, Bordeaux INP

AVeRTS workshop, Bengaluru
19th December 2015

1/34

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

2/34

Timed Automata [AD94]

I Run: s0
0.0
0.0

 0.3−−→

 s0
0.3
0.3

 a−→

 s1
0.3
0.0

 0.4−−→

 s1
0.7
0.4

 c−→

 s3
0.7
0.4


I A run is accepting if it ends in a accepting state.

3/34

The problem we are interested in ...

Problem (Emptiness/State reachability)

Given a TA, does there exist an accepting run?

Theorem ([AD94, CY92])

This reachability problem is PSPACE-complete

This talk: heuristics to improve reachability checking

4/34

The problem we are interested in ...

Problem (Emptiness/State reachability)

Given a TA, does there exist an accepting run?

Theorem ([AD94, CY92])

This reachability problem is PSPACE-complete

This talk: heuristics to improve reachability checking

4/34

First solution to this problem: region graph

Key idea: Quotient the space of valuations w.r.t. a finite
bisimulation relation

0

y

x

M

M

s, R

Theorem (Sound and complete [AD94])

Region equivalence preserves reachability for all automata with
constants bounded by M

However, there are O(|X |!.M |X |) many regions

5/34

First solution to this problem: region graph

Key idea: Quotient the space of valuations w.r.t. a finite
bisimulation relation

0

y

x

M

M

s, R

Theorem (Sound and complete [AD94])

Region equivalence preserves reachability for all automata with
constants bounded by M

However, there are O(|X |!.M |X |) many regions

5/34

A more efficient solution: zone graph ZG (A)

s, Z

Set of valuations
reachable from Z
(delay+action)

Initial valuations

I Reachability graph

(s,Z)⇒ (s ′,Z ′)

I Zone: set of valuations
defined by conjunctions of
constraints:

e.g. (x − y ≥ 1) ∧ y < 2

I Efficient representation of
zones by DBMs

Theorem (Sound and complete [DT98])

Zone graph preserves state reachability

However, ZG (A) may be infinite!

6/34

A more efficient solution: zone graph ZG (A)

s, Z

Set of valuations
reachable from Z
(delay+action)

Initial valuations

I Reachability graph

(s,Z)⇒ (s ′,Z ′)

I Zone: set of valuations
defined by conjunctions of
constraints:

e.g. (x − y ≥ 1) ∧ y < 2

I Efficient representation of
zones by DBMs

Theorem (Sound and complete [DT98])

Zone graph preserves state reachability

However, ZG (A) may be infinite!

6/34

Solution: finite, sound and complete abstraction

s0 s1

(y = 1)
y := 0 (y ≤ 1)

∧(x > 2)

Key idea: abstract each zone in a sound manner, i.e. Z ⊆ a(Z)
and every v ′ ∈ a(Z) is simulated by some v ∈ Z

s0, x = y

s0, 1 ≤ x ∧ x − y = 1

s0, 2 ≤ x ∧ x − y = 2

s0, a(x = y)

s0, a(x − y ≤ 1)

s0, a(x − y ≤ 2)

7/34

Solution: finite, sound and complete abstraction

s0 s1

(y = 1)
y := 0 (y ≤ 1)

∧(x > 2)

Key idea: abstract each zone in a sound manner, i.e. Z ⊆ a(Z)
and every v ′ ∈ a(Z) is simulated by some v ∈ Z

s0, x = y

s0, 1 ≤ x ∧ x − y = 1

s0, 2 ≤ x ∧ x − y = 2

s0, a(x = y)

s0, a(x − y ≤ 1)

s0, a(x − y ≤ 2)

7/34

Solution: finite, sound and complete abstraction

s0 s1

(y = 1)
y := 0 (y ≤ 1)

∧(x > 2)

Key idea: abstract each zone in a sound manner, i.e. Z ⊆ a(Z)
and every v ′ ∈ a(Z) is simulated by some v ∈ Z

s0, x = y

s0, 1 ≤ x ∧ x − y = 1

s0, 2 ≤ x ∧ x − y = 2

s0, a(x = y)

s0, a(x − y ≤ 1)

s0, a(x − y ≤ 2)

7/34

Solution: finite, sound and complete abstraction

s0 s1

(y = 1)
y := 0 (y ≤ 1)

∧(x > 2)

Key idea: abstract each zone in a sound manner, i.e. Z ⊆ a(Z)
and every v ′ ∈ a(Z) is simulated by some v ∈ Z

s0, x = y

s0, 1 ≤ x ∧ x − y = 1

s0, 2 ≤ x ∧ x − y = 2

s0, a(x = y)

s0, a(x − y ≤ 1)

s0, a(x − y ≤ 2)

7/34

Abstract Zone Graph ZG a(A)

s, a(Z)

(s,Z)⇒a (s ′, a(Z ′))

Extra+LU(Z)

Extra+M(Z) ExtraLU(Z)

ExtraM(Z)

Z

aLU(Z)

Closure(Z)

Theorem ([Bou04, BBLP06])

All these abstractions are finite, sound and complete

I A has an accepting run iff ZG a(A) has a reachable green
state

I and ZG a(A) is finite

8/34

Standard reachability algorithm

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W // Invariant: W ⊆ P
3

4 w h i l e (W 6= ∅) do
5 take and remove a node (s,Z) from W
6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z)⇒a (s′,Z ′) // Z ′ = a(post(Z))

10 i f (s′,Z ′) 6∈ P
11 add (s′,Z ′) to W and to P
12 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Any search policy can be implemented in line 5.

9/34

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

10/34

Introducing node subsumption

Node subsumption:

(s,Z) ⊆ (s ′,Z ′) iff s = s ′ and Z ⊆ Z ′

Theorem

Node subsumption ⊆ is a simulation relation for ZG (A) and
ZG a(A)

Reachability algorithms:

I do not need to visit subsumed nodes

I need only store maximal nodes w.r.t. subsumption ⊆

11/34

Reachability algorithm with node subsumption

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W
3

4 w h i l e (W 6= ∅) do
5 take and remove a node (s,Z) from W
6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z)⇒a (s′,Z ′) // Z ′ = a(post(Z))

10 i f (s′,Z ′) i s not subsumed by any node i n P
11 add (s′,Z ′) to W and to P
12 remove a l l nodes subsumed by (s′,Z ′) from P and W
13 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Implemented in state-of-the-art tool UPPAAL

I Node subsumption is frequent due to abstractions

12/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1) (s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆ ⊂

⊂

⊂ =
mistakes

However, this algorithm is sensitive to the search order

13/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1)

(s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆

⊂

⊂

⊂ =
mistakes

However, this algorithm is sensitive to the search order

13/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1) (s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆ ⊂

⊂

⊂ =
mistakes

However, this algorithm is sensitive to the search order

13/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1) (s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆ ⊂

⊂

⊂ =
mistakes

However, this algorithm is sensitive to the search order

13/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1) (s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆ ⊂

⊂

⊂

=
mistakes

However, this algorithm is sensitive to the search order

13/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1) (s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆ ⊂

⊂

⊂ =

mistakes

However, this algorithm is sensitive to the search order

13/34

How the algorithm works

(s0,Z0)

(s1,Z1)

(s2,Z2)

(s3,Z3) (s4,Z4)

.

(s1,Z ′1) (s1,Z ′′1)

(s2,Z ′′2)

(s3,Z ′′3)

. . .

(s4,Z ′′4)

⊆ ⊂

⊂

⊂ =
mistakes

However, this algorithm is sensitive to the search order

13/34

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

14/34

Limiting the impact of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

15/34

Limiting the impact of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1)

(q2, true)

(q4, y > 1) (q3, true)
⊂

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

15/34

Limiting the impact of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

15/34

Limiting the impact of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1)

(q3, true)
⊂

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

15/34

Limiting the impact of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

15/34

Limiting the impact of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

. . . (q4, true)

. . .

Goal: stop waiting nodes in the subtree of a subsumed node

15/34

First solution: subtree erasing

When a mistake is detected, erase the entire subtree of the
subsumed node

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

. . .

(q4, true)

. . .

•

•
=

Leads to visiting same node many times as equal nodes are
frequent

16/34

First solution: subtree erasing

When a mistake is detected, erase the entire subtree of the
subsumed node

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

. . .

(q4, true)

. . .

•

•
=

Leads to visiting same node many times as equal nodes are
frequent

16/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0 (q3, true) 1
⊂

in waiting queue(q4, true) 0
⊂

. . .

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0

(q2, true) 0

(q4, y > 1)0 (q3, true) 1
⊂

in waiting queue(q4, true) 0
⊂

. . .

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0 (q3, true) 1
⊂

in waiting queue(q4, true) 0
⊂

. . .

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0

(q3, true) 1
⊂

in waiting queue(q4, true) 0
⊂

. . .

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0 (q3, true) 1
⊂

in waiting queue

(q4, true) 0
⊂

. . .

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0 (q3, true) 1
⊂

in waiting queue

(q4, true) 0
⊂

. . .

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) 0

(q3, y > 1)0 (q2, true) 0

(q4, y > 1)0 (q3, true) 1
⊂

in waiting queue

(q4, true) 0
⊂

. . .Only 1 mistake

17/34

Better approach: give priority to big nodes

I Priority among waiting nodes (default: 0)

I Big nodes get higher priority than small waiting nodes

I True zone nodes get priority ∞

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true) ∞

(q3, y > 1)0 (q2, true) ∞

(q3, true) ∞⊂

(q4, true) ∞

. . .No mistake

17/34

Algorithm with subsumption-based priority

1 f u n c t i o n reachability check(A)
2 W := {(s0, a(Z0))} ; P := W
3

4 w h i l e (W 6= ∅) do
5 take and remove a node (s,Z) w i th h i g h e s t p r i o r i t y from W
6 i f (s i s a c c e p t i n g i n A)
7 r e t u r n Yes
8 e l s e
9 f o r each (s,Z)⇒a (s′,Z ′) // Z ′ = a(post(Z))

10 i f (s′,Z ′) i s not subsumed by any node i n P
11 add (s′,Z ′) to W and to P
12 update p r i o r i t y o f (s′,Z ′) w. r . t . subsumed nodes
13 remove a l l nodes subsumed by (s′,Z ′) from P and W
14 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Updating priorities requires to maintain P as a reachability
tree

18/34

Limit of this approach

Efficiency relies on early detection of mistakes

(q1,Z1)

(q3,Z3)

(q4,Z4)

. . .

(q2,Z2)

...

(q3,Z ′3)

⊂

(q4,Z ′4)

. . .

. . .

⊂

19/34

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

20/34

The origin of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

I Join states in A with incoming
paths of different lengths

I Solution: wait for “all” paths to
join in such states before exploring
any further

21/34

The origin of mistakes

q1

q2

q3

q4

.

y > 1

y ≤ 5

(q1, true)

(q3, y > 1) (q2, true)

(q4, y > 1) (q3, true)
⊂

I Join states in A with incoming
paths of different lengths

I Solution: wait for “all” paths to
join in such states before exploring
any further

21/34

Acyclic automata

q1

q2

q3

q4

.

y > 1

y ≤ 5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⊂

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

22/34

Acyclic automata

q1

q2

q3

q4

.

y > 1

y ≤ 5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⊂

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

22/34

Acyclic automata

q1

q2

q3

q4

.

y > 1

y ≤ 5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2

(q2, true) 3

(q3, true) 2
⊂

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

22/34

Acyclic automata

q1

q2

q3

q4

.

y > 1

y ≤ 5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⊂

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

22/34

Acyclic automata

q1

q2

q3

q4

.

y > 1

y ≤ 5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⊂

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

22/34

Acyclic automata

q1

q2

q3

q4

.

y > 1

y ≤ 5

4

3

2

1

Topological order on the states of A

(q1, true) 4

(q3, y > 1)2 (q2, true) 3

(q3, true) 2
⊂

(q4, true)

. . .

1

No mistake

Topological ordering guarantees absence of mistake for acyclic
automata

22/34

Automata with cycles

q1

q2

q3

q4

.

y > 1

y ≤ 5

Solution: Topological order on the
unfolding of A

Simulated as follows:

I Compute a topological order on A
with broken cycles (DFS on A)

I Transitions in A from low priority
state to high priority state moves
to next level

I Nodes subsumption ignores levels

23/34

Automata with cycles

q1

q2

q3

q4

.

q1

q2

q3

...

y > 1

y ≤ 5

y > 1

level 0

level 1

4

3

2

1

4

3

2

Solution: Topological order on the
unfolding of A

Simulated as follows:

I Compute a topological order on A
with broken cycles (DFS on A)

I Transitions in A from low priority
state to high priority state moves
to next level

I Nodes subsumption ignores levels

23/34

Automata with cycles

q1

q2

q3

q4

.

q1

q2

q3

...

y > 1

y ≤ 5

y > 1

level 0

level 1

4

3

2

1

4

3

2

Solution: Topological order on the
unfolding of A

Simulated as follows:

I Compute a topological order on A
with broken cycles (DFS on A)

I Transitions in A from low priority
state to high priority state moves
to next level

I Nodes subsumption ignores levels

23/34

Algorithm with topological-based priority

1 f u n c t i o n reachability check(A)
2 level(s0, a(Z0)) := 0
3 W := {(s0, a(Z0))} ; P := W
4

5 w h i l e (W 6= ∅) do
6 take and remove a node (s,Z) w i th l owe s t l e v e l ,
7 then h i g h e s t t o p o l o g i c a l o r d e r i n g from W
8 i f (s i s a c c e p t i n g i n A)
9 r e t u r n Yes

10 e l s e
11 f o r each (s,Z)⇒a (s′,Z ′) // Z ′ = a(post(Z))
12 i f (s′,Z ′) i s not subsumed by any node i n P
13 i f (s′,Z ′) has h i g h e r t o p o l o g i c a l o r d e r i n g than (s,Z)
14 level(s′,Z ′) := level(s,Z) + 1
15 e l s e
16 level(s′,Z ′) := level(s,Z)
17 add (s′,Z ′) to W and to P
18 remove a l l nodes subsumed by (s′,Z ′) from P and W
19 r e t u r n No

I Algorithm reachability check terminates and it is correct

I Topological ordering computed in linear time over A

24/34

Networks of automata

q0

q1

s0

s1 s2

t0

t1× × . . . ×

How to get topological ordering for the network of automata?

I Computing the product automaton is too expensive

I Topological ordering/level is defined pointwise

I (q0, . . . , qn) ≤topo (q′0, . . . , q
′
n) iff qi ≤i

topo q′i for every i

I level increases whenever it increases for one of the processes

25/34

Networks of automata

q0

q1

s0

s1 s2

t0

t1× × . . . ×

How to get topological ordering for the network of automata?

I Computing the product automaton is too expensive

I Topological ordering/level is defined pointwise

I (q0, . . . , qn) ≤topo (q′0, . . . , q
′
n) iff qi ≤i

topo q′i for every i

I level increases whenever it increases for one of the processes

25/34

Networks of automata

q0

q1

s0

s1 s2

t0

t1× × . . . ×

How to get topological ordering for the network of automata?

I Computing the product automaton is too expensive

I Topological ordering/level is defined pointwise

I (q0, . . . , qn) ≤topo (q′0, . . . , q
′
n) iff qi ≤i

topo q′i for every i

I level increases whenever it increases for one of the processes

25/34

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

26/34

Another version of subsumption-based priority

Subsumption-based priority is expensive:

I Requires to maintain P as a reachability tree

I Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

small

big

⊂

big
⊂

waiting(W)

level 0

level 1

level 2

I The big node is late

I Let move “big” at the same level
than “small”

I “big” now has priority over
waiting subsumed nodes thanks
to level and “topological ordering”

27/34

Another version of subsumption-based priority

Subsumption-based priority is expensive:

I Requires to maintain P as a reachability tree

I Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

small

big

⊂

big
⊂

waiting(W)

level 0

level 1

level 2

I The big node is late

I Let move “big” at the same level
than “small”

I “big” now has priority over
waiting subsumed nodes thanks
to level and “topological ordering”

27/34

Another version of subsumption-based priority

Subsumption-based priority is expensive:

I Requires to maintain P as a reachability tree

I Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

small

big

⊂

big
⊂

waiting(W)

level 0

level 1

level 2

I The big node is late

I Let move “big” at the same level
than “small”

I “big” now has priority over
waiting subsumed nodes thanks
to level and “topological ordering”

27/34

Another version of subsumption-based priority

Subsumption-based priority is expensive:

I Requires to maintain P as a reachability tree

I Updating priority nodes requires to explore the tree

Idea: implement subsumption-based priority using nodes level

small

big

⊂

big
⊂

waiting(W)

level 0

level 1

level 2

I The big node is late

I Let move “big” at the same level
than “small”

I “big” now has priority over
waiting subsumed nodes thanks
to level and “topological ordering”

27/34

Algorithm with combined strategies

1 f u n c t i o n reachability check(A)
2 level(s0, a(Z0)) := 0
3 W := {(s0, a(Z0))} ; P := W
4

5 w h i l e (W 6= ∅) do
6 take and remove a node (s,Z) w i th t r u e zone , or
7 l owe s t l e v e l then h i g h e s t t o p o l o g i c a l o r d e r i n g from W
8 i f (s i s a c c e p t i n g i n A)
9 r e t u r n Yes

10 e l s e
11 f o r each (s,Z)⇒a (s′,Z ′) // Z ′ = a(post(Z))
12 i f (s′,Z ′) i s not subsumed by any node i n P
13 i f (s′,Z ′) subsumes some node i n P and/ or W
14 level(s′,Z ′) := min l e v e l o f subsumed nodes
15 e l s e i f (s′,Z ′) has h i g h e r topo . o r d e r i n g than (s,Z)
16 level(s′,Z ′) := level(s,Z) + 1
17 e l s e
18 level(s′,Z ′) := level(s,Z)
19 add (s′,Z ′) to W and to P
20 remove a l l nodes subsumed by (s′,Z ′) from P and W
21 r e t u r n No

I Algorithm reachability check terminates and it is correct

28/34

Experiments

BFS+subsumption 1st strategy 2nd strategy combined
visited mistakes mistakes mistakes mistakes

FDDI10 10219 9694 159 0 0
FDDI15 320068 318908 426 0 0
CSMA8 6238 358 1655 0 0
CSMA9 15842 1515 7367 0 0
Fischer8 40536 15456 0 15456 0
Fischer9 135485 54450 0 54450 0
Lynch9 147005 54450 0 54450 0
Lynch10 473198 186600 0 186600 0
CR4 75858 22161 7393 24130 4468
CR5 1721836 620903 154388 675779 111389
Flexray 881214 228265 2704 228265 4592

The “combined” algorithm also gives significant gains in memory

29/34

Outline

Timed automata and the reachability problem

Reachability algorithm with subsumption

Limiting the impact of mistakes

Avoiding mistakes

Combining the two strategies

Conclusion and future work

30/34

Conclusion

I Existing approaches (sweepline method,. . .) focus on saving
memory by trading running time

I Efficient search order for reachability in timed automata
I improves both on memory and running time

I Simple modification of existing algorithm
I can serve as a replacement for Breadth-First Search

I Validated on standard benchmarks and real examples
I no mistake on most models
I some of the remaining mistakes are unavoidable
I robust to randomized models

31/34

Conclusion

I Existing approaches (sweepline method,. . .) focus on saving
memory by trading running time

I Efficient search order for reachability in timed automata
I improves both on memory and running time

I Simple modification of existing algorithm
I can serve as a replacement for Breadth-First Search

I Validated on standard benchmarks and real examples
I no mistake on most models
I some of the remaining mistakes are unavoidable
I robust to randomized models

31/34

Conclusion

I Existing approaches (sweepline method,. . .) focus on saving
memory by trading running time

I Efficient search order for reachability in timed automata
I improves both on memory and running time

I Simple modification of existing algorithm
I can serve as a replacement for Breadth-First Search

I Validated on standard benchmarks and real examples
I no mistake on most models
I some of the remaining mistakes are unavoidable
I robust to randomized models

31/34

Conclusion

I Existing approaches (sweepline method,. . .) focus on saving
memory by trading running time

I Efficient search order for reachability in timed automata
I improves both on memory and running time

I Simple modification of existing algorithm
I can serve as a replacement for Breadth-First Search

I Validated on standard benchmarks and real examples
I no mistake on most models
I some of the remaining mistakes are unavoidable
I robust to randomized models

31/34

Future work

I Efficient implementation
I use a priority queue for the set W of waiting nodes

I Beyond strategies based on the structure of automata
I detect “promising nodes” based on abstractions

I Extensions to other models
I hybrid automata, Petri nets with reset arcs, . . .

32/34

Future work

I Efficient implementation
I use a priority queue for the set W of waiting nodes

I Beyond strategies based on the structure of automata
I detect “promising nodes” based on abstractions

I Extensions to other models
I hybrid automata, Petri nets with reset arcs, . . .

32/34

Future work

I Efficient implementation
I use a priority queue for the set W of waiting nodes

I Beyond strategies based on the structure of automata
I detect “promising nodes” based on abstractions

I Extensions to other models
I hybrid automata, Petri nets with reset arcs, . . .

32/34

Thank you!

33/34

References

R. Alur and D.L. Dill.

A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek.

Lower and upper bounds in zone-based abstractions of timed automata.
Int. Journal on Software Tools for Technology Transfer, 8(3):204–215, 2006.

P. Bouyer.

Forward analysis of updatable timed automata.
Form. Methods in Syst. Des., 24(3):281–320, 2004.

C. Courcoubetis and M. Yannakakis.

Minimum and maximum delay problems in real-time systems.
Form. Methods Syst. Des., 1(4):385–415, 1992.

C. Daws and S. Tripakis.

Model checking of real-time reachability properties using abstractions.
In TACAS’98, volume 1384 of LNCS, pages 313–329. Springer, 1998.

34/34

	Timed automata and the reachability problem
	Reachability algorithm with subsumption
	Limiting the impact of mistakes
	Avoiding mistakes
	Combining the two strategies
	Conclusion and future work

