Optimal strategies in weighted timed games: undecidability and approximation

Nicolas Markey LSV, CNRS & ENS Cachan, France

(joint work with Patricia Bouyer and Samy Jaziri)

AVeRTS'15 workshop – Bangaluru, India December 19, 2015

Model checking and synthesis

★ E ► ★ E ►

Model checking and synthesis

Definition ([AD90])

A timed automaton is made of

a transition system,

Example (A computer mouse)

[AD90] Alur, Dill. Automata For Modeling Real-Time Systems. ICALP, 1990.

Definition ([AD90])

A timed automaton is made of

- a transition system,
- a set of clocks,

Example (A computer mouse)

[AD90] Alur, Dill. Automata For Modeling Real-Time Systems. ICALP, 1990.

Definition ([AD90])

A timed automaton is made of

- a transition system,
- a set of clocks,
- timing constraints on states and transitions.

Example (A computer mouse) right_button? left button? right left idle x := 0x := 0x≤300 x<300 *x* = 300 x = 300left click! right_click! $x \leq 300$ left_button? ≤ 300 right_button? left double click! right_double_click!

[AD90] Alur, Dill. Automata For Modeling Real-Time Systems. ICALP, 1990.

Theorem ([AD90,ACD93, ...])

Reachability in timed automata is decidable (as well as many other important properties).

E > < E >

[AD90] Alur, Dill. Automata For Modeling Real-Time Systems. ICALP, 1990. [ACD93] Alur, Courcoubetis, Dill. Model-Checking in Dense Real-Time. Inf. & Comp., 1993. Region automaton

Region automaton

◆ 臣 ▶ ◆ 臣 ▶

Region automaton

Definition

- A timed game is made of
 - a timed automaton;

Example

Definition

A timed game is made of

- a timed automaton;
- a partition between controllable and uncontrollable transitions.

Example

Definition

A timed game is made of

- a timed automaton;
- a partition between controllable and uncontrollable transitions.

Example

a memoryless strategy in $(\ell_0, x = 0)$: wait 0.5 goto ℓ_1 in (ℓ_1, x) : wait until x = 2goto \odot in $(\ell_2, x \le 1)$: wait until x = 1goto ℓ_3 in $(\ell_3, x \le 1)$: wait until x = 1goto ℓ_1

Theorem ([AMPS98])

Theorem ([AMPS98])

Theorem ([AMPS98])

Theorem ([AMPS98])

Theorem ([AMPS98])

Deciding the winner in a timed game (e.g. for reachability objectives) is EXPTIME-complete.

E > < E >

Outline of the talk

Introduction: timed automata and timed games

Measuring extra quantities in timed automata
Example: task graph scheduling

- Timed automata with observer variables
- 3 Cost-optimal strategies
 - Optimal reachability in priced timed automata
 - Optimal reachability in priced timed games
- 4 Conclusions and future works

5 Advertisements

Outline of the talk

Introduction: timed automata and timed games

Measuring extra quantities in timed automata
Example: task graph scheduling
Timed automata with observer variables

3 Cost-optimal strategies

- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games
- ④ Conclusions and future works

5 Advertisements

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

≣⇒
Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

a timed automaton;

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

Example

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. & Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. [BFH⁺01] Behrmann *et al.* Minimum-cost reachability in priced timed automata. HSCC, 2001.

E > < E >

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. & Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. [BFH⁺01] Behrmann *et al.* Minimum-cost reachability in priced timed automata. HSCC, 2001.

E > < E >

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

[KPSY99] Kesten, Pnueli, Sifakis, Yovine. Decidable Integration Graphs. Inf. & Comp., 1999. [ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata. HSCC, 2001. [BFH⁺01] Behrmann *et al.* Minimum-cost reachability in priced timed automata. HSCC, 2001.

E > < E >

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

< ⊒ > < ⊒ >

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

Definition ([KPSY99,ALP01,BFH+01])

A priced timed automaton is made of

- a timed automaton;
- the price of each transition and location.

Example: task graph scheduling

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

≣⇒

Modelling the task graph scheduling problem

Modelling the task graph scheduling problem

Modelling the task graph scheduling problem

 $t_4:=1$

done₂

 $t_1 \wedge t_2$

 add_2

-≣⇒

Outline of the talk

Introduction: timed automata and timed games

Measuring extra quantities in timed automata
Example: task graph scheduling
Timed automata with observer variables

3 Cost-optimal strategies

- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games

5 Advertisements

Minimal cost for reaching ©:

3

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

- Regions are not precise enough;
- Use regions with corner-points:

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

- Regions are not precise enough;
- Use regions with corner-points:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007. 🛶 🚊 🕨 🛬

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

- Regions are not precise enough;
- Use regions with corner-points:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007. 🛶 👳 🛌

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

- Regions are not precise enough;
- Use regions with corner-points:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007. 🗤 🤅 🕨 🖉 👳

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007. 🗤 🗧 🕨 🗸 🚍 🕨

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007. 🛛 🗸 🚊 🕨 🤇 🚍 א

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

 $\underbrace{t_1}_{y:=0} \underbrace{t_2}_{x \le 2} \underbrace{t_3}_{y \ge 3} \underbrace{t_4}_{y \ge 3} \underbrace{t_5}_{t_2 + t_3 + t_4} \underbrace{t_5}_{t_2 + t_3 + t_4} \ge 3$

[BBBR07] Bouyer, Brihaye, Bruyère, Raskin. On the optimal reachability problem. FMSD, 2007. 🛛 🗸 🚊 🕨 🤇 🚍 א

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

 $\underbrace{t_1}_{y:=0} \underbrace{t_2}_{x \le 2} \underbrace{t_3}_{y \ge 3} \underbrace{t_4}_{t_5} \underbrace{t_5}_{t_2+t_3+t_4} \ge 3$

 \rightsquigarrow infimum over bounded zone reached at a point on the frontier, with integer coordinates.

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

$$\forall \pi. \exists \pi_{cp}. cost(\pi_{cp}) \leq cost(\pi).$$

Theorem ([BBBR07])

Optimal reachability in priced timed automata is PSPACE-*complete.*

Proof

• optimal schedule as a linear programming problem:

$$\forall \pi. \exists \pi_{cp}. cost(\pi_{cp}) \leq cost(\pi).$$

• approximate path in corner-point abstraction by a real run:

 $\forall \pi_{cp}. \exists \pi. cost(\pi) \leq cost(\pi_{cp}) + \epsilon.$
Outline of the talk

Introduction: timed automata and timed games

Measuring extra quantities in timed automata
Example: task graph scheduling
Timed automata with observer variables

3 Cost-optimal strategies

- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games
- ④ Conclusions and future works

5 Advertisements

Example: task graph scheduling

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

≣⇒

Using games to model uncertainty over delays

Processors with exact delays:

Using games to model uncertainty over delays

Processors with exact delays:

Processors with approximate delays:

Minimal cost for reaching ©:

Looking for optimal strategies...

Looking for optimal strategies...

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

• add the value of clock x to the accumulated cost

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x
- divide clock x by 2

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

- add the value of clock x to the accumulated cost
- add 1 x to the accumulated cost
- check that y = 2x
- divide clock x by 2

 \rightsquigarrow We can use the following encoding:

$$x_1 = \frac{1}{2^{c_1}} \qquad \qquad x_2 = \frac{1}{2^{c_2}}$$

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Theorem ([BBR05,BBM06])

Optimal reachability in priced timed games is undecidable.

Proof

Encode a two-counter machine as a priced timed game.

Lemma

The halting state is reachable if, and only if, there is an optimal strategy in the priced timed game.

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005. [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006 → < = >

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005. [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006 → < Ξ →

Wouldn't almost-optimal strategies be sufficient?

[BBR05] Brihaye, Bruyère, Raskin. On optimal timed strategies. FORMATS, 2005. [BBM06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automa. IPL, 2006 → < Ξ →

Definition

(▲ 臣 ▶ ▲ 臣 ▶

Definition

Cost of a path:

```
cost(\pi) = sum of costs of all transitions until target location
```

Definition

Cost of a path:

```
cost(\pi) = sum of costs of all transitions until target location
```

Cost of a strategy:

 $cost(\sigma) = sup\{cost(\pi) \mid \pi \text{ outcome of } \sigma\}$

Definition

Cost of a path: $cost(\pi) = sum of costs of all transitions until target location$

Cost of a strategy:

 $cost(\sigma) = sup\{cost(\pi) \mid \pi \text{ outcome of } \sigma\}$

Optimal cost in a priced timed game:

 $optcost_{\mathcal{G}} = inf\{cost(\sigma) \mid \sigma \text{ winning strategy in } \mathcal{G}\}$

Definition Cost of a path: $\cot(\pi) = \text{sum of costs of all transitions until target location}$ Cost of a strategy: $\cot(\sigma) = \sup\{\cot(\pi) \mid \pi \text{ outcome of } \sigma\}$ Optimal cost in a priced timed game: $\operatorname{optcost}_{\mathcal{G}} = \inf\{\operatorname{cost}(\sigma) \mid \sigma \text{ winning strategy in } \mathcal{G}\}$

The existence of a strategy with cost less than k is undecidable. What about deciding if $optcost_{\mathcal{G}} \leq k$?

The value of the game is 3, but there is no optimal strategy...

Adapting the previous reduction...

Adapting the previous reduction...

- if *M* does not halt: Player 1 simulates correctly until 2ⁿ > 1/ϵ. → cost(σ) ≤ 3 + ϵ
- if *M* halts: correct simulation for finite duration.

$$\label{eq:star} \underset{\text{for all } \sigma}{ \label{eq:star}} 3 + \alpha_{\mathcal{M}}$$

Theorem ([BJM15])

The value problem is undecidable in priced timed games.

[BJM15] Bouyer, Jaziri, Markey. On the Value Problem in Weighted Timed Games. CONCUR, 2015. 👒 🚊 🕨 🖉 🚍 א

Theorem ([BJM15])

The value problem is undecidable in priced timed games.

Remark

- blue nodes and intermediary instruction modules have cost zero everywhere;
- positive weights only occur in acyclic parts.

Definition

A priced timed game \mathcal{G} is almost-strongly non-Zeno if there exists $\kappa > 0$ for any run ρ that starts and ends in the same region: $\operatorname{cost}(\rho) \ge \kappa$ or $\operatorname{cost}(\rho) = 0$

Theorem ([BJM15])

The optimal cost of almost-strongly non-Zeno priced timed automata can be approximated.

[BJM15] Bouyer, Jaziri, Markey. On the Value Problem in Weighted Timed Games. CONCUR, 2015. 🐗 🛢 🕨 🐗 🚍 🕨

Definition

A priced timed game \mathcal{G} is almost-strongly non-Zeno if there exists $\kappa > 0$ for any run ρ that starts and ends in the same region: $\operatorname{cost}(\rho) \ge \kappa$ or $\operatorname{cost}(\rho) = 0$

Theorem ([BJM15])

The optimal cost of almost-strongly non-Zeno priced timed automata can be approximated: for every $\epsilon > 0$, we can compute

• values v_{ϵ}^+ and v_{ϵ}^- such that

$$|v_{\epsilon}^{+} - v_{\epsilon}^{-}| < \epsilon$$
 $v_{\epsilon}^{-} \leq optcost_{\mathcal{G}} \leq v_{\epsilon}^{+}$

• a strategy σ_{ϵ} such that

$$optcost_{\mathcal{G}} \leq cost(\sigma_{\epsilon}) \leq optcost_{\mathcal{G}} + \epsilon.$$

[BJM15] Bouyer, Jaziri, Markey. On the Value Problem in Weighted Timed Games. CONCUR, 2015. 👒 🚊 🕨 🐗 🚍 🕨

• semi-unfolding of region automaton (seen as a timed game)

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

Output cost functions f

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

 \rightsquigarrow reachability timed game in small regions

Proof

- semi-unfolding of region automaton (seen as a timed game)
- compute exact optimal cost in tree-like parts [LMM02,ABM04]
- compute approximate optimal cost in kernels

Output cost functions f

Under- and over-approximate by piecewise constant functions f_{ϵ}^{-} and f_{ϵ}^{+}

 \rightsquigarrow reachability timed game in small regions

Outline of the talk

Introduction: timed automata and timed games

Measuring extra quantities in timed automata
Example: task graph scheduling
Timed automata with observer variables

3 Cost-optimal strategies

- Optimal reachability in priced timed automata
- Optimal reachability in priced timed games

4 Conclusions and future works

5 Advertisements

Conclusions and future directions

Priced timed automata and games

- convenient for modelling resources;
- 1-player setting remains tractable (sort of);
- 2-player setting undecidable, but approximable.
- approximation algorithms are a convenient trade-off.

Conclusions and future directions

Priced timed automata and games

- convenient for modelling resources;
- 1-player setting remains tractable (sort of);
- 2-player setting undecidable, but approximable.
- approximation algorithms are a convenient trade-off.

Future work

- improve approximation technique (in terms of complexity);
- extend results to whole class of priced timed games;
- average energy and energy constraints;
- robust analysis of priced timed games;
- develop a tool.

Advertisements

MOVEP 2016

- 12th Summer School MOVEP
- Genoa, Italy
- 27 June 1 July

Advertisements

MOVEP 2016

- 12th Summer School MOVEP
- Genoa, Italy
- 27 June 1 July

FORMATS 2016

- 14th Int. Conf. FORMATS
- colocated with CONCUR and QEST
- Quebec City, Canada
- 25-27 August (tentative)