Modelling time and recursion

L. Clemente, S. Lasota (University of Warsaw)
F. Mazowiecki, R. Lazić (University of Warwick)

Warsaw, July 2017
Summary

1. Modelling time: clocks vs registers.
3. Solution technique: reduction to 1-BVASS(±).
Clocks vs registers

In a nutshell:
- Clocks record the *difference* between events’ timestamps.
- Registers record the events’ timestamps themselves.

The two approaches are essentially equivalent*.

*with uninitialised clocks (preserves emptiness)
Clocks vs registers

Consider the timed language over \{a, b\}^* “wait 1 sec after a and 2 sec after b”
Consider the timed language over \{a, b\}^* “wait 1 sec after a and 2 sec after b”
Consider the timed language over \(\{a, b\}^* \) “wait 1 sec after a and 2 sec after b”}

CLOCKS

- \(a, x = 1, x := 0 \)
- \(b, x = 2, x := 0 \)
- \(a, x = 2, x := 0 \)

REGISTERS

- \(a, x := 0 \)
- \(b, x := 0 \)
Consider the timed language over \{a, b\}^* “wait 1 sec after a and 2 sec after b”

\[
L = \{ (c_0,t_0), \ldots, (c_n,t_n) | (c_i = a \Rightarrow t_{i+1} - t_i = 1) \wedge (c_i = b \Rightarrow t_{i+1} - t_i = 2) \}
\]
Consider the timed language over \(\{a, b\}^* \) “wait 1 sec after a and 2 sec after b”

CLOCKS

\[
\begin{align*}
\text{a, } x &= 1, \ x := 0 \\
\text{b, } x &= 2, \ x := 0 \\
\text{a, } x &= 0 \\
\text{b, } x &= 1, \ x := 0 \\
\text{a, } x &= 2, \ x := 0
\end{align*}
\]

REGISTERS

\[
\begin{align*}
\text{a, } t - x &= 1, \ x' = t \\
\text{b, } t - x &= 2, \ x' = t \\
\text{a, } x' &= t \\
\text{b, } t - x &= 1, \ x' = t \\
\text{a, } t - x &= 2, \ x' = t
\end{align*}
\]

\(t: \) current timestamp

\(x: \) current

\(x': \) new
Clocks vs registers

Consider the timed language over \(\{a, b\}^*\) “wait 1 sec after a and 2 sec after b”

\[
L = \{ (c_0, t_0), \ldots, (c_n, t_n) \mid (c_i = a \Rightarrow t_{i+1} - t_i = 1) \land (c_i = b \Rightarrow t_{i+1} - t_i = 2) \}
\]

CLOCKS

\[
\begin{align*}
a, x &= 1, x := 0 \\
b, x &= 2, x := 0 \\
a, x &= 0 \\
b, x &= 1, x := 0 \\
a, x &= 2, x := 0 \\
b, x &= 0
\end{align*}
\]

REGISTERS

\[
\begin{align*}
a, t - x &= 1, x' = t \\
b, t - x &= 2, x' = t \\
a, x' &= t \\
b, t - x &= 1, x' = t \\
a, t - x &= 2, x' = t \\
b, x' &= t
\end{align*}
\]

Guard → Constraint

x: current
x’: new
Consider the timed language over \(\{a, b\}^* \) “wait 1 sec after \(a \) and 2 sec after \(b \)”

CLOCKS

- \(a, x = 1, x := 0 \)
- \(b, x = 2, x := 0 \)
- \(a, x := 0 \)
- \(b, x := 0 \)

REGISTERS

- \(a, t - x = 1, x' = t \)
- \(b, t - x = 2, x' = t \)
- \(a, x' = t \)
- \(b, x' = t \)

- \(x: \) current
- \(x': \) new

guards → constraints

reset → constraint
Timed register automata

Not a new concept:
Timed register automata

Not a new concept:

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):
Timed register automata

Not a new concept:

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):

FO-definable automata over

- \((\mathbb{N}, =)\): register automata [Kaminski, Francez TCS’94].
Timed register automata

Not a new concept:

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):

FO-definable automata over
- \((\mathbb{N}, =)\): register automata [Kaminski, Francez TCS’94].
- \((\mathbb{Z}, \leq, +1)\): discrete timed automata.
Timed register automata

Not a new concept:

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):

FO-definable automata over
- \((\mathbb{N}, =)\): register automata [Kaminski, Francez TCS’94].
- \((\mathbb{Z}, \leq, +1)\): discrete timed automata.
- \((\mathbb{R}, \leq, +1), (\mathbb{Q}, \leq, +1)\): dense timed automata.
Timed register automata

Fix finitely many registers $X = \{x, y, \ldots\}$. A timed register automaton is a tuple

$$A = \langle Q, I, F, \Delta, \varphi(\delta) \rangle$$

where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation.
- For every $\delta \in \Delta$, $\varphi(\delta)$ is a constraint using registers $X \cup X' \cup \{t\}$ over $(\mathbb{Q}, \leq, +1)$.
Timed register automata

Fix finitely many registers $X = \{x, y, \ldots\}$. A *timed register automaton* is a tuple

$$A = \langle Q, I, F, \Delta, \varphi(\delta) \rangle$$

where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation.
- For every $\delta \in \Delta$, $\varphi(\delta)$ is a *constraint* using registers $X \cup X' \cup \{t\}$ over $(\mathbb{Q}, \leq, +1)$.
 - Atomic statements of the form: $x + 3 \leq y + 2$ with $x, y \in X \cup X' \cup \{t\}$.
Timed register automata

Fix finitely many registers $X = \{x, y, \ldots\}$. A timed register automaton is a tuple

$$A = \langle Q, I, F, \Delta, \varphi(\delta) \rangle$$

where
- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation.
- For every $\delta \in \Delta$, $\varphi(\delta)$ is a constraint using registers $X \cup X' \cup \{t\}$ over $(\mathbb{Q}, \leq, +1)$.
 - Atomic statements of the form: $x + 3 \leq y + 2$ with $x, y \in X \cup X' \cup \{t\}$.
 - Boils down to conjunctions of $y - x \in I$, with I an interval in $\mathbb{Q} \cup \{+\infty, -\infty\}$.
This model is too powerful. Can simulate 2-counter machines.
Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.

Basic operations:
- $c++$.
- $c--$.
- $c == 0$.
Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.
Basic operations:
- $c++$.
- $c--$.
- $c == 0$.

Registers

Let x, y, z be three registers over $(\mathbb{N}, \leq,+1)$.

Transformation: $c \rightarrow x - z$, $d \rightarrow y - z$
Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.

Basic operations:

- $c++$.
- $c--$.
- $c == 0$.

Registers

Let x, y, z be three registers over $(\mathbb{N}, \leq, +1)$.

- $x' = x + 1$.
- $x' = x - 1 \land x' \geq z$.
- $x = z$, $x' = x$.

Transformation: $c \rightarrow x - z$, $d \rightarrow y - z$
Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.

Basic operations:

- $c++$.
- $c--$.
- $c == 0$.

Registers

Let x, y, z be three registers over $(\mathbb{N}, \leq, +1)$.

- $x' = x + 1$.
- $x' = x - 1 \land x' \geq z$.
- $x = z$, $x' = x$.

Transformation: $c \rightarrow x - z$, $d \rightarrow y - z$
Fix finitely many registers $X = \{x, y, \ldots\}$. A timed register automaton is a tuple

$$A = \langle Q, I, F, \Delta, \varphi(\delta), K \rangle$$

where
- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation.
- For every $\delta \in \Sigma$, $\varphi(\delta)$ is a constraint using registers $X \cup X' \cup \{t\}$ over (\mathbb{Q}, \leq, $+1$).
Timed register automata

Fix finitely many registers $X = \{x, y, \ldots\}$. A *timed register automaton* is a tuple

$$A = \langle Q, I, F, \Delta, \varphi(\delta), K \rangle$$

where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation.
- For every $\delta \in \Sigma$, $\varphi(\delta)$ is a *constraint* using registers $X \cup X' \cup \{t\}$ over $(\mathbb{Q}, \leq, +1)$.
- $K \in \mathbb{N}$ is a *boundedness threshold*.

- Valuations $\rho : X \mapsto \mathbb{Q}$ are restricted to satisfy: $\max |\rho(x) - \rho(y)| \leq K$.
- \sim max constant in timed automata.
Fix finitely many registers $X = \{x, y, \ldots\}$. A *timed register automaton* is a tuple

$$A = \langle Q, I, F, \Delta, \varphi(\delta), K \rangle$$

where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation.
- For every $\delta \in \Sigma$, $\varphi(\delta)$ is a *constraint* using registers $X \cup X' \cup \{t\}$ over $(\mathbb{Q}, \leq, +1)$.
- $K \in \mathbb{N}$ is a *boundedness threshold*.

- Valuations $\rho : X \mapsto \mathbb{Q}$ are restricted to satisfy: $\max |\rho(x) - \rho(y)| \leq K$.
- \sim max constant in timed automata.
A timed register automaton recognises a language of *timed words*

\[L(A) \subseteq (\Sigma \times \mathbb{Q})^*. \]

There is no built-in notion of monotonicity of time.
Monotonicity of time

A timed register automaton recognises a language of *timed words*

\[L(A) \subseteq (\Sigma \times \mathbb{Q})^*. \]

There is no built-in notion of monotonicity of time.

Monotonic time *can be enforced* within the model:

- Add an extra register \(z \).
- Add to every transition the constraint

\[z \leq t \land z' = t \]
Monotonicity of time

A timed register automaton recognises a language of \textit{timed words}

\[L(A) \subseteq (\Sigma \times \mathbb{Q})^*. \]

There is no built-in notion of monotonicity of time.

Monotonic time \textit{can be enforced} within the model:

- Add an extra register \(z \).
- Add to every transition the constraint

\[z \leq t \land z' = t \]
Monotonicity of time

A timed register automaton recognises a language of *timed words*

\[L(A) \subseteq (\Sigma \times \mathbb{Q})^*. \]

There is no built-in notion of monotonicity of time.

Monotonic time *can be enforced* within the model:

- Add an extra register \(z \).
- Add to every transition the constraint \(z \leq t \land z' = t \).

Check that the next timestamp is non-decreasing.

Save the timestamp.
Pushdown automata + time

TA + (untimed) stack

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]
Pushdown automata + time

TA + (untimed) stack

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]

Recursive timed automata
[Benerecetti, Minopoli, Peron TIME’10; Trivedi, Wojtczak ATVA’10]

clocks on the stack are “frozen”
Pushdown automata + time

- TA + (untimed) stack
 - Pushdown timed automata [Bouajjani, Echahed, Robbana HS’94]
 - Recursive timed automata [Benerecetti, Minopoli, Peron TIME’10; Trivedi, Wojtczak ATVA’10]

- TA + timed stack
 - Dense-timed pushdown automata [Abdulla, Atig, Stenman LICS’12]

Clocks on the stack are “frozen”
Pushdown automata + time

TA + (untimed) stack \[\text{expressively equivalent}\] TA + timed stack

- Pushdown timed automata
 [Bouajjani, Echahed, Robbana HS’94]

- Recursive timed automata
 [Benerecetti, Minopoli, Peron TIME’10; Trivedi, Wojtczak ATVA’10]

- Dense-timed pushdown automata
 [Abdulla, Atig, Stenman LICS’12]

- clocks on the stack are “frozen”
Pushdown automata + time

TA + (untimed) stack expressively equivalent TA + timed stack

PUSHDOWN TIMED AUTOMATA
[Bouajjani, Echahed, Robbana HS’94]

DENSE-TIMED PUSHDOWN AUTOMATA
[Abdulla, Atig, Stenman LICS’12]

RECURSIVE TIMED AUTOMATA
[Benerecetti, Minopoli, Peron TIME’10; Trivedi, Wojtczak ATVA’10]

TIMED REGISTER PUSHDOWN AUTOMATA
[C, Lasota LICS’15; C, Lasota, Lazić, Mazowiecki LICS’17]

clocks on the stack are “frozen” registers on the stack
In dtPDA [Abdulla, Atig, Stenman LICS’12]:

- Guards are of the form \(x \in I \).
- Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
- Clocks on the stack evolve at the same rate as control clocks.
- Clock \(x \) can be popped from the stack if it satisfies the *pop guard* \(x \in I \).
Dense-timed pushdown automata

In dtPDA [Abdulla, Atig, Stenman LICS’12]:

- Guards are of the form $x \in I$.
- Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
- Clocks on the stack evolve at the same rate as control clocks.
- Clock x can be popped from the stack if it satisfies the pop guard $x \in I$.

Limitations:
- No diagonal control-control clock constraints (this is not a limitation).
Dense-timed pushdown automata

In dtPDA [Abdulla, Atig, Stenman LICS’12]:

- Guards are of the form $x \in I$.
- Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
- Clocks on the stack evolve at the same rate as control clocks.
- Clock x can be popped from the stack if it satisfies the \textit{pop guard} $x \in I$.

Limitations:
- No diagonal control-control clock constraints (this is not a limitation).
- No diagonal control-stack push clock constraints (unknown).
- No diagonal control-stack pop clock constraints (this is not a limitation).
Semantic collapse of dtPDA

Very strong collapse result:

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of timed languages as pushdown timed automata of [BER HS’94].
Semantic collapse of dtPDA

Very strong collapse result:

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of timed languages as pushdown timed automata of [BER HS’94].

In other words, the stack can be *untimed*.
Semantic collapse of dtPDA

Very strong collapse result:

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of timed languages as pushdown timed automata of [BER HS’94].

In other words, the stack can be *untimed*.

Intuition:
- Time is monotone + stack LIFO policy
 \[\Rightarrow\] it suffices to keep track of finitely many pop constraints in the state
 \[\Rightarrow\] pop guards can be eliminated while preserving the timed language
Semantic collapse of dtPDA

Pop guards of the form $x \in [2, 3] + \text{time is monotone} + \text{stack LIFO policy}$

Upper bound constraints:

old subsumes new
Semantic collapse of dtPDA

Pop guards of the form $x \in [2, 3] + \text{time is monotone + stack LIFO policy}$

Upper bound constraints:

old subsumes new

≤ 3
Semantic collapse of dtPDA

Pop guards of the form $x \in [2, 3] + \text{time is monotone + stack LIFO policy}$

Upper bound constraints:

old subsumes new

≤ 3

- push(0)
- push(0)
- pop(≤ 3)
- pop(≤ 3)
Semantic collapse of dtPDA

Pop guards of the form $x \in [2, 3] + \text{time is monotone} + \text{stack LIFO policy}$

Upper bound constraints:

old subsumes new

\[\leq 3\]
Semantic collapse of dtPDA

Pop guards of the form $x \in [2, 3] +$ time is monotone + stack LIFO policy

Upper bound constraints:

old subsumes new

\[
\begin{align*}
\text{push(0)} & \quad x := 0 \\
\text{push(0)} & \quad \text{pop(} \leq 3) \\
\text{pop(} \leq 3) & \quad x \leq 3
\end{align*}
\]
Semantic collapse of dtPDA

Pop guards of the form $x \in [2, 3] + \text{time is monotone} + \text{stack LIFO policy}$

Upper bound constraints:

- old subsumes new

Lower bound constraints:

- new subsumes old

- new clock
Semantic collapse of dtPDA

Very strong collapse result:

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of timed languages as pushdown timed automata of [BER HS’94].

Consequences:
- dtPDA are expressively equivalent to TA + untimed stack (PDTA).
Semantic collapse of dtPDA

Very strong collapse result:

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of timed languages as pushdown timed automata of [BER HS’94].

Consequences:
- dtPDA are expressively equivalent to TA + untimed stack (PDTA).

Complexity:
- Add linearly many clocks and exponentially many control locations.
- Emptiness of PDTA is exponential in the number of clocks and polynomial in the number of control locations ⇒ emptiness of dtPDA is in EXPTIME.
Follow-ups to dtPDA

Follow-ups to dtPDA

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.
Follow-ups to dtPDA

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Droste, Perevoshchikov, “A Logical Characterization of Timed Pushdown Languages”, CSR’15. (the logic collapses)
Follow-ups to dtPDA

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Droste, Perevoshchikov, “A Logical Characterization of Timed Pushdown Languages”, CSR’15. (the logic collapses)
Bhave, Dave, Krishna, Phawade, Trivedi, “A Logical Characterization for Dense-time Visibly Pushdown Automata”, LATA’16.
Bhave, Dave, Krishna, Phawade, Trivedi, “A Perfect Class of Context-Sensitive Timed Languages”, DLT’16. (multitstack)
Follow-ups to dtPDA

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Droste, Perevoshchikov, “A Logical Characterization of Timed Pushdown Languages”, CSR’15. (the logic collapses)
Bhave, Dave, Krishna, Phawade, Trivedi, “A Logical Characterization for Dense-time Visibly Pushdown Automata”, LATA’16.
Bhave, Dave, Krishna, Phawade, Trivedi, “A Perfect Class of Context-Sensitive Timed Languages”, DLT’16. (multitstack)

Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

\[L = \text{words of the form } a^n b c^n d \text{ with } n \geq 0 \text{ s.t.} \]

- first \(c\) comes after 1 time unit after last \(a\)
- first \(a\) and last \(c\) are 2 time units apart
- every other matching \(a\) and \(c\) are in (1, 2)
Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

\[L = \text{words of the form } a^n b c^n d \text{ with } n \geq 0 \text{ s.t.} \]

- first \(c \) comes after 1 time unit after last \(a \) \hspace{1cm} [1 \text{ clock}],
- first \(a \) and last \(c \) are 2 time units apart \hspace{1cm} [1 \text{ clock}],
- every other matching \(a \) and \(c \) are in (1, 2) \hspace{1cm} [2 \text{ clocks}].
Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

\[L = \text{words of the form } a^n b c^n d \text{ with } n \geq 0 \text{ s.t.} \]

- first c comes after 1 time unit after last a \([1 \text{ clock}],\)
- first a and last c are 2 time units apart \([1 \text{ clock}],\)
- every other matching a and c are in \((1, 2)\) \([2 \text{ clocks}].\)

We do not need a timed stack to recognise this language (4 clocks suffice). In fact, they show that the stack can be untimed in the spirit of [CL LICS’15].
Example

Consider the language of *timed palindromes*

\[L = \{ w w^R \mid w \in (\Sigma \times \mathbb{Q})^* \} \]

- It requires a truly timed stack.
- Cannot be expressed in any of the previous models.
Example

Consider the language of *timed palindromes*

\[L = \{ \, w \, w^R \mid w \in (\Sigma \times \mathbb{Q})^* \, \} \]

- It requires a truly timed stack.
- Cannot be expressed in any of the previous models.
- It is a non-monotone language.
 - Can be made monotone by requiring palindromicity only for the fractional values.
Timed register pushdown automata

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ.
A *timed register pushdown automaton* (trPDA) is a tuple

$$A = \langle Q, I, F, \text{PUSH}, \text{POP}, \{ \varphi(\delta) \mid \delta \in \text{PUSH} \cup \text{POP} \}, K \rangle$$

where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\text{PUSH}, \text{POP} \subseteq Q \times \Sigma \times Q \times \Gamma$ is the transition relation.
Timed register pushdown automata

Fix a finite set of registers \(X, Y \), input alphabet \(\Sigma \), and stack alphabet \(\Gamma \).

A *timed register pushdown automaton* (trPDA) is a tuple

\[
A = \langle Q, I, F, \text{PUSH}, \text{POP}, \{ \varphi(\delta) \mid \delta \in \text{PUSH} \cup \text{POP} \}, K \rangle
\]

where

- \(Q \) is a finite set of control states, with \(I, F \subseteq Q \) the initial, final ones, respectively.
- \(\text{PUSH}, \text{POP} \subseteq Q \times \Sigma \times Q \times \Gamma \) is the transition relation.
- For every \(\delta \in \text{PUSH} \cup \text{POP} \), \(\varphi(\delta) \) is a *constraint* over \((\mathbb{Q}, \leq, +1)\) using registers \(X \cup X' \cup Y \cup \{ t \} \).
- \(K \subseteq \mathbb{N} \) is a *boundedness threshold* for state and stack registers.
Timed register pushdown automata

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ. A \emph{timed register pushdown automaton} (trPDA) is a tuple $A = \langle Q, I, F, \text{PUSH}, \text{POP}, \{ \varphi(\delta) \mid \delta \in \text{PUSH} \cup \text{POP} \}, K \rangle$ where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\text{PUSH}, \text{POP} \subseteq Q \times \Sigma \times Q \times \Gamma$ is the transition relation.
- For every $\delta \in \text{PUSH} \cup \text{POP}$, $\varphi(\delta)$ is a \emph{constraint} over $(\mathbb{Q}, \leq, +1)$ using registers $X \cup X' \cup Y \cup \{ t \}$.
- $K \in \mathbb{N}$ is a \emph{boundedness threshold} for state and stack registers.
Timed register pushdown automata

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ. A *timed register pushdown automaton* (trPDA) is a tuple

$$A = \langle Q, I, F, \text{PUSH}, \text{POP}, \{ \varphi(\delta) \mid \delta \in \text{PUSH} \cup \text{POP} \}, K \rangle$$

where

- Q is a finite set of control states, with $I, F \subseteq Q$ the initial, final ones, resp.
- $\text{PUSH}, \text{POP} \subseteq Q \times \Sigma \times Q \times \Gamma$ is the transition relation.
- For every $\delta \in \text{PUSH} \cup \text{POP}$, $\varphi(\delta)$ is a *constraint* over $(\mathbb{Q}, \leq, +1)$ using registers $X \cup X' \cup Y \cup \{ t \}$.
- $K \in \mathbb{N}$ is a *boundedness threshold* for state and stack registers.
Example (1)

Timed palindromes over $\Sigma = \{a, b\}$: $L = \{ w w^R | w \in (\Sigma \times \mathbb{Q})^* \}$.
Example (1)

Timed palindromes over $\Sigma = \{a, b\}$:

$L = \{ w w^R \mid w \in (\Sigma \times \mathbb{Q})^* \}$.

(a, t), push(a, y), y = t

(b, t), push(b, y), y = t
Timed palindromes over $\Sigma = \{a, b\}$: $L = \{ w \, w^R \mid w \in (\Sigma \times \mathbb{Q})^* \}$.

Diagram:

- From p to q: $(a, t), \text{push}(a, y), y = t$
- From q to p: $(a, t), \text{pop}(a, y), y = t$
- From p to p: $(b, t), \text{push}(b, y), y = t$
- From q to q: $(b, t), \text{pop}(b, y), y = t$
Timed palindromes over $\Sigma = \{a, b\}$:

$L = \{ w w^R \mid w \in (\Sigma \times \mathbb{Q})^* \}$.

The untiming projection of L is a context-free language.
Example (2)

Untimed palindromes with the same number of a’s and b’s.

not a context-free language
Untimed palindromes with the same number of a’s and b’s.

\[\varepsilon, \text{push}(\bot, y), y = x \]

\textit{not} a context-free language
Untimed palindromes *with the same number of a’s and b’s.*

Not a context-free language
Example (2)

Untimed palindromes with *the same number of a’s and b’s*.

\[\varepsilon, \text{push}(\perp, y), y = x \]

\[\text{a, push(a), } x' = x + 1 \]

\[\text{b, push(b), } x' = x - 1 \]

not a context-free language
Example (2)

Untimed palindromes with the same number of a’s and b’s.

$\varepsilon, \text{push}(\perp, y), y = x$

$a, \text{push}(a), x' = x + 1$

$\varepsilon, \text{nop}, x' = x$

$b, \text{push}(b), x' = x - 1$

$b, \text{pop}(b), x' = x$

Not a context-free language
Example (2)

Untimed palindromes with the same number of a’s and b’s.

not a context-free language
Deciding reachability

Timed automata

PSPACE
Deciding reachability

<table>
<thead>
<tr>
<th>Timed automata</th>
<th>PSPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushdown timed automata (untimed stack)</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>Automata Type</td>
<td>Complexity</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Timed automata</td>
<td>PSPACE</td>
</tr>
<tr>
<td>Pushdown timed automata (untimed stack)</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>Timed register pushdown automata + monotone time</td>
<td>NEXPTIME</td>
</tr>
<tr>
<td>(timed stack)</td>
<td></td>
</tr>
</tbody>
</table>
Deciding reachability

<table>
<thead>
<tr>
<th>Timed automata</th>
<th>PSPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushdown timed automata</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>(untimed stack)</td>
<td></td>
</tr>
<tr>
<td>Timed register pushdown automata</td>
<td>NEXPTIME</td>
</tr>
<tr>
<td>+ monotone time</td>
<td></td>
</tr>
<tr>
<td>(timed stack)</td>
<td></td>
</tr>
<tr>
<td>Timed register pushdown automata</td>
<td>2EXPTIME</td>
</tr>
<tr>
<td>(timed stack)</td>
<td></td>
</tr>
</tbody>
</table>
Deciding reachability

- Timed automata
- Pushdown timed automata (untimed stack)
- Timed register pushdown automata + monotone time (timed stack)
- Timed register pushdown automata (timed stack)

[AD TCS'94]

Word automaton
- LOGSPACE
- EXPONENTIAL

- EXPTIME
- NEXPTIME
- 2EXPTIME
- PSPACE
- 2EXPTIME
Deciding reachability

<table>
<thead>
<tr>
<th>Time Model</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timed automata</td>
<td>NEXPTIME</td>
</tr>
<tr>
<td>Pushdown timed automata (untimed stack)</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>Timed register pushdown automata + monotone time (timed stack)</td>
<td>2EXPTIME</td>
</tr>
<tr>
<td>Timed register pushdown automata (timed stack)</td>
<td>P</td>
</tr>
</tbody>
</table>

[AD TCS'94]
Deciding reachability

- Timed automata
- Pushdown timed automata (untimed stack)
- Timed register pushdown automata + monotone time (timed stack)
- Timed register pushdown automata (timed stack)

- Word automaton
- Pushdown automaton
- Tree automaton

- Regions

[AD TCS'94]
[AGK CONCUR'16]

- Logspace
- P
- Exponential
- NEXPTIME
- 2EXPTIME
- PSPACE
- EXPTIME
Deciding reachability

Timed automata

Pushdown timed automata
(timed stack)

Pushdown timed automata
(untimed stack)

Timed register pushdown automata
+ monotone time
(timed stack)

Timed register pushdown automata
(timed stack)

[AD TCS'94]

regions

[AGK CONCUR'16]

[CL, LICS'15]

1-BVASS(\mathbb{Z}, =0)
(~1 \mathbb{Z}-counter tree automaton)

LOGSPACE PSPACE

P

EXPTIME

NP

NEXPTIME

2EXPTIME
Deciding reachability

<table>
<thead>
<tr>
<th>Automata Type</th>
<th>Complexity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timed automata</td>
<td>P/EXPTIME</td>
<td>[AD TCS’94]</td>
</tr>
<tr>
<td>Pushdown timed automata (untimed stack)</td>
<td>P/EXPTIME</td>
<td>[Cl, LICS’15]</td>
</tr>
<tr>
<td>Pushdown timed automata (timed stack)</td>
<td>EXPTIME</td>
<td>[AGK CONCUR’16]</td>
</tr>
<tr>
<td>Timed register pushdown automata + monotone time (timed stack)</td>
<td>NEXPTIME</td>
<td>[CL, LICS’15]</td>
</tr>
<tr>
<td>Timed register pushdown automata (timed stack)</td>
<td>2EXPTIME</td>
<td>[CLLM, LICS’17]</td>
</tr>
</tbody>
</table>

- **1-BVASS**: 1-Bounded Vector Addition System
- **1-**
- **Z**: Integers
- **NP**: Nondeterministic Polynomial Time
- **PSPACE**: Polynomial Space
- **EXPTIME**: Exponential Time
- **LOGSPACE**: Logarithmic Space
- **NEXPTIME**: Nondeterministic Exponential Time
Conclusions

To model time + recursion:

- Registers are seemingly more powerful than clocks.
- We get an expressive model with decidable non-emptiness (2EXPTIME).
To model time + recursion:
- Registers are seemingly more powerful than clocks.
- We get an expressive model with decidable non-emptiness (2EXPTIME).

Related models (not shown):
- Timed register context-free grammars (EXPTIME-c).
Conclusions

To model time + recursion:
- Registers are seemingly more powerful than clocks.
- We get an expressive model with decidable non-emptiness (2EXPTIME).

Related models (not shown):
- Timed register context-free grammars (EXPTIME-c).

Open questions:
- We have only an EXPTIME lower bound for our trPDA model.
- 1-BVASS(\mathbb{Z}, ≥ 0, ≤ 0) are in EXPTIME and PSPACE-hard.
- Truly expressive timed pushdown automata with clocks?