
On Pure Nash Equilibria in Stochastic Games

Ankush Das1, Shankara Narayanan Krishna1, Lakshmi Manasa1, Ashutosh Trivedi1,
and Dominik Wojtczak2

1 Department of Computer Science and Engineering, IIT Bombay, India.
2 Department of Computer Science, The University of Liverpool, UK.

Abstract. Ummels and Wojtczak initiated the study of finding Nash equilibria
in simple stochastic multi-player games satisfying specific bounds. They showed
that deciding the existence of pure-strategy Nash equilibria (PURENE) where a
fixed player wins almost surely is undecidable for games with 9 players. They
also showed that the problem remains undecidable for the finite-strategy Nash
equilibrium (FINNE) with 14 players. In this paper we improve their undecidabil-
ity results by showing that PURENE and FINNE problems remain undecidable
for 5 or more players.
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1 Introduction

Stochastic games are well established formalism for analyzing reactive systems under
the influence of random events [1]. Such systems are often modeled as games between
the system and its environment, where the environment’s objective is the complement
of the system’s objective: the environment is considered hostile. Therefore, research
in this area has traditionally focused on two-player games where each play is won by
precisely one of the two players, so-called two-player zero-sum games. However, often
in the practical settings the system may consist of several components with independent
objectives, a situation which is naturally modeled by a multi-player game.

In this paper, we study multi-player stochastic games [9] played on finite directed
graphs whose vertices are either stochastic or controlled by one of the players. A play
of such a game evolves by moving a token along edges of the graph in the following
manner. The game begins in an initial vertex. Whenever the token arrives at a non-
stochastic vertex, the player who controls this vertex must move the token to a successor
vertex; when the token arrives at a stochastic vertex, a fixed probability distribution
determines the successor vertex. In the most general case, a measurable function maps
plays to payoffs. In this paper we consider so-called simple stochastic games, where the
possible payoffs of a single play are either 0 or 1 (i.e. each player either wins or loses a
given play) and depend only on the terminal vertex of the play, i.e. a vertex which only
has a self-loop edge. However, due to the presence of stochastic vertices, a player’s
expected payoff (i.e. her probability of winning) can be an arbitrary probability.

The most common interpretation of rational behavior in multi-player games is cap-
tured by the notion of a Nash equilibrium [8]. In a Nash equilibrium, no player can



improve her payoff by unilaterally switching to a different strategy. Chatterjee et al.
in [3] gave an algorithm for computing a Nash equilibrium in a stochastic multi-player
game with ω-regular winning conditions. However—as observed by Ummels and Wo-
jtczak [11]—the algorithm proposed by Chatterjee et al. may compute an equilibrium
where all players lose almost surely, even when there exist other equilibria where all
players win almost surely. The equilibrium where all players win almost surely is more
optimal than the one where all players lose almost surely.

Ummels and Wojtczak [11] successfully argue that in practice it is desirable to look
for an equilibrium where as many players as possible win almost surely or where it is
guaranteed that the expected payoff of the equilibrium falls into a certain interval. They
studied the so-called NE problem as a decision problem where, given a k-player game G
with initial vertex v0 and two thresholds x̄, ȳ ∈ [0, 1]k 3, the goal is to decide whether
(G, v0) has a Nash equilibrium with expected payoff at least x̄ and at most ȳ. This
problem can be considered as a generalization of the quantitative decision problem for
two-player zero-sum games, which asks whether in such a game player 0 has a strategy
that ensures to win the game with a probability that exceeds a given threshold.

There are several variants of the NE problem depending on the type of strategies
permitted. On the one hand, strategies may be randomized (allowing randomization
over actions) or pure (not allowing such randomization). On the other hand, one can
restrict to strategies that use (unbounded or bounded) finite memory or even to station-
ary ones (strategies that do not use any memory at all). For the quantitative decision
problem, this distinction is often not meaningful since in a two-player zero-sum sim-
ple stochastic game with ω-regular objectives both players have optimal pure strategies
with finite memory. Moreover, in many games even positional (i.e. both pure and sta-
tionary) strategies suffice for optimality. However, regarding NE this distinction leads
to distinct decision problems with completely different computational complexity [11].

Contributions. Ummels and Wojtczak [11] showed that deciding the existence of pure-
strategy Nash equilibria (PURENE) where a fixed player wins almost surely is undecid-
able for games with 9 players. They also showed that the problem remains undecidable
for the finite-strategy Nash equilibrium (FINNE) with 13 players. In this paper we fur-
ther refine their undecidability results by showing that PURENE and FINNE problems
remain undecidable for 5 or more players.

Related Work. Determining the complexity of Nash equilibria has attracted much in-
terest in recent years. In particular, a series of papers culminated in the result that com-
puting a Nash equilibrium of a two-player game in strategic form is complete for the
complexity class PPAD [4, 7]. More in the spirit of our work, [6] showed that decid-
ing whether there exists a Nash equilibrium in a two-player game in strategic form
where player 0 receives payoff at least x and related decision problems are all NP-hard.
For non-stochastic infinite games, a qualitative version of the NE problem was studied
in [10]. In particular, it was shown that the problem is NP-complete for games with
parity winning conditions but in P for games with Büchi winning conditions.

For stochastic games, most results concern the computation of values and optimal
strategies in two player case. In the multi-player case, [3] showed that the problem of

3 The ith element of vector x̄ corresponds to the payoff of player i.



deciding whether a (concurrent) stochastic game with reachability objectives has a Nash
equilibrium in positional strategies with payoff at least x̄ is NP-complete.

Ummels and Wojtczak showed in [11] that the NE problem is undecidable if we
allow either arbitrary randomized strategies or arbitrary pure strategies. In fact, even
the following, presumably simpler, problem was showed undecidable: Given a game G,
decide whether there exists a Nash equilibrium (in pure strategies) where player 0 wins
almost surely. Moreover, the problem remains undecidable if one restricts to random-
ized or pure strategies with finite memory. However, it was also shown there that if one
restricts to simpler types of strategies like stationary ones, NE becomes decidable [11].
In particular, for positional strategies the problem is NP-complete, and for arbitrary
stationary strategies it is NP-hard but contained in PSPACE. Also, the strictly qualita-
tive fragment of NE is decidable. This fragment arises from NE by restricting the two
thresholds to be the same binary payoff. Hence, they were only interested in equilibria
where each player either wins or loses almost surely. Formally, the task is to decide,
given a k-player game G with initial vertex v0 and a binary payoff x̄ ∈ {0, 1}k, whether
the game has a Nash equilibrium with expected payoff x̄. It was shown there that for
simple stochastic games, this problem is P-complete [11].

Ummels and Wojtczak studied, in [12], the computational complexity of Nash equi-
libria in concurrent games with limit-average objectives. They showed that the existence
of a Nash equilibrium in randomized strategies is undecidable (for at least 14 players),
while the existence of a Nash equilibrium in pure strategies is decidable, even if a con-
straint is put on the payoff of the equilibrium. Their undecidability result holds even for
a restricted class of concurrent games, where nonzero rewards occur only on terminal
states. Moreover, they showed that the constrained existence problem is undecidable
not only for concurrent games but for turn-based games with the same restriction on
rewards. They also showed undecidability of the existence of an (unconstrained) Nash
equilibrium in concurrent games with terminal-reward payoffs. Finally, Bouyer et al. [2]
showed undecidability of the existence of constrained Nash equilibrium in a very sim-
ilar model – players do no observe the actions taken but only the state of the game –
with only three players and 0/1-rewards (i.e., reachability objectives).

2 Simple Stochastic Multi-player Games

We study multi-player extension of simple stochastic game introduced by Condon [5]
as studied by Ummels and Wojtczak [11].

Definition 1 (Simple Stochastic Multi-Player Games). A simple stochastic multi-
player game (SSMG)is a tuple (Π,V, (Vi)i∈Π , ∆, (Fi)i∈Π) where:

– Π = {0, 1, . . . , k − 1} is a finite set of players;
– V is a finite set of vertices;
– Vi ⊆ V is the set of vertices controlled by player i such that Vi ∩ Vj = ∅ for every
i 6= j ∈ Π;

– ∆ ⊆ V × ([0, 1] ∪ {⊥})× V is the transition relation, and
– Fi ⊆ V for each i ∈ Π .



We say that a vertex v ∈ V is controlled by player i if v ∈ Vi. A vertex v ∈ V is
called a stochastic vertex if v 6∈

⋃
i∈Π Vi, that is, v is not contained in any of the sets

Vi. We require that a transition is labeled by a probability iff it originates in a stochastic
vertex: If (v, p, w) ∈ ∆ then p ∈ [0, 1] if v is a stochastic vertex and p = ⊥ if v ∈ Vi for
some i ∈ Π . Moreover, for each pair of a stochastic vertex v and an arbitrary vertex w,
we require that there exists precisely one p ∈ [0, 1] such that (v, p, w) ∈ ∆. As usual,
for computational purposes we require that all these probabilities are rational.

For a given vertex v ∈ V , the set of allw ∈ V such that there exists p ∈ (0, 1]∪{⊥}
with (v, p, w) ∈ ∆ is denoted by v∆. For technical reasons, it is required that v∆ 6= ∅
for all v ∈ V . Moreover, for each stochastic vertex v, the outgoing probabilities must
sum up to 1:

∑
(p,w):(v,p,w)∈∆ p = 1. Finally, it is required that each vertex v that lies

in one of the sets Fi is a terminal (sink) vertex: v∆ = {v}. So if F is the set of all
terminal vertices, then Fi ⊆ F for each i ∈ Π .

A (mixed) strategy of player i in G is a mapping σ : V ∗Vi → D(V ) assigning to
each possible history xv ∈ V ∗Vi of vertices ending in a vertex controlled by player i a
(discrete) probability distribution over V such that σ(xv)(w) > 0 only if (v,⊥, w) ∈
∆. Instead of σ(xv)(w), we usually write σ(w | xv). A (mixed) strategy profile of G
is a tuple σ̄ = (σi)i∈Π where σi is a strategy of player i in G. Given a strategy profile
σ̄ = (σj)j∈Π and a strategy τ of player i, we denote by (σ̄−i, τ) the strategy profile
resulting from σ̄ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists w ∈ v∆
with σ(w | xv) = 1. Note that a pure strategy of player i can be identified with a
function σ : V ∗Vi → V . A strategy profile σ̄ = (σi)i∈Π is called pure if each σi is
pure. More generally, a pure strategy σ is called finite-state if it can be implemented by
a finite automaton with output or, equivalently, if the equivalence relation∼ ⊆ V ∗×V ∗
defined by x ∼ y if σ(xz) = σ(yz) for all z ∈ V ∗Vi has only finitely many equivalence
classes. In general, this definition is applicable to mixed strategies as well, but here,
we identify finite-state strategies with pure finite-state strategies. Finally, a finite-state
strategy profile is a profile consisting of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game. We
call the tuple (G, v0) an initialized SSMG. A strategy (strategy profile) of (G, v0) is just
a strategy (strategy profile) of G. In the following, we will use the abbreviation SSMG
also for initialized SSMGs. It should always be clear from the context if the game is
initialized or not.

When drawing an SSMG as a graph, we continue to use the conventions of [11]. The
initial vertex is marked by an incoming edge that has no source vertex. Vertices that are
controlled by a player are depicted as circles, where the player who controls a vertex
is given by the label next to it. Stochastic vertices are depicted as diamonds, where the
transition probabilities are given by the labels on its outgoing edges. Finally, terminal
vertices are generally represented by their associated payoff vector. In fact, we allow
arbitrary vectors of rational probabilities as payoffs. This does not increase the power
of the model since such a payoff vector can easily be realized by an SSMG consisting
of stochastic and terminal vertices only.

Given an SSMG (G, v0) and a strategy profile σ̄ = (σi)i∈Π , the conditional proba-
bility of w ∈ V given the history xv ∈ V ∗V is the number σi(w | xv) if v ∈ Vi and the



unique p ∈ [0, 1] such that (v, p, w) ∈ ∆ if v is a stochastic vertex. We abuse notation
and denote this probability by σ̄(w | xv). The probabilities σ̄(w | xv) induce a proba-
bility measure on the space V ω in the following way: The probability of a basic open
set v1 . . . vk · V ω is 0 if v1 6= v0 and the product of the probabilities σ̄(vj | v1 . . . vj−1)
for j = 2, . . . , k otherwise. It is a classical result of measure theory that this extends
to a unique probability measure assigning a probability to every Borel subset of V ω ,
which we denote by Prσ̄v0

. For a set U ⊆ V , let Reach(U) := V ∗ · U · V ω .
Given a strategy profile σ̄, a strategy τ of player i is called a best response to σ̄

if τ maximizes the expected payoff of player i, i.e. for all strategies τ ′ of player i we
have that Pr(σ̄−i,τ

′)
v0

(Reach(Fi)) ≤ Pr(σ̄−i,τ)
v0

(Reach(Fi)). A Nash equilibrium is a
strategy profile σ̄ = (σi)i∈Π such that each σi is a best response to σ̄. Hence, in a Nash
equilibrium no player can improve her payoff by (unilaterally) switching to a different
strategy. In this paper we study the following decision problem.

Definition 2 (Decision Problem NE). Given an initialized simple stochastic multi-
player game (G, v0) and two thresholds x̄, ȳ ∈ [0, 1]Π , decide whether there exists
a Nash equilibrium with payoff ≥ x̄ and ≤ ȳ.

As usual, for computational purposes we assume that the thresholds x̄ and ȳ are vectors
of rational numbers. The threshold-free variant of the above problem which omits the
thresholds just asks about a Nash equilibrium where some distinguished player, say
player 0, wins almost surely.

The following is the key result of this paper.

Theorem 1. The existence of a pure-strategy-Nash equilibrium SSMG where player 0
wins almost surely is undecidable for games with 5 or more players.

3 Improved Undecidability Result

In this section we construct an SSMG G for which we show the undecidability of the
existence of pure-strategy Nash equilibria of (G, v0) where player 0 wins almost surely,
whenever G has 5 or more players. We then explain how this proof can be adapted to
show undecidability of

– finite-strategy Nash equilibrium where player 0 wins almost surely whenever G has
5 or more players.

3.1 Pure-strategy Equilibria

In this section, we show that the problem PURENE is undecidable by exhibiting a re-
duction from an undecidable problem about two-counter machines. Our construction is
inspired by a construction used in [11]. A two-counter machineM is given by a list of
instructions ι1, . . . , ιm where each instruction is one of the following:

– “inc(j); goto k” (increment counter j by 1 and go to instruction k);
– “zero(j) ? goto k : dec(j); goto l” (if the value of counter j is zero, go to instruc-

tion k; otherwise, decrement counter j by one and go to instruction l);



– “halt” (stop the computation).

Here j ranges over 1, 2 (the two counters), and k 6= l range over 1, . . . ,m. A con-
figuration of M is a triple C = (i, c1, c2) ∈ {1, . . . ,m} × N × N, where i denotes
the number of the current instruction and cj denotes the current value of counter j. A
configuration C ′ is the successor of configuration C, denoted by C ` C ′, if it results
from C by executing instruction ιi; a configuration C = (i, c1, c2) with ιi = “halt”
has no successor configuration. Finally, the computation ofM is the unique maximal
sequence ρ = ρ(0)ρ(1) . . . such that ρ(0) ` ρ(1) ` . . . and ρ(0) = (1, 0, 0) (the initial
configuration). Note that ρ is either infinite, or it ends in a configuration C = (i, c1, c2)
such that ιi = “halt”.

The halting problem is to decide, given a machineM, whether the computation of
M is finite. It is well-known that two-counter machines are Turing powerful, which
makes the halting problem and its dual, the non-halting problem, undecidable.

In order to prove theorem 1, we show that one can compute from a two-counter
machine M an SSMG (G, v0) with five players such that the computation of M is
infinite iff (G, v0) has a pure Nash equilibrium where player 0 wins almost surely. This
establishes a reduction from the non-halting problem to PURENE.

The game G is played by player 0 and four other players At and Bt, indexed by t ∈
{0, 1}. Let Γ = {init, inc(j),dec(j), zero(j) : j = 1, 2}, and let q1 = 2, q2 = 3 be two
primes. IfM has instructions ι1, . . . , ιm, then for each i ∈ {1, . . . ,m}, each γ ∈ Γ ,
each j ∈ {1, 2} and each t ∈ {0, 1}, the game G contains the gadgets Sti,γ , Iti,γ and
Ctj,γ , which are depicted in fig. 1. In the figure, squares represent terminal vertices (the
edge leading from a terminal vertex to itself being implicit), and the labeling indicates
which players win at the respective vertex. Moreover, the dashed edge inside Ctj,γ is
present iff γ 6∈ {init, zero(j)}. The initial vertex v0 of G is the black vertex inside the
gadget S0

1,init.
For any pure strategy profile σ̄ of G where player 0 wins almost surely, let x0v0 ≺

x1v1 ≺ x2v2 ≺ . . . (xi ∈ V ∗, v ∈ V , x0 = ε) be the (unique) sequence of all
consecutive histories such that, for each n ∈ N, vn is a black vertex and Prσ̄v0

(xnvn ·
V ω) > 0. Additionally, let γ0, γ1, . . . be the corresponding sequence of instructions,
i.e. γn = γ for the unique instruction γ such that vn lies in one of the gadgets Sti,γ
(where t = n mod 2). For each j ∈ {1, 2} and n ∈ N, we define two conditional
probabilities an and pn as follows:

an := Prσ̄v0
(Reach(FAn mod 2) | xnvn · V ω)and

pn := Prσ̄v0
(Reach(FAn mod 2) | xnvn · V ω \ xn+2vn+2 · V ω).

Finally, for each j ∈ {1, 2} and n ∈ N, we define an ordinal number cnj ≤ ω as follows:
After the history xnvn, with probability 1

4 the play proceeds to the vertex controlled by
player 0 in the counter gadget Ctj,γn (where t = n mod 2). The number cnj is defined to
be the maximal number of subsequent visits to the grey vertex inside this gadget (where
cnj = ω if, on one path, the grey vertex is visited infinitely often). Note that, by the
construction of Ctj,γ , it holds that cnj = 0 if γn = zero(j) or γn = init.



Sti,γ :

A0 (0, 2
3 , . . . ,

2
3 )

B0 (0, 1
3 , . . . ,

1
3 )

A1 (0, 2
3 , . . . ,

2
3 )

B1 (0, 1
3 , . . . ,

1
3 )

Ct1,γ

Ct2,γ

Iti,γ

1
2

1
4

1
4

Ctj,γ :

0

0,At,Bt̄

0,At,Bt̄ 0,At,At̄ 0,At,At̄

0,Bt,At̄

if γ = inc(j);

1− 1
qj

1
qj

1
qj

1− 1
qj

1
qj

1− 1
qj

1
2

1
2

0

0,At,Bt̄

0,At,Bt̄

0,At,Bt̄

0,At,At̄

0,Bt,Bt̄

0,Bt,At̄

if γ = dec(j);

1− 1
qj

1
qj

1

q2
j

1− 1

q2
j

1
2

1
2

1− 1
qj

1
qj

1
qj

1− 1
qj

0

0,At,Bt̄

0,At,Bt̄ 0,At,At̄

0,Bt,At̄

if γ 6∈ {inc(j), dec(j)}.

1− 1
qj

1
qj

1

q2
j

1− 1

q2
j

1
2

1
2

Iti,γ :
0

St̄k,inc(j)

if ιi = “inc(j); goto k”;

0
St̄k,zero(j)

St̄l,dec(j)

if ιi = “zero(j) ? goto k : dec(j); goto l”;

0

(0, . . . , 0)

if ιi = “halt”.

Fig. 1. Simulating a two-counter machine.



Lemma 1. Let σ̄ be a pure strategy profile of (G, v0) where player 0 wins almost surely.
Then σ̄ is a Nash equilibrium if and only if the following equation holds.

cn+1
j =


1 + cnj if γn+1 = inc(j),
cnj − 1 if γn+1 = dec(j),
cnj = 0 if γn+1 = zero(j),
cnj otherwise

(1)

for all j ∈ {1, 2} and n ∈ N.

Here + and − denote the usual addition and subtraction of ordinal numbers respec-
tively (satisfying 1 + ω = ω − 1 = ω). The proof of Lemma 1 goes through several
claims. In the following, let σ̄ be a pure strategy profile of (G, v0) where player 0 wins
almost surely. The first claim gives a necessary and sufficient condition on the proba-
bilities an for σ̄ to be a Nash equilibrium.

Proposition 1. The profile σ̄ is a Nash equilibrium iff an = 2
3 for all n ∈ N.

Proof. (⇒) Assume that σ̄ is a Nash equilibrium. Clearly, this implies that an ≥ 2
3 for

all n ∈ N since otherwise some player At could improve her payoff by leaving one of
the gadgets Sti,γ . Let bn := Prσ̄v0

(Reach(FBn mod 2) | xnvn · V ω). We have bn ≥ 1
3 for

all n ∈ N since otherwise some player Bt could improve her payoff by leaving one of
the gadgets Sti,γ . Note that at every terminal vertex of the counter gadgets Ctj,γ and C t̄j,γ
either player At or player Bt wins. The conditional probability that, given the history
xnvn, we reach either of those gadgets is

∑
k∈Z( 1

2 )k · 1
2 = 1 for all n ∈ N, so we have

an = 1− bn for all n ∈ N. Since bn ≥ 1
3 , we arrive at an ≤ 1− 1

3 = 2
3 , which proves

the claim.
(⇐) Assume that an = 2

3 for all n ∈ N. Clearly, this implies that none of the
playersAt can improve her payoff. To show that none of the playersBt can improve her
payoff, it suffices to show that bn ≥ 1

3 for all n ∈ N. But with the same argumentation
as above, we have bn = 1 − an and thus bn = 1

3 for all n ∈ N, which proves the
claim. ut

The second claim relates the probabilities an and pn.

Proposition 2. an = 2
3 for all n ∈ N if and only if pn = 1

2 for all n ∈ N.

Proof. (⇒) Assume that an = 2
3 for all n ∈ N. We have an = pn + 1

4 · an+2 and
therefore 2

3 = pn + 1
6 for all n ∈ N. Hence, pn = 1

2 for all n ∈ N.
(⇐) Assume that pn = 1

2 for all n ∈ N. Since an = pn + 1
4 · an+2 for all n ∈ N,

the numbers an must satisfy the following recurrence: an+2 = 4an − 2. Since all the
numbers an are probabilities, we have 0 ≤ an ≤ 1 for all n ∈ N. It is easy to see that
the only values for a0 and a1 such that 0 ≤ an ≤ 1 for all n ∈ N are a0 = a1 = 2

3 . But
this implies that an = 2

3 for all n ∈ N. ut

Finally, the last claim relates the numbers pn to equation eq. (1).

Proposition 3. pn = 1
2 for all n ∈ N if and only if equation eq. (1) holds for all n ∈ N.



Proof. Let n ∈ N, and let t = n mod 2. The probability pn can be expressed as the sum
of the probability that the play reaches a terminal vertex that is winning for player At

inside Ctj,γn (this probability is denoted as αjn) and the probability that the play reaches
a terminal vertex winning for player At̄ inside C t̄j,γn+1

(denoted as αjn+1). For counter
1 gadgets, the probability α1

n of At winning in counter gadget Ct1,γn is

α1
n = Σ0≤i≤cn1−1

(
1− 1

q1

)
1

qi1
+

1

q
cn1
1

{(
1− 1

q2
1

)
+

1

2q2
1

}
= 1− 1

q
cn1
1

+
1

q
cn1
1

{(
1− 1

q2
1

)
+

1

2q2
1

}
= 1− 1

q
cn1
1

+
1

q
cn1
1

{
1− 1

2q2
1

}
= 1− 1

2q
cn1 +2
1

Suppose γn+1 = inc(1).

Then the probability α1
n+1 of At̄ winning in counter gadget C t̄1,γn+1

is
1

q
cn+1
1

1

· 1

q1

Similarly, the probabilities α2
n and α2

n+1 corresponding to counter 2 gadgets are as
follows :

α2
n = 1− 1

2q
cn1 +2
1

and α2
n+1 =

1

q
cn+1
2

2

· 1

q2
2

Given, these probabilities, pn is as follows.

pn =
1

4

[
α1
n +

1

2
α1
n+1

]
+

1

4

[
α2
n +

1

2
α2
n+1

]
=

1

4

[
1− 1

2q
cn1 +2
1

+
1

2q
cn+1
1 +1

1

]
+

1

4

[
1− 1

2q
cn2 +2
2

+
1

2q
cn+1
2 +2

2

]

=
1

2
− 1

8

[
1

q
cn1 +2
1

− 1

q
cn+1
1 +1

1

]
− 1

8

[
1

q
cn2 +2
2

− 1

q
cn+1
2 +2

2

]

As q1 and q2 are primes, this sum is equal to 1
2 iff cn+1

1 = 1 + cn1 and cn+1
2 = cn2 .

For γn+1 being any other instruction like decrement, other instructions, the argument is
similar. ut

Proof (Proof of Lemma 1). By Proposition 1, the profile σ̄ is a Nash equilibrium iff
an = 2

3 for all n ∈ N. By Proposition 2, the latter is true if pn = 1
2 for all n ∈ N.

Finally, by Proposition 3, this is the case iff eq. (1) holds for all j ∈ {1, 2} and n ∈ N.
ut



To establish the reduction, it remains to show that the computation ofM is infinite
iff the game (G, v0) has a pure Nash equilibrium where player 0 wins almost surely.

(⇒) Assume that the computation ρ = ρ(0)ρ(1) . . . of M is infinite. We define
a pure strategy σ0 for player 0 as follows: For a history that ends in one of the in-
struction gadgets Iti,γ after visiting a black vertex exactly n times, player 0 tries to
move to the neighboring gadget S t̄k,γ′ such that ρ(n) refers to instruction number k
(which is always possible if ρ(n − 1) refers to instruction number i; in any other
case, σ0 might be defined arbitrarily). In particular, if ρ(n − 1) refers to instruction
ιi = “zero(j) ? goto k : dec(j); goto l”, then player 0 will move to the gadget S t̄k,zero(j)

if the value of the counter in configuration ρ(n − 1) is 0 and to the gadget S t̄l,dec(j)

otherwise. For a history that ends in one of the gadgets Ctj,γ after visiting a black vertex
exactly n times and a grey vertex exactlym times, player 0 will move to the grey vertex
again iff m is strictly less than the value of the counter j in configuration ρ(n − 1).
So after entering Ctj,γ , player 0’s strategy is to loop through the grey vertex exactly as
many times as given by the value of the counter j in configuration ρ(n− 1).

Any other player’s pure strategy is “moving down at any time”. We claim that the
resulting strategy profile σ̄ is a Nash equilibrium of (G, v0) where player 0 wins almost
surely.

Since, according to her strategy, player 0 follows the computation ofM, no vertex
inside an instruction gadget Iti,γ where ιi is the halt instruction is ever reached. Hence,
with probability 1 a terminal vertex in one of the counter gadgets is reached. Since
player 0 wins at any such vertex, we can conclude that she wins almost surely.

It remains to show that σ̄ is a Nash equilibrium. By the definition of player 0’s
strategy σ0, we have the following for all n ∈ N: 1. cnj is the value of counter j in
configuration ρ(n); 2. cn+1

j is the value of counter j in configuration ρ(n + 1); 3.
γn+1 is the instruction corresponding to the counter update from configuration ρ(n) to
ρ(n+ 1). Hence, eq. (1) holds, and σ̄ is a Nash equilibrium by Lemma 1.

(⇐) Assume that σ̄ is a pure Nash equilibrium of (G, v0) where player 0 wins al-
most surely. We define an infinite sequence ρ = ρ(0)ρ(1) . . . of pseudo configurations
(where the counters may take the value ω) of M as follows. Let n ∈ N, and assume
that vn lies inside the gadget Sti,γn (where t = n mod 2); then ρ(n) := (i, cn1 , c

n
2 ).

We claim that ρ is, in fact, the (infinite) computation ofM. It suffices to verify the
following two properties:

1. ρ(0) = (1, 0, 0);
2. ρ(n) ` ρ(n+ 1) for all n ∈ N.

Note that we do not have to show explicitly that each ρ(n) is a configuration ofM since
this follows easily by induction from 1. and 2. Verifying the first property is easy: v0 lies
inside S0

1,init (and we are at instruction 1), which is linked to the counter gadgets C0
1,init

and C0
2,init. The edge leading to the grey vertex is missing in these gadgets. Hence, c01

and c02 are both equal to 0.
For the second property, let ρ(n) = (i, c1, c2) and ρ(n + 1) = (i′, c′1, c

′
2). Hence,

vn lies inside Sti,γ and vn+1 inside S t̄i′,γ′ for suitable γ, γ′ and t = n mod 2. We only
prove the claim for the case that ιi = “zero(2) ? goto k : dec(2); goto l”; the other cases
are straightforward. Note that, by the construction of the gadget Iti,γ , it must be the



case that either i′ = k and γ′ = zero(2), or i′ = l and γ′ = dec(2). By Lemma 1, if
γ′ = zero(2), then c′2 = c2 = 0 and c′1 = c1, and if γ′ = dec(2), then c′2 = c2 − 1 and
c′1 = c1. This implies ρ(n) ` ρ(n + 1): On the one hand, if c2 = 0, then c′2 6= c2 − 1,
which implies γ′ 6= dec(2) and thus γ′ = zero(2), i′ = k and c′2 = c2 = 0. On the
other hand, if c2 > 0, then γ′ 6= zero(2) and thus γ′ = dec(2), i′ = l and c′2 = c2 − 1.

ut

3.2 Finite-state Equilibria

Theorem 2. The existence of a finite-strategy-Nash equilibrium SSMG where player 0
wins almost surely is undecidable for games with 5 or more players.

We now move on to prove theorem 2. Before showing the undecidability of the existence
of FINNE, we first note that FINNE is recursively enumerable: To decide whether an
SSMG (G, v0) has a finite-state Nash equilibrium with payoff ≥ x̄ and ≤ ȳ, one can
just enumerate all possible finite-state profiles and check for each of them whether the
profile is a Nash equilibrium with the desired properties by analyzing the finite Markov
chain that is generated by this profile (where one identifies states that correspond to
the same vertex and memory state). Hence, to show the undecidability of FINNE, we
cannot reduce from the non-halting problem but from the halting problem for two-
counter machines (which is recursively enumerable itself).

We now explain how to adapt the proof of theorem 1 to show the undecidability of
FINNE. The construction is similar to the one for proving undecidability of PURENE.
Given a two-counter machine M, we modify the SSMG G constructed in the proof
of theorem 1 by adding another “counter” (sharing the four players from the other two
gadgets, but using an additional new prime, say q3 = 5 for checking whether the counter
is updated correctly) that has to be incremented in each step. Moreover, additionally to
the terminal vertices in the gadgets Ctj,γ , we let player 0 win at the terminal vertex in
each of the gadgets Ii,γ where ιi = “halt”. The gadget γ = inc(j) in fig. 1 is a generic
one and when we put qj = 5, it becomes the increment gadget for this new counter.
Correctly incrementing this counter comes from Proposition 3 that pn = 1

2 iff eq. (1)
is correct. With the extra counter, pn is the sum of At winning in the gadgets of all the
three counters. Hence, this will ensure correct updates of all counters.

Let us denote the new game by G′. Now, ifM does not halt, any pure Nash equilib-
rium of (G′, v0) where player 0 wins almost surely needs infinite memory: to win almost
surely, player 0 must follow the computation ofM and increment the new counter at
each step. On the other hand, if M halts, then we can easily construct a finite-state
Nash equilibrium of (G′, v0) where player 0 wins almost surely. Hence, (G′, v0) has
a finite-state Nash equilibrium where player 0 wins almost surely iff the machine M
halts.

We shall now compare the above described improved results with their counterparts
in [11]. The PURENE undecidability proof in [11] reduced the non-halting problem
to a game with 9 players. The game has 4 dedicated players to ensure correctness of
each counter - thus using 8 additional players. While we follow their idea of reduction,
with the help of primes q1, q2 we re-use the 4 players At and Bt, t ∈ {0, 1} across
the gadgets of both counters. Addtionally, FINNE undecidability proof is achieved by



incrementing a third additional counter. While the proof for FINNE in [11] uses 4 new
players for the third counter, we use another prime q3 and re-use the 4 players (At and
Bt, t ∈ {0, 1}) for the third counter.

4 Conclusion

We have showed that PURENE where player 0 wins almost surely is undecidable when
the game has 5 or more players. A closely related open problem is PURENE where
player 0 wins with probability p ∈ [0, 1). The decidability of the existence of mixed-
strategy NE is an interesting open problem. A further line of work is to explore concur-
rent moves by all the non-stochastic players, and study the decidability of the existence
of various kinds of Nash equilibrium. This concurrent extension of SSMGs is inspired
by [12], where the authors consider concurrent moves of all players on finite graphs,
with reward vectors attached to the terminal vertices.
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