
Expressiveness for Real-Time Logics

Timos Antonopoulos, Paul Hunter, Joel Ouaknine,

Shahab Raza, James Worrell

Department of Computer Science
Oxford University

AVERTS
December 2015



Specifying Timed Systems

Want to specify:

“If the brake pads were applied then
the pedal was pushed.”

G (BRAKE→ P PEDAL)

Metric Temporal Logic [Koymans; de Roever; Pnueli ∼ 1990]

MTL = LTL + Timing Constraints

ϕ ::= P | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

We consider MTL with integer and rational constants respectively.
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Predicate Logic as a Yardstick

Work on real time metric formalisms still does not
converge toward a main formalism [. . . ] The most
natural language to discuss systems that evolve in time is
classical predicate logic [. . . ] How are we to choose the
correct logic without the yardstick of the standard
predicate logic?

Hirshfeld and Rabinovich 2004.



Signals as First-Order Structures

I A set MP of monadic predicates: P, Q, R, . . .

I Signal f : R→ 2MP:

I View signals as expansions of (R, <,+1).
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A Predicate Logic for Real Time

Atomic formulas:

P(x) | x < y | y = x + 1

Example. “P is true at least twice in the next time interval”

C2(P)(x) := ∃y ∃z (P(y) ∧ P(z) ∧ x < y < z < x + 1)

Counting modality C2(ϕ)
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Expressive Completeness of LTL

In the qualititative setting, LTL is all you need.

Theorem (Kamp 1968, GPSS 1980)

LTL is as expressive as FO over (R, <).

Question
Is there an analogue of Kamp’s Theorem in the metric setting?
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An Inexpressiveness Result

Theorem (Hirshfeld and Rabinovich 2007)

MTL with integer constants is strictly less expressive than
FO(<,+1) over R.

Moreover no temporal logic with modalities
defined by FO(<,+1)-formulas of bounded quantifier depth is
expressively complete.
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Metric Version of Kamp’s Theorem

Theorem (Hunter, Ouaknine, W. 13)

MTL with rational constants is expressively complete for
FO(<, {+q}q∈Q).

Theorem (Hunter 13)

MTL with counting modalities is expressively complete for
FO(<,+1).

Neither theorem contradicts the inexpressiveness result of Hirshfeld
and Rabinovich!
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Bounded formulas

An FO formula ϕ(x) is N-bounded if all quantifiers are relativized
to the interval (x − N, x + N).

It is a unit formula if all quantifiers
are relativized to (x , x + 1).

Lemma
MTL with rational constants can express all bounded
FO(<, {+q}q∈Q)-formulas.

Proof.

I Suffices to express all N-bounded FO(<,+1)-formulas.

I Suffices in turn to express all unit formulas of FO(<,+1).
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Unit Formulas

MTL with integer constants is unable to express:

“P occurs twice in the next time interval.”

In FO(<, +1):

ϕ(z) = ∃x .∃y .(z < x < y < z + 1) ∧ P(x) ∧ P(y).

In MTL with rational constants:

ϕ = F(0,1)

(
P ∧ F(0,1) P

)
∨

(F(0,1) P ∧ F(1,2) P) ∨

F=2

(
P(0,1)

(
P ∧ P(0,1) P

))
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Decomposition Formulas

A decomposition formula δ(x , y) is any formula of the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧
{ϕi (zi ) : 0 ≤ i < n}

∧
∧
{∀u ((zi−1 < u < zi )→ ψi (u)) : 0 < i ≤ n}

where ϕi and ψi are LTL formulas, regarded as unary predicates.

Lemma
Every unit formula is equivalent to a Boolean combination of
formulas δ(x , x + 1) for δ(x , y) a decomposition formula.

Translation of δ(x , x + 1) to MTL is in similar spirit to translation
of counting modalities.
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Separation of temporal logics

A temporal logic formula is:

I pure past if it is invariant on signals that agree on the past

I pure present if is invariant on signals that agree on the present

I pure future if is invariant on signals that agree on the future

A temporal logic is separable if all its formulas are equivalent to a
boolean combination of pure past, present and future formulas.

G(BRAKE→ P PEDAL)
= P PEDAL ∨ (¬BRAKEU PEDAL) ∨ G(¬BRAKE)
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Separation of temporal logics

Lemma
LTL is separable.

Theorem (Gabbay 1981)

A temporal logic is expressively
complete if and only if it is separable.

Corollary (Kamp’s theorem)

LTL is expressively complete.



Quantitative separation

Separation does not hold in the quantitative setting.

For example,
G(BRAKE→ P(5,10)PEDAL)



Quantitative separation

A metric temporal formula is:

I pure distant past if it is invariant on signals that agree on
(−∞,−1)

I pure distant future if it is invariant on signals that agree on
(1,∞)

I bounded if there is an N such that it is invariant on all signals
that agree on (−N,N)

A temporal logic is metrically separable if every formula is
equivalent to a boolean combination of pure distant past, pure
distant future and bounded formulas.

Lemma
MTL is metrically separable.
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First Main Result

Theorem
MTL with rational endpoints is expressively complete for
FO(<, {+q}q∈Q).

Proof.

I Show that MTL can express all bounded formulas.

I For general formulas, give an inductive transformation from
FO formulas with one free variable to MTL. For the case
φ(x) = ∃y ψ(x , y) use separation and expressive completeness
of bounded formulas.
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k-Variable Property

Definition
A class of structures C has the k-variable property, if every
monadic first-order formula with at most k free variables is
equivalent over C to a formula with at most k variables in total.

Example

A linearly ordered set has at least k elements:

∃x∃y (x < y ∧ ∃x (y < x ∧ . . . ∧ ∃y (x < y) . . .)))

Theorem (Poizat 82; Immerman and Kozen 87)

The class of linear orders has the 3-variable property.
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What Does it Matter?

Descriptive complexity:

Does the class of ordered finite graphs have the
k-variable property for some k?

Theorem (Rossman 08)

Any constant-depth family of Boolean circuits solving the k-clique
problem has size ω(nk/4).

Temporal logic:

Theorem (Gabbay 81)

A class of posets has finite H-dimension if and only there is a finite
expressively complete set of first-order definable temporal
modalities.
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A Caveat

Theorem (Hodkinson and Simon 97)

For every k there are linear orders with H-dimension k that do not
have the `-variable property for any finite `.

Goals for Part II

1. Prove that (R, <,+1) has the 3-variable property.

2. Extend the compositional method to the metric setting.
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Ehrenfeucht-Fräıssé Games

n-round k-pebble EF game on two signals A and B:

I In each round Spoiler places a pebble on some element of one
of the signals. Duplicator responds by placing a corresponding
pebble on an element of the other signal.

I Configuration is a pair of k-tuples (a, b).

I Duplicator wins a play if in each round:

I P(ai ) iff P(bi )
I ai < aj iff bi < bj
I ai = aj + 1 iff bi = bj + 1
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n-round k-pebble EF game on two signals A and B:

I In each round Spoiler places a pebble on some element of one
of the signals. Duplicator responds by placing a corresponding
pebble on an element of the other signal.

I Configuration is a pair of k-tuples (a, b).

I Duplicator wins a play if in each round:

I P(ai ) iff P(bi )
I ai < aj iff bi < bj
I ai = aj + 1 iff bi = bj + 1



Ehrenfeucht-Fräıssé Games
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Ehrenfeucht-Fräıssé Games

Goal. Show that for all n and k there exists m such that if
Duplicator wins the m-round 3-pebble game on any pair of signals
A and B then she wins the n-round k-pebble game.

Method. Use composition.
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(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3

a4 a5

B
b1 b2 b3

b4 b5

A
a1 a2

a4

B
b1 b2

b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3

a4 a5

B
b1 b2 b3

b4 b5

A
a1 a2

a4

B
b1 b2

b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3

a4 a5

B
b1 b2 b3

b4 b5

A
a1 a2

a4

B
b1 b2

b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4

a5

B
b1 b2 b3

b4 b5

A
a1 a2

a4

B
b1 b2

b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4

a5

B
b1 b2 b3

b4 b5

A
a1 a2a4

B
b1 b2

b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4

a5

B
b1 b2 b3

b4 b5

A
a1 a2a4

B
b1 b2b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4

a5

B
b1 b2 b3b4

b5

A
a1 a2a4

B
b1 b2b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4 a5

B
b1 b2 b3b4

b5

A
a1 a2a4

B
b1 b2b4

A
a2 a3

a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4 a5

B
b1 b2 b3b4

b5

A
a1 a2a4

B
b1 b2b4

A
a2 a3 a5

B
b3 b2

b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4 a5

B
b1 b2 b3b4

b5

A
a1 a2a4

B
b1 b2b4

A
a2 a3 a5

B
b3 b2 b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Composition for Linear Orders

A
a1 a2 a3a4 a5

B
b1 b2 b3b4 b5

A
a1 a2a4

B
b1 b2b4

A
a2 a3 a5

B
b3 b2 b5

Theorem (Composition Theorem)

If Duplicator wins the n-round games from (a1a2, b1b2) and
(a2a3, b2b3) then she wins the n-round game from
(a1a2a3, b1b2b3).



Local Composition Theorem for (R, <,+1)
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diameter at most D.
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Local Formulas

Lemma
Let (u, v) be a 3-configuration of diameter at most 2m. If Spoiler
wins the n-round 2m-local game from (u, v), then he wins the
(m + n)-round 3-pebble game from (u, v).



Global Composition Theorem

. . . ul . . . ur . . .

. . . vl . . . vr . . .︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
(u., v.)

(u�, v�)
(u/, v/)

Lemma
Let D ≥ 2n+2. Suppose that Duplicator wins the 2n-round D-local
game from configuration (u�, v�) and the n-round games from
configurations (u/, v/) and (u., v.) respectively. If

ur − ul ≤ D − 2n+1,
ul − ui > 2n for all i < l , and
ui − ur > 2n for all i > r ,

then Duplicator wins the n-round game from configuration (u, v).



Main Result

Theorem
(R, <,+1) has the 3-variable property.

Proof.

1. Extend winning Duplicator strategies from 3-pebble games to
general games.

2. Show result first for local games using local composition
theorem (obtain 3-variable property for time-bounded
properties).

3. Extend result to general games using non-local composition
theorem.
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Further Results

Theorem
For any linear function f (x) = ax + b, the structure (R, <, f ) has
the 3-variable property.

Counterexample. If f : R→ R is “sufficiently wild” then
(R, <, f ) does not have the 3-variable property.

Open Questions.

1. What about polynomials?

2. What about monotone functions?

3. “Establish a general model-theoretic characterization of those
relational structures that posses the k-variable property for
some k.”

Immerman and Kozen 97
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Perspectives

Two-level composition argument:

I Local composition using fractional-part preorder

I Non-local composition using standard order

How does this relate to automata-theoretic approaches?
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