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Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other
important properties).
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timed automata is
PSPACE-complete.
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Timed games

Definition

A timed game is made of

a timed automaton;

a partition between controllable and uncontrollable transitions.

Example

`0

(x≤2)

`1

`2

`3

,

/
x≤1

x<1

x<1
x :=0

x≤1

x≥2

x≥1

a memoryless strategy

in (`0, x = 0): wait 0.5
goto `1

in (`1, x): wait until x = 2
goto ,

in (`2, x ≤ 1): wait until x = 1
goto `3

in (`3, x ≤ 1): wait until x = 1
goto `1
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Timed games

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability
objectives) is EXPTIME-complete.

Proof

,

/

1≤x≤2∧ y≥1

x=1∧ 1≤y≤2

regions are sufficient;

the computation terminates.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata. SSC, 1998.
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Example: task graph scheduling

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:
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time
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× 3 picoseconds
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Priced timed automata

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

a timed automaton;

the price of each transition and location.

Example

−3 +6
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[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. & Comp., 1999.

[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001.

[BFH+01] Behrmann et al. Minimum-cost reachability in priced timed automata. HSCC, 2001.
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Modelling the task graph scheduling problem

Processors:

+++

ċ=90

x≤2

idle

ċ=10

×××
ċ=90
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add1

x :=0
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x :=0

done1
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ċ=30
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x :=0
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x :=0

done2
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done2

x=7

Tasks:

T4 F4

t1 ∧ t2
add1 done1

t4:=1

t1 ∧ t2
add2 done2

t4:=1
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ċ=20

×××
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Cost-optimal reachability in priced timed automata

Example

ṗ=5

y=0

ṗ=6

ṗ=3

,
x≤2

y :=0

x≥3

p+=1

p+=9

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

min

(
5t + 6(3− t) + 1

5t + 3(3− t) + 9

)
= 17

18

20

22

0 2

The optimal schedule consists in

waiting 2 time units in ;

going through .
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ṗ=5

y=0
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Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])

Optimal reachability in priced timed automata is
PSPACE-complete.

Proof

Regions are not precise enough;

ṗ=3 ṗ=3 ṗ=3 ṗ=5

x :=0

p+=2

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007.
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p+=0 p+=0

x :=0

p+=2

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007.



Cost-optimal reachability in priced timed automata

Theorem ([BBBR07])

Optimal reachability in priced timed automata is
PSPACE-complete.

Proof

Regions are not precise enough;

Use regions with corner-points:
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Example: task graph scheduling

Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:

P1 (fast):

time

+ 2 picoseconds

× 3 picoseconds

energy

idle 10 Watt

in use 90 Watts

P2 (slow):

time

+ 5 picoseconds

× 7 picoseconds

energy

idle 20 Watts

in use 30 Watts

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules



Cost-optimal reachability in priced timed games

Using games to model uncertainty over delays

Processors with exact delays:

+++

ċ=90

x≤2

idle

ċ=10

×××
ċ=90

x≤3

add1

x :=0

mul1

x :=0

done1

x=2

done1

x=3

Processors with approximate delays:

+++

ċ=90

x≤3

idle

ċ=10

×××
ċ=90

x≤4

add1

x :=0

mul1

x :=0

done1

x≥2

done1

x≥3
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Example

ṗ=5

y=0

ṗ=6

ṗ=3

,
x≤2

y :=0

x≥3

p+=1

p+=9

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

max

(
5t + 6(3− t) + 1

5t + 3(3− t) + 9

)
= 18.66

(with topt =
1

3
)

18
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0 2
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ṗ=5

y=0
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ṗ=3

,
x≤2

y :=0

x≥3

p+=1

p+=9

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

max

(

5t + 6(3− t) + 1

5t + 3(3− t) + 9

)
= 18.66

(with topt =
1

3
)

18

20

22

0 2



Cost-optimal reachability in priced timed games

Example
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ṗ=3

,
x≤2

y :=0

x≥3

p+=1

p+=9

x≥3

Minimal cost for reaching ,:

inf
0≤t≤2

max

(
5t + 6(3− t) + 1

5t + 3(3− t) + 9

)

= 18.66

(with topt =
1

3
)

18

20

22

0 2



Cost-optimal reachability in priced timed games

Example
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Looking for optimal strategies...

Optimal strategies need not exist...

ṗ=2 ṗ=1

,
x=1

x=0

Optimal strategies may need memory...

ṗ=2

ṗ=1

,

x<1, x :=0

x=1

x>0
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Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

add the value of clock x to the accumulated cost

Add+(x)

ṗ=0 ṗ=1
z=0 x=1

x :=0

z=1

z:=0

y=1, y :=0 y=1, y :=0

add 1− x to the accumulated cost

Wouldn’t almost-optimal strategies be sufficient?

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005.

[BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006.
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ṗ=1 ṗ=0
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Proof

Encode a two-counter machine as a priced timed game.

add the value of clock x to the accumulated cost

add 1− x to the accumulated cost

check that y = 2x

divide clock x by 2

; We can use the following encoding:

x1 =
1
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1

2c2
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Proof
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qhalt

; Instr.

Instr.In
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Cost-optimal reachability in priced timed games

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Lemma

The halting state is reachable
if, and only if,

there is an optimal strategy in the priced timed game.
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total weight at most 3
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The value of a game

Definition

Cost of a path:

cost(π) = sum of costs of all transitions until target location

Cost of a strategy:

cost(σ) = sup{cost(π) | π outcome of σ}

Optimal cost in a priced timed game:

optcostG = inf{cost(σ) | σ winning strategy in G}

The existence of a strategy with cost less than k is undecidable.

What about deciding if optcostG ≤ k?
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Undecidability of the value problem
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Undecidability of the value problem

Adapting the previous reduction...
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ifM halts:
correct simulation for
finite duration.

; cost(σ) ≥ 3 + αM
for all σ



Undecidability of the value problem

Adapting the previous reduction...

qhalt

; Instr.

Instr.In
st

r.

In
st

r.

Instr.
In

st
r.

In
st

r.

Test

TestTest

Test

Test

Test

Test

Exit

Exit

Exit

Exit

Exit

Exit

exit nodes: cost 3+ 1
2n

(n = length of path)

ifM does not halt:
Player 1 simulates
correctly until 2n > 1

ε .

; cost(σ) ≤ 3 + ε

ifM halts:
correct simulation for
finite duration.

; cost(σ) ≥ 3 + αM
for all σ



Undecidability of the value problem

Adapting the previous reduction...

qhalt

; Instr.

Instr.In
st

r.

In
st

r.

Instr.
In

st
r.

In
st

r.

Test

TestTest

Test

Test

Test

Test

Exit

Exit

Exit

Exit

Exit

Exit

exit nodes: cost 3+ 1
2n

(n = length of path)

ifM does not halt:
Player 1 simulates
correctly until 2n > 1

ε .

; cost(σ) ≤ 3 + ε

ifM halts:
correct simulation for
finite duration.

; cost(σ) ≥ 3 + αM
for all σ



Undecidability of the value problem

Adapting the previous reduction...

qhalt

;

Instr.

Instr.In
st

r.

In
st

r.

Instr.
In

st
r.

In
st

r.

Test

TestTest

Test

Test

Test

Test

Exit

Exit

Exit

Exit

Exit

Exit

exit nodes: cost 3+ 1
2n

(n = length of path)

ifM does not halt:
Player 1 simulates
correctly until 2n > 1

ε .

; cost(σ) ≤ 3 + ε

ifM halts:
correct simulation for
finite duration.

; cost(σ) ≥ 3 + αM
for all σ



Undecidability of the value problem

Adapting the previous reduction...

qhalt

;

Instr.

Instr.In
st

r.

In
st

r.

Instr.
In

st
r.

In
st

r.

Test

TestTest

Test

Test

Test

Test

Exit

Exit

Exit

Exit

Exit

Exit

exit nodes: cost 3+ 1
2n

(n = length of path)

ifM does not halt:
Player 1 simulates
correctly until 2n > 1

ε .

; cost(σ) ≤ 3 + ε

ifM halts:
correct simulation for
finite duration.

; cost(σ) ≥ 3 + αM
for all σ



Undecidability of the value problem

Adapting the previous reduction...

qhalt

;

Instr.

Instr.In
st

r.

In
st

r.

Instr.
In

st
r.

In
st

r.

Test

TestTest

Test

Test

Test

Test

Exit

Exit

Exit

Exit

Exit

Exit

exit nodes: cost 3+ 1
2n

(n = length of path)

ifM does not halt:
Player 1 simulates
correctly until 2n > 1

ε .

; cost(σ) ≤ 3 + ε

ifM halts:
correct simulation for
finite duration.

; cost(σ) ≥ 3 + αM
for all σ



Undecidability of the value problem

Theorem ([BJM15])

The value problem is undecidable in priced timed games.

Remark

blue nodes and intermediary
instruction modules have
cost zero everywhere;

positive weights only occur
in acyclic parts.
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Approximation of the optimal cost

Definition

A priced timed game G is almost-strongly non-Zeno if there exists
κ > 0 for any run ρ that starts and ends in the same region:

cost(ρ) ≥ κ or cost(ρ) = 0

Theorem ([BJM15])

The optimal cost of almost-strongly non-Zeno priced timed
automata can be approximated

: for every ε > 0, we can compute

values v+
ε and v−ε such that

|v+
ε − v−ε | < ε v−ε ≤ optcostG ≤ v+

ε

a strategy σε such that

optcostG ≤ cost(σε) ≤ optcostG + ε.
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Approximation of the optimal cost

Proof

semi-unfolding of region automaton (seen as a timed game)

Only cost 0
Kernel K

Only cost 0
Kernel K

Hypothesis:

cost > 0

↓

cost ≥ κ

; bounded depth

compute exact optimal cost in tree-like parts [LMM02,ABM04]

compute approximate optimal cost in kernels
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Output cost functions f

Under- and over-approximate by
piecewise constant functions f −ε
and f +

ε

; reachability timed game
in small regions
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Conclusions and future directions

Priced timed automata and games

convenient for modelling resources;

1-player setting remains tractable (sort of);

2-player setting undecidable, but approximable.

approximation algorithms are a convenient trade-off.

Future work

improve approximation technique (in terms of complexity);

extend results to whole class of priced timed games;

average energy and energy constraints;

robust analysis of priced timed games;

develop a tool.
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