Expressiveness for Real-Time Logics

Timos Antonopoulos, Paul Hunter, Joel Ouaknine, Shahab Raza, James Worrell

Department of Computer Science Oxford University

> AVERTS December 2015

Want to specify:

"If the brake pads were applied then the pedal was pushed."

Want to specify:

"If the brake pads were applied then the pedal was pushed."

 $\mathbf{G} (\texttt{BRAKE} \rightarrow \mathbf{P} \texttt{PEDAL})$

Want to specify:

"If the brake pads were applied then the pedal was pushed between 0.5ms and 1ms ago."

G (BRAKE $\rightarrow P_{(5,10)}$ PEDAL)

Want to specify:

"If the brake pads were applied then the pedal was pushed between 0.5ms and 1ms ago."

 $G(BRAKE
ightarrow P_{(5,10)} PEDAL)$

Metric Temporal Logic [Koymans; de Roever; Pnueli \sim 1990]

MTL = LTL + Timing Constraints

 $\varphi ::= P \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \varphi_1 \ U_{l} \ \varphi_2 \mid \varphi_1 \ S_{l} \ \varphi_2$

Want to specify:

"If the brake pads were applied then the pedal was pushed between 0.5ms and 1ms ago."

 $G(BRAKE \rightarrow P_{(5,10)} PEDAL)$

Metric Temporal Logic [Koymans; de Roever; Pnueli \sim 1990]

MTL = LTL + Timing Constraints

 $\varphi ::= P \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \varphi_1 \ U_{l} \ \varphi_2 \mid \varphi_1 \ S_{l} \ \varphi_2$

We consider MTL with integer and rational constants respectively.

Predicate Logic as a Yardstick

Work on real time metric formalisms still does not converge toward a main formalism [...] The most natural language to discuss systems that evolve in time is classical predicate logic [...] How are we to choose the correct logic without the yardstick of the standard predicate logic?

Hirshfeld and Rabinovich 2004.

Signals as First-Order Structures

► A set **MP** of monadic predicates: *P*, *Q*, *R*, ...

Signals as First-Order Structures

- ► A set **MP** of monadic predicates: *P*, *Q*, *R*, ...
- ▶ Signal $f : \mathbb{R} \to 2^{\mathsf{MP}}$:

Signals as First-Order Structures

- ► A set **MP** of monadic predicates: *P*, *Q*, *R*, ...
- ▶ Signal $f : \mathbb{R} \to 2^{\mathsf{MP}}$:

• View signals as expansions of $(\mathbb{R}, <, +1)$.

A Predicate Logic for Real Time

Atomic formulas:

$$P(x) \mid x < y \mid y = x + 1$$

A Predicate Logic for Real Time

Atomic formulas:

$$P(x) \mid x < y \mid y = x + 1$$

Example. "*P* is true at least twice in the next time interval" $C_2(P)(x) := \exists y \exists z (P(y) \land P(z) \land x < y < z < x + 1)$

A Predicate Logic for Real Time

Atomic formulas:

$$P(x) \mid x < y \mid y = x + 1$$

Example. "*P* is true at least twice in the next time interval" $C_2(P)(x) := \exists y \exists z (P(y) \land P(z) \land x < y < z < x + 1)$

Counting modality $C_2(\varphi)$

Expressive Completeness of LTL

In the qualititative setting, LTL is all you need.

Theorem (Kamp 1968, GPSS 1980) LTL is as expressive as FO over $(\mathbb{R}, <)$.

Expressive Completeness of LTL

In the qualititative setting, LTL is all you need.

Theorem (Kamp 1968, GPSS 1980) LTL is as expressive as FO over $(\mathbb{R}, <)$.

Question

Is there an analogue of Kamp's Theorem in the metric setting?

An Inexpressiveness Result

Theorem (Hirshfeld and Rabinovich 2007)

MTL with integer constants is strictly less expressive than FO(<, +1) over \mathbb{R} .

An Inexpressiveness Result

Theorem (Hirshfeld and Rabinovich 2007)

MTL with integer constants is strictly less expressive than FO(<,+1) over \mathbb{R} . Moreover no temporal logic with modalities defined by FO(<,+1)-formulas of bounded quantifier depth is expressively complete.

Metric Version of Kamp's Theorem

Theorem (Hunter, Ouaknine, W. 13)

MTL with rational constants is expressively complete for $FO(<, \{+q\}_{q \in \mathbb{Q}})$.

Metric Version of Kamp's Theorem

Theorem (Hunter, Ouaknine, W. 13) MTL with rational constants is expressively complete for $FO(<, \{+q\}_{q\in\mathbb{Q}})$.

Theorem (Hunter 13)

MTL with counting modalities is expressively complete for FO(<, +1).

Metric Version of Kamp's Theorem

Theorem (Hunter, Ouaknine, W. 13) MTL with rational constants is expressively complete for $FO(<, \{+q\}_{q \in \mathbb{Q}})$.

Theorem (Hunter 13)

MTL with counting modalities is expressively complete for FO(<, +1).

Neither theorem contradicts the inexpressiveness result of Hirshfeld and Rabinovich!

An FO formula $\varphi(x)$ is *N*-bounded if all quantifiers are relativized to the interval (x - N, x + N).

An FO formula $\varphi(x)$ is *N*-bounded if all quantifiers are relativized to the interval (x - N, x + N). It is a unit formula if all quantifiers are relativized to (x, x + 1).

An FO formula $\varphi(x)$ is *N*-bounded if all quantifiers are relativized to the interval (x - N, x + N). It is a unit formula if all quantifiers are relativized to (x, x + 1).

Lemma

MTL with rational constants can express all bounded $FO(<, \{+q\}_{q \in \mathbb{Q}})$ -formulas.

An FO formula $\varphi(x)$ is *N*-bounded if all quantifiers are relativized to the interval (x - N, x + N). It is a unit formula if all quantifiers are relativized to (x, x + 1).

Lemma

MTL with rational constants can express all bounded $FO(<, \{+q\}_{q\in\mathbb{Q}})$ -formulas.

Proof.

Suffices to express all *N*-bounded FO(<, +1)-formulas.

An FO formula $\varphi(x)$ is *N*-bounded if all quantifiers are relativized to the interval (x - N, x + N). It is a unit formula if all quantifiers are relativized to (x, x + 1).

Lemma

MTL with rational constants can express all bounded $FO(<, \{+q\}_{q\in\mathbb{Q}})$ -formulas.

Proof.

- Suffices to express all *N*-bounded FO(<, +1)-formulas.
- Suffices in turn to express all unit formulas of FO(<, +1).

Unit Formulas

MTL with integer constants is unable to express:

"P occurs twice in the next time interval."

Unit Formulas

MTL with integer constants is unable to express:

"P occurs twice in the next time interval."

In FO(<, +1):

 $\varphi(z) = \exists x. \exists y. (z < x < y < z+1) \land P(x) \land P(y).$

Unit Formulas

MTL with integer constants is unable to express:

"P occurs twice in the next time interval."

In FO(<, +1): $\varphi(z) = \exists x. \exists y. (z < x < y < z + 1) \land P(x) \land P(y).$

In MTL with rational constants:

Decomposition Formulas

A decomposition formula $\delta(x, y)$ is any formula of the form

$$\begin{aligned} x < y \land \exists z_0 \dots \exists z_n (x = z_0 < \dots < z_n = y) \\ \land \bigwedge \{\varphi_i(z_i) : 0 \le i < n\} \\ \land \bigwedge \{\forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : 0 < i \le n\} \end{aligned}$$

where φ_i and ψ_i are LTL formulas, regarded as unary predicates.

Decomposition Formulas

A decomposition formula $\delta(x, y)$ is any formula of the form

$$\begin{aligned} x < y \land \exists z_0 \dots \exists z_n (x = z_0 < \dots < z_n = y) \\ \land \bigwedge \{\varphi_i(z_i) : 0 \le i < n\} \\ \land \bigwedge \{\forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : 0 < i \le n\} \end{aligned}$$

where φ_i and ψ_i are LTL formulas, regarded as unary predicates.

Lemma

Every unit formula is equivalent to a Boolean combination of formulas $\delta(x, x + 1)$ for $\delta(x, y)$ a decomposition formula.

Decomposition Formulas

A decomposition formula $\delta(x, y)$ is any formula of the form

$$\begin{aligned} x < y \land \exists z_0 \dots \exists z_n (x = z_0 < \dots < z_n = y) \\ \land \bigwedge \{\varphi_i(z_i) : 0 \le i < n\} \\ \land \bigwedge \{\forall u ((z_{i-1} < u < z_i) \rightarrow \psi_i(u)) : 0 < i \le n\} \end{aligned}$$

where φ_i and ψ_i are LTL formulas, regarded as unary predicates.

Lemma

Every unit formula is equivalent to a Boolean combination of formulas $\delta(x, x + 1)$ for $\delta(x, y)$ a decomposition formula.

Translation of $\delta(x, x + 1)$ to MTL is in similar spirit to translation of counting modalities.

A temporal logic formula is:

- pure past if it is invariant on signals that agree on the past
- pure present if is invariant on signals that agree on the present
- pure future if is invariant on signals that agree on the future

A temporal logic formula is:

- pure past if it is invariant on signals that agree on the past
- pure present if is invariant on signals that agree on the present
- pure future if is invariant on signals that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

A temporal logic formula is:

- pure past if it is invariant on signals that agree on the past
- pure present if is invariant on signals that agree on the present
- pure future if is invariant on signals that agree on the future

A temporal logic is separable if all its formulas are equivalent to a boolean combination of pure past, present and future formulas.

 $\begin{aligned} \mathbf{G} (\text{BRAKE} &\to \mathbf{P} \text{ PEDAL}) \\ &= \mathbf{P} \text{ PEDAL } \lor (\neg \text{BRAKE } \mathbf{U} \text{ PEDAL}) \lor \mathbf{G} (\neg \text{BRAKE}) \end{aligned}$

Lemma LTL is separable.

Theorem (Gabbay 1981) A temporal logic is expressively complete if and only if it is separable.

Corollary (Kamp's theorem) LTL is expressively complete.

Quantitative separation

Separation does not hold in the quantitative setting.

For example,

 $\textbf{G}(\texttt{BRAKE} \rightarrow \textbf{P}_{(5,10)}\texttt{PEDAL})$
Quantitative separation

A metric temporal formula is:

- pure distant past if it is invariant on signals that agree on $(-\infty, -1)$
- pure distant future if it is invariant on signals that agree on $(1,\infty)$
- ▶ bounded if there is an N such that it is invariant on all signals that agree on (-N, N)

A temporal logic is metrically separable if every formula is equivalent to a boolean combination of pure distant past, pure distant future and bounded formulas.

Quantitative separation

A metric temporal formula is:

- pure distant past if it is invariant on signals that agree on $(-\infty, -1)$
- pure distant future if it is invariant on signals that agree on $(1,\infty)$
- ▶ bounded if there is an N such that it is invariant on all signals that agree on (-N, N)

A temporal logic is metrically separable if every formula is equivalent to a boolean combination of pure distant past, pure distant future and bounded formulas.

Lemma

MTL is metrically separable.

Quantitative separation

A metric temporal formula is:

- pure distant past if it is invariant on signals that agree on $(-\infty, -1)$
- pure distant future if it is invariant on signals that agree on $(1,\infty)$
- ▶ bounded if there is an N such that it is invariant on all signals that agree on (-N, N)

A temporal logic is metrically separable if every formula is equivalent to a boolean combination of pure distant past, pure distant future and bounded formulas.

Lemma

MTL is metrically separable.

$$\begin{array}{lll} \textbf{G}(\texttt{BRAKE} \rightarrow \textbf{P}_{(5,10)}\texttt{PEDAL}) & = & \textbf{G}_{(0,11]}(\texttt{BRAKE} \rightarrow \textbf{P}_{(5,10)}\texttt{PEDAL}) \land \\ & \textbf{G}_{(11,\infty)}(\texttt{BRAKE} \rightarrow \textbf{P}_{(5,10)}\texttt{PEDAL}) \end{array}$$

First Main Result

Theorem MTL with rational endpoints is expressively complete for $FO(<, \{+q\}_{q \in \mathbb{Q}}).$

First Main Result

Theorem MTL with rational endpoints is expressively complete for $FO(<, \{+q\}_{q \in \mathbb{Q}}).$

Proof.

Show that MTL can express all bounded formulas.

First Main Result

Theorem MTL with rational endpoints is expressively complete for $FO(<, \{+q\}_{q \in \mathbb{Q}}).$

Proof.

- Show that MTL can express all bounded formulas.
- For general formulas, give an inductive transformation from FO formulas with one free variable to MTL. For the case φ(x) = ∃y ψ(x, y) use separation and expressive completeness of bounded formulas.

Part II

Part II

""I think there is a world market for maybe five computers"

Thomas J Watson, 1943

Part II

""I think there is a world market for maybe five computers"

Thomas J Watson, 1943

"Three variables suffice for real-time logic"

Antonopoulos, Hunter, Raza, Worrell (2015)

Definition

A class of structures C has the *k*-variable property, if every monadic first-order formula with at *most k free variables* is equivalent over C to a formula with at *most k variables in total*.

Definition

A class of structures C has the *k*-variable property, if every monadic first-order formula with at *most k free variables* is equivalent over C to a formula with at *most k variables in total*.

Example

A linearly ordered set has at least k elements:

Definition

A class of structures C has the *k*-variable property, if every monadic first-order formula with at *most k free variables* is equivalent over C to a formula with at *most k variables in total*.

Example

A linearly ordered set has at least k elements:

$$\exists x \exists y (x < y \land \exists x (y < x \land \ldots \land \exists y (x < y) \ldots)))$$

Definition

A class of structures C has the *k*-variable property, if every monadic first-order formula with at *most k free variables* is equivalent over C to a formula with at *most k variables in total*.

Example

A linearly ordered set has at least k elements:

$$\exists x \exists y (x < y \land \exists x (y < x \land \ldots \land \exists y (x < y) \ldots)))$$

Theorem (Poizat 82; Immerman and Kozen 87) The class of linear orders has the 3-variable property.

Descriptive complexity:

Does the class of ordered finite graphs have the *k*-variable property for some *k*?

Descriptive complexity:

Does the class of ordered finite graphs have the *k*-variable property for some *k*?

Theorem (Rossman 08)

Any constant-depth family of Boolean circuits solving the k-clique problem has size $\omega(n^{k/4})$.

Descriptive complexity:

Does the class of ordered finite graphs have the *k*-variable property for some *k*?

Theorem (Rossman 08)

Any constant-depth family of Boolean circuits solving the k-clique problem has size $\omega(n^{k/4})$.

Temporal logic:

Theorem (Gabbay 81)

A class of posets has finite H-dimension if and only there is a finite expressively complete set of first-order definable temporal modalities.

Theorem (Hodkinson and Simon 97)

For every k there are linear orders with H-dimension k that do not have the ℓ -variable property for any finite ℓ .

Theorem (Hodkinson and Simon 97)

For every k there are linear orders with H-dimension k that do not have the ℓ -variable property for any finite ℓ .

Goals for Part II

Theorem (Hodkinson and Simon 97)

For every k there are linear orders with H-dimension k that do not have the ℓ -variable property for any finite ℓ .

Goals for Part II

1. Prove that $(\mathbb{R},<,+1)$ has the 3-variable property.

Theorem (Hodkinson and Simon 97)

For every k there are linear orders with H-dimension k that do not have the ℓ -variable property for any finite ℓ .

Goals for Part II

- 1. Prove that $(\mathbb{R}, <, +1)$ has the 3-variable property.
- 2. Extend the compositional method to the metric setting.

n-round *k*-pebble EF game on two signals A and B:

n-round *k*-pebble EF game on two signals A and B:

In each round Spoiler places a pebble on some element of one of the signals. Duplicator responds by placing a corresponding pebble on an element of the other signal.

n-round *k*-pebble EF game on two signals A and B:

- In each round Spoiler places a pebble on some element of one of the signals. Duplicator responds by placing a corresponding pebble on an element of the other signal.
- Configuration is a pair of k-tuples $(\overline{a}, \overline{b})$.

n-round *k*-pebble EF game on two signals A and B:

- In each round Spoiler places a pebble on some element of one of the signals. Duplicator responds by placing a corresponding pebble on an element of the other signal.
- Configuration is a pair of k-tuples $(\overline{a}, \overline{b})$.
- Duplicator wins a play if in each round:

Goal. Show that for all n and k there exists m such that if Duplicator wins the m-round 3-pebble game on any pair of signals \mathcal{A} and \mathcal{B} then she wins the n-round k-pebble game.

Goal. Show that for all n and k there exists m such that if Duplicator wins the m-round 3-pebble game on any pair of signals \mathcal{A} and \mathcal{B} then she wins the n-round k-pebble game.

Method. Use composition.

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

Theorem (Composition Theorem)

D-Local game: Spoiler and Duplicator maintain configurations of diameter at most D.

Theorem (D-Local Composition Theorem)

For all n there exists m such that if Duplicator wins the m-round D-local games from (a_2a_3, b_2b_3) and (a_1a_3, b_1b_3) then she wins the n-round D-local game from $(a_1a_2a_3, b_1b_2b_3)$.

Local Formulas

Lemma

Let $(\overline{u}, \overline{v})$ be a 3-configuration of diameter at most 2^m . If Spoiler wins the n-round 2^m -local game from $(\overline{u}, \overline{v})$, then he wins the (m + n)-round 3-pebble game from $(\overline{u}, \overline{v})$.

Global Composition Theorem

Lemma

Let $D \ge 2^{n+2}$. Suppose that Duplicator wins the 2n-round D-local game from configuration $(\overline{u}_{\diamond}, \overline{v}_{\diamond})$ and the n-round games from configurations $(\overline{u}_{\triangleleft}, \overline{v}_{\triangleleft})$ and $(\overline{u}_{\triangleright}, \overline{v}_{\triangleright})$ respectively. If

$$\begin{array}{ll} u_r - u_l &\leq D - 2^{n+1}, \\ u_l - u_i &> 2^n & \mbox{for all } i < l, \mbox{ and} \\ u_i - u_r &> 2^n & \mbox{for all } i > r, \end{array}$$

then Duplicator wins the *n*-round game from configuration $(\overline{u}, \overline{v})$.

Theorem $(\mathbb{R}, <, +1)$ has the 3-variable property.

Theorem $(\mathbb{R}, <, +1)$ has the 3-variable property.

Proof.

1. Extend winning Duplicator strategies from 3-pebble games to general games.

Theorem $(\mathbb{R}, <, +1)$ has the 3-variable property.

Proof.

- 1. Extend winning Duplicator strategies from 3-pebble games to general games.
- 2. Show result first for local games using local composition theorem (obtain 3-variable property for time-bounded properties).

Theorem $(\mathbb{R}, <, +1)$ has the 3-variable property.

Proof.

- 1. Extend winning Duplicator strategies from 3-pebble games to general games.
- 2. Show result first for local games using local composition theorem (obtain 3-variable property for time-bounded properties).
- 3. Extend result to general games using non-local composition theorem.

Theorem

For any linear function f(x) = ax + b, the structure $(\mathbb{R}, <, f)$ has the 3-variable property.

Theorem

For any linear function f(x) = ax + b, the structure $(\mathbb{R}, <, f)$ has the 3-variable property.

Counterexample. If $f : \mathbb{R} \to \mathbb{R}$ is "sufficiently wild" then $(\mathbb{R}, <, f)$ does not have the 3-variable property.

Theorem

For any linear function f(x) = ax + b, the structure $(\mathbb{R}, <, f)$ has the 3-variable property.

Counterexample. If $f : \mathbb{R} \to \mathbb{R}$ is "sufficiently wild" then $(\mathbb{R}, <, f)$ does not have the 3-variable property.

Open Questions.

1. What about polynomials?

Theorem

For any linear function f(x) = ax + b, the structure $(\mathbb{R}, <, f)$ has the 3-variable property.

Counterexample. If $f : \mathbb{R} \to \mathbb{R}$ is "sufficiently wild" then $(\mathbb{R}, <, f)$ does not have the 3-variable property.

Open Questions.

- 1. What about polynomials?
- 2. What about monotone functions?

Theorem

For any linear function f(x) = ax + b, the structure $(\mathbb{R}, <, f)$ has the 3-variable property.

Counterexample. If $f : \mathbb{R} \to \mathbb{R}$ is "sufficiently wild" then $(\mathbb{R}, <, f)$ does not have the 3-variable property.

Open Questions.

- 1. What about polynomials?
- 2. What about monotone functions?
- "Establish a general model-theoretic characterization of those relational structures that posses the k-variable property for some k."

Immerman and Kozen 97

Perspectives

Two-level composition argument:

Perspectives

Two-level composition argument:

- Local composition using fractional-part preorder
- Non-local composition using standard order

Perspectives

Two-level composition argument:

- Local composition using fractional-part preorder
- Non-local composition using standard order

How does this relate to automata-theoretic approaches?