
On Earliest Deadline First Scheduling for Temporal Consistency Maintenance

Ming Xiong Qiong Wang

Bell Laboratories, Alcatel-Lucent

{xiong, qwang}@research.bell-labs.com

Krithi Ramamritham

India Institute of Technology Bombay

krithi@cse.iitb.ac.in

Abstract

A real-time object is one whose state may become invalid withthe passage of time. A temporal validity interval is asso-

ciated with the object state, and the real-time object istemporally consistentif its temporal validity interval has not expired.

Clearly, the problem of maintaining temporal consistency of data is motivated by the need for a real-time system to track

its environment correctly. Hence, sensor transactions must be able to execute periodically and also each instance of a

transaction should perform the relevant data update beforeits deadline.

Unfortunately, the period and deadline assignment problemfor periodic sensor transactions has not received the attention

that it deserves. An exception is the More-Less scheme, which uses theDeadline Monotonic(DM) algorithm for scheduling

periodic sensor transactions. However, there is no work addressing this problem from the perspective of dynamic priority

scheduling. In this paper, we examine the problem of temporal consistency maintenance using theEarliest Deadline First

(EDF) algorithm in three steps:

First, the problem is transformed to another problem with a sufficient (but not necessary) condition for feasibly assigning

periods and deadlines. An optimal solution for the problem can be found inlinear time, and the resulting processor utilization

is characterized and compared to a traditional approach. Second, an algorithm to search for the optimal periods and

deadlines is proposed. The problem can be solved for sensor transactions that require any arbitrary deadlines. However, the

optimal algorithm does not scale well when the problem size increases. Hence, thirdly, we propose a heuristic search-based

algorithm that is more efficient than the optimal algorithm and is capable of finding a solution if one exists.

1 Introduction

A real-time data object, e.g., the speed or position of a vehicle, or the temperature in an engine, istemporally consistent

(also known astemporally valid) if its value reflects the current status of the corresponding entity in the environment. This

1

is usually achieved by associating the value witha temporal validity interval [15, 19, 11, 23, 22, 25, 24]. For example, if

position or velocity changes that can occur in 10 seconds do not affect any decisions made about the navigation of a vehicle,

then the temporal validity interval associated with these data elements is at least 10 seconds.

One important design goal of real-time and embedded database systems is to always keep the real-time data temporally

consistent. Otherwise, the systems cannot detect and respond to environmental changes in a timely fashion. Thus, sensor

transactions that sample the latest status of the entities need to periodically refresh the values of real-time data objects

before their old values expire. Giventemporal consistencyrequirements for a set of sensor transactions, the problem of

designing such sensor transactions encompasses two issues[22]: (1) the determination of the update period and deadline

for each transaction from theirtemporal consistencyrequirements; and (2) the schedulability of periodic sensor transactions.

Minimizing the update workload for maintaining temporal consistency is an important design issue because: (1) it allows a

system to accomodate more sensor transactions; (2) it allows a real-time embedded system to consume less energy; and (3)

it leaves more processor capacity for other workload (e.g.,transactions triggered due to detected environmental changes).

Temporal consistency maintenance can be described as a real-time scheduling problem: Givenm transactions (or tasks)

with computation time (Ci) and validity interval constraint (Vi), determine periodic tasks with deadline (Di) and period (Pi)

of minimum CPU utilization such that:

1. Di + Pi ≤ Vi, and

2. The task system is schedulable by a scheduling algorithmα.

A traditional method for maintaining temporal consistencyis the Half-Half (HH) scheme [15, 11] in which the update

period and deadline for a real-time data object is set to be half of its temporal validity interval. To further reduce the update

workload, the More-Less (ML) scheme is proposed [3, 22]. Deadline monotonic (DM), a fixed priority scheduling algorithm,

is used inML [3, 22, 25] to maintain temporal consistency.ML significantly reduces the update workload compared toHH.

In [22], ML is designed only for those cases in which the assigned deadline of a sensor transaction is not greater than its

corresponding period. In [3], aDM based approach is proposed to allow transactions with deadlines greater than their

periods. Ifarbitrary deadlines, i.e., deadlines that can be less than, equal to, or greater than their corresponding periods, are

allowed, then more sensor transactions with derived periods and deadlines can be scheduled by the system and feasibility

of sensor transactions can be improved. However, there is nowork addressing the deadline and period assignment problem

from the perspective of dynamic priority scheduling. This paper presents our recent studies on this topic.

We take the first step towards designing and analyzing approaches usingEDF scheduling for temporal consistency main-

tenance, and shed light on the performance of those various approaches. The problem of usingEDF scheduling for temporal

consistency maintenance is first transformed to another problem with a sufficient (but not necessary) feasibility condition

by having a deadline no greater than its period. An optimal solution for the problem can be found inlinear time, and its

2

utilization is characterized and compared to a traditionalapproach. Second, abranch and boundbased optimal search algo-

rithm is proposed for the more general problem. The problem can be solved for sensor transactions that require any arbitrary

deadlines. However, the optimal algorithm does not scale well when the problem size increases. Hence, thirdly, we propose a

branch and boundbased heuristic search algorithm that is more efficient thanthe optimal algorithm and is capable of finding

a solution if one exists.

This paper is organized as follows: Section 2 reviews related work. Section 3 introduces the concept of temporal con-

sistency and prior solutions for temporal consistency maintenance based on fixed priority scheduling algorithms. Section 4

gives a detailed analysis of designingML usingEDF scheduler with a sufficient feasibility condition whenDi ≤ Pi holds.

Section 5 presents two search algorithms, namelyOSEDF andHSEDF , for finding optimal and heuristic solutions for

the problem, respectively whenarbitrary deadlines are allowed. This section also shows thatHSEDF can produce good

solutions efficiently. Finally, Section 7 concludes the paper.

2 Related Work

There has been extensive work in RTDBSs for guaranteeing thevalidity constraint(or similarity-constraint) of real-time

data [19, 9, 10, 11, 4, 23, 8, 25, 6, 22, 24]. RTDB systems must maintain data temporal consistency in addition to logical

consistency. Gustafsson and Hansson [6] present a vehicular application with embedded engine control systems, and an on-

demand scheduling algorithm for enforcing base and deriveddata freshness. They also propose an algorithm (ODTB) [5] for

updating data items that can skip unnecessary updates allowing for better utilization of the CPU in the vehicular application.

In the model introduced in [19], a real-time system consistsof periodic tasks which are either read-only, write-only orupdate

(read-write) transactions. Data objects are temporally inconsistent when their ages are greater than the absolute thresholds,

or age differences among objects are greater than the relative thresholds allowed by the application. Two-phase locking and

optimistic concurrency control algorithms, as well as rate-monotonic and earliest deadline first scheduling algorithms are

studied in [19]. In [9, 10], real-time data semantics are investigated and a class of real-time data access protocols called SSP

(Similarity Stack Protocols) is proposed. The correctnessof SSP is based on the concept of similarity which allows different

but sufficiently timely data to be used in a computation without adversely affecting the outcome. In [11], similarity-based

principles are coupled with theHalf-Half approach to adjust real-time transaction load by skipping the execution of task

instances. The concept ofdata-deadlineis proposed in [23]. It also proposes data-deadline based scheduling, forced-wait

and similarity-based scheduling techniques to maintain the temporal validity of real-time data and meet transaction deadlines

in RTDBSs. The aforementioned work assumes that sensor transactions are executed periodically, and their deadlines and

periods are given. As a result, it provides no answer to the period and deadline assignment problem for maintaining temporal

consistency.

TheMore-Lessscheme [22], which will be reviewed in Section 3, solves the period and deadline assignment problem for

3

maintaining temporal consistency withDeadline Monotonicscheduling, afixedpriority scheduling algorithm. On the other

hand, the deferrable scheduling approach [24] is afixedpriority scheduling algorithm that follows an aperiodic execution

model. It derives relative deadlines and irregular separations for consecutive jobs adaptively to maintain temporal validity.

The scheduling overhead is much higher than the periodic scheduling approaches. It also lacks the support theory to schedule

transactions with arbitrary deadlines. In this paper, we focus on periodic approaches. Distinct from past work based onfixed

priority scheduling, we present our novel approaches basedondynamicpriority scheduling.

Note that in this paper we focus on reducing update workload,and more importantly, on improving feasibility of sen-

sor transactions usingEDF scheduling. This is orthogonal to the ideas of using data deadlines, forced wait [23] and data

similarity [11, 23] to improve real-time transaction performance or reduce update workload. However, our design approach

can be coupled with those ideas to handle sensor and triggered transactions. Our main contributions are to propose opti-

mal and efficient algorithms for temporal consistency maintenance usingEDF scheduling forarbitrary deadlines, and their

corresponding analysis.

In many computer-controlled real-time applications, the application tasks often have a maximal acceptable latency while

small latency is preferred. The interaction between choosing task periods to meet the individual latency requirementsand

scheduling the resulting task set is investigated in [17] using earliest deadline first scheduling. Similar problems are also

investigated in [18] in which Seto et al. present algorithmsbased on rate monotonic scheduling to determine optimal periods

for each task in a task set. Our work is different from [17, 18]as we derive periods and deadlines based on temporal

consistency requirements, which are not considered in [17,18].

3 Background

In this section, we introduce the concept oftemporal consistency, and present prior work for maintaining temporal con-

sistency of real-time objects based on fixed priority scheduling algorithms.

3.1 Temporal Consistency: Definition and Maintenance

To monitor the states of objects faithfully,a real-time object must be refreshed by a sensor transactionbefore it becomes

invalid (i.e., its temporal validity interval expires). The actual length of the temporal validity interval of a real-time object

is application dependent. Temporal consistency (a.k.a. absolute consistency [15]) is proposed to determine the temporal

validity of a real-time data object based on its update time by assuming that the highest rate of change in a real-time data

object is known. Sensor transactions have periodic jobs, which are generated by intelligent sensors that sample the value of

real-time objects. One important design goal of RTDBs is to guarantee that real-time data remain fresh, i.e., they are always

valid. We assume that a sensor always samples the value of a real-time dataXi at ri,j (j = 1, 2...), the beginning of itsjth

4

Symbol Definition

Xi Real-time datai

τi Sensor transaction updatingXi

Ji,j Thejth job of τi

Ci Computation time ofτi

Vi Validity (interval) length ofXi

fi,j Finishing time ofJi,j

ri,j Release (Sampling) time ofJi,j

di,j Absolute deadline ofJi,j

Pi Period ofτi

Di Relative deadline ofτi

U Processor workload of{τi}
m
i=1

Table 1. Symbols and definitions.

Ji, j

Pi+Di <= Vi

di, j
ri, j ri, j+1 di, j+1

Ji, j+1

ri, j+2

(=ri, j+Di) (=ri, j+Pi) (=ri, j+Pi+Di) (=ri, j+2Pi)

Figure 1. Illustration of More-Less

i Ci Vi More-Less

Di Pi

1 2 10 2 8

2 5 30 7 23

3 9 37 20 17

Table 2. Example 3.1

update period. It should be clear thatri,j = (j − 1) · Pi (j = 1, 2...), wherePi is the period for updatingXi. A data value

for real-time dataXi sampled at timeri,j will be valid for Vi following thatri,j up to(ri,j + Vi).

Definition 3.1: A real-time data object (Xi) at timet is temporally consistent (or temporally valid) if, for its update jobJi,j

finishing last before timet, the sampling time (ri,j) plus the validity interval (Vi) of the data object is not less thant, i.e.,

ri,j + Vi ≥ t. 2

From here on,T = {τi}m
i=1 refers to a set of periodic sensor transactions andX = {Xi}m

i=1 refers to a set of real-time

data. All real-time data are kept in main memory. Associatedwith Xi (1 ≤ i ≤ m) is a validity interval of lengthVi:

transactionτi (1 ≤ i ≤ m) updates the corresponding dataXi with validity lengthVi. Because each sensor transaction

updates different data, no concurrency control is considered for sensor transactions. We assume that the time of the system is

discrete, and the system issynchronous, i.e., all the first jobs of sensor transactions are initiated at the same time.Ci, Di and

Pi (1 ≤ i ≤ m) denote the execution time, relative deadline, and period oftransactionτi, respectively. The relative deadline

Di of thejth job Ji,j of sensor transactionτi is defined asDi = di,j - ri,j , wheredi,j is the absolute deadline ofJi,j , andri,j

is the sampling (or release) time ofJi,j . Formal definitions of the frequently used symbols are givenin Table 1. Deadlines of

sensor transactions are firm deadlines. LetU denote the average processor workload of a set of periodic transactions{τi}m
i=1,

i.e.,U =
∑m

i=1
Ci

Pi
. The goal ofHH andML is to determinePi andDi (1 ≤ i ≤ m) such that all the sensor transactions

are schedulable and processor workloadU resulting from sensor transactions is minimized. For convenience, we use terms

transaction and task interchangeably in this paper.

5

3.2 Prior Work with Fixed Priority Scheduling Algorithms

In order to guarantee the validity of real-time data in RTDBs, the period and relative deadline of a sensor transaction are

each typically set to be one half of the data validity interval in the Half-Half approach [15, 11]. The farthest distance (based

on the sampling time of a periodic transaction job and the finishing time of its next job) of two consecutive jobs of transaction

τi is 2Pi. If 2Pi = Vi, then the validity ofXi is guaranteed as long as jobs ofτi meet their deadlines. Next, we describe the

More-Lessapproach that improves the update workload compared toHalf-Half.

3.2.1 More-Less UsingDM Algorithm

A set of transactions issynchronousif all the first jobs of transactions are initiated at the sametime (e.g., time0). It should be

noted that we only discusssynchronoustransactions in this paper. Given a set of transactions, consider the longest response

time for any job of a periodic transactionτi. The response time for jobJi,j (j = 1, 2...) of transactionτi is the difference

between the job release time (ri,j) and its completion time (fi,j).

Lemma 3.1: Given a set of periodic transactionsT = {τi}m
i=1 (Di ≤ Pi) that are synchronous, the response time of the first

job of τi (1 ≤ i ≤ m) is the longest among all of its jobs inDeadline Monotonic(DM) scheduling. [14] 2

A time instant after which a transaction has the longest response time is called acritical instant, e.g., time0 is a critical

instant for all transactions inDM if those transactions aresynchronous[14]. To minimize the update workload,ML is used

to guarantee temporal consistency with much less processorworkload thanHH [3, 22]. In ML, Deadline Monotonic(DM)

is used to schedule periodic sensor transactions. Thus we refer to this scheme asMLDM in the rest of the paper. There are

three constraints to respect:

• Validity constraint: the sum of the period and relative deadline of transactionτi is always less than or equal toVi, the

validity length of the object updated, i.e.,Pi + Di ≤ Vi, as shown in Figure 1.

• Deadline constraint: the period of a sensor transaction is assigned to be more than half of the validity length of the

object to be updated by the transaction, while its corresponding relative deadline is assigned to be less than half of the

validity length. Forτi to be schedulable,Di must be greater than or equal toCi, the worst-case execution time ofτi,

i.e.,Ci ≤ Di ≤ Pi.

• Feasibility constraint: for a given set of sensor transactions,Deadline Monotonicscheduling algorithm [14] is used to

schedule the transactions. Consequently,
∑i

j=1(⌈Di

Pj
⌉ · Cj) ≤ Di (1 ≤ i ≤ m).

MLDM assigns priorities to transactions in theinverseorder of validity length and resolves ties in favor of transactions with

larger computation times. It assigns deadlines and periodsto τi as follows:

Di = fi,0 − ri,0, Pi = Vi − Di,

6

0 5 25201510 30 35 40

r3,0 d3,0

0 5 25201510 30 35 40

0 5 25201510 30 35 40

T1

T2

T3

r3,1 d3,1

Figure 2. Infeasible schedule ofMLDM (D3 > P3)

wherefi,0 andri,0 are finishing and sampling times ofJi,0, respectively.

3.2.2 MLDM Extension

InMLDM , the first job’s response time is the longest response time. This assumption holds for deadline monotonic algorithm

whenDi ≤ Pi. A transaction set is not schedulable if there existsτi ∈ T , fi,0 − ri,0 > Vi

2 . Next, we discuss whether the

restriction ofDi ≤ Pi can be relaxed forMLDM , i.e., whetherMLDM can handle arbitrary deadlines.

Example 3.1: Transactions are listed in Table 2 with their transaction number, computation time, and validity interval length.

MLDM is applied to the transaction set, and the resulting deadlines and periods are shown in the Table. Note that the

relative deadline of each transaction is the same as its firstjob’s response time inMLDM , andD3 > P3. Figure 2 depicts the

schedule of the transaction set. JobJ3,0 finishes at its deadline (time20). AlthoughJ3,1 is released at time 17, it cannot start

until J3,0 completes. It starts at time20, but only completes8 time units by its deadline (time37) due to interruption from

higher priority transactions. This demonstrates that the first job’s response time is not necessarily the longest response time

if the deadline is greater than its period. In this case, ensuring that the first jobs’ response times are less than their respective

deadlines is not sufficient to guarantee the feasibility ofMLDM . 2

Given a periodic task set with arbitrary deadlines, Lehoczky [12] introduceslevel-i busy periodfor τi, and the longest

response time for jobs ofτi as follows.

Definition 3.2: A level-i busy period is a time interval[a, b] within which jobs of priorityi or higher are processed throughout

[a, b] but no jobs of priorityi or higher are processed in(a − ǫ, a) or (b, b + ǫ) for sufficiently smallǫ > 0. 2

Lemma 3.2: The longest response time for a job ofτi occurs during a level-i busy period initiated by a critical instant (e.g.,

time0). 2

Lemma 3.2 states that the longest response time ofτi occurs during a level-i busy period, butthis longest response time is

not necessarily the response time of the first job ofτi. With unknown periods and deadlines, it is not possible to useMLDM to

get the longest response time of jobs if a deadline may exceedits period. This is because the first job’s response time cannot

be used to derive the deadline and period of its corresponding task during a level-i busy period. In [3], aDM based approach

7

is proposed to deal with the case that the first response time is not the longest response time of a task. The idea is to solve

a recurrence relation for the response time established during a level-i busy period. Interested readers are referred to [3] for

details. In the following, we refer this approach asExtended MLDM (i.e.,EMLDM for short).

4 DesigningMore-LessUsingEDF

This section presents a design for temporal consistency maintenance usingEDF while Di ≤ Pi holds. Section 4.1

formulates anEDF optimization problem forDi ≤ Pi. Section 4.2 presents feasibility conditions forEDF scheduling.

Section 4.3 gives the design ofML usingEDF by solving the optimization problem under a sufficient (but not necessary)

feasibility condition.

4.1 Restricted Optimization Problem for ML Using EDF

The optimized solution has to minimize processor workloadU while maintaining the temporal validity of real-time data

in RTDBs. This essentially formalizes the following optimization problem that minimizesU with variables~P and ~D. Note

that ~P , ~D , ~C, and~V given below are vectors.

Problem 4.1: Restricted EDF optimization problem:Given a set of transactionsT = {τi}m
i=1 with known ~C and~V, determine

~P and ~D for synchronous transactions to minimizeU , i.e.,

min
~P , ~D

U , whereU =

m
∑

i=1

Ci

Pi

(1 ≤ i ≤ m),

subject to:

•Validity constraint: Pi + Di ≤ Vi.

•Deadline constraint: Ci ≤ Di ≤ Pi.

•Feasibility constraint: T with derived deadlines and periods is feasible by usingEDF scheduling. 2

As discussed,deadline constraintcan be further generalized by havingCi ≤ min(Di, Pi). In this section,Deadline con-

straint in Problem 4.1 is used for our discussion unless specified otherwise. It is generalized in the next section. Next,

we consider a sufficient feasibility condition for designing More-LessusingEDF, namelyMLEDF . The corresponding

feasibility test reduces the complexity of the problem.

4.2 Feasibility Conditions for EDF

The periodic task model is a special case of thesporadictask model discussed in [1, 2]. A taskτi in the sporadic task

model is characterized by three parameters – an execution time Ci, a deadlineDi, and a minimum separationPi for the

8

arrival time of two successiveτi jobs, withCi ≤ min(Di, Pi). If all jobs of a task arrive with the exact minimum separation

Pi, this sporadic task becomes a periodic task. Note that the arrival time of a task job is the same as the sampling time of a

sensor transaction job.

Given periodic taskτi ∈ T (1 ≤ i ≤ m), processordemand bound functions, as explained in [1] are defined as follows:

Hi(t) = max(0, (⌊ t − Di

Pi

⌋ + 1) · Ci), (1)

HT (t) =

m
∑

i=1

Hi(t). (2)

Hi(t) represents the processor demand forτi on [0, t), i.e., the minimum amount of computation time that must be allocated

for τi before timet. Similarly,HT (t) represents the processor demand for all tasks inT on [0, t). The following lemma is

from Lemma 3 in [1] for a set of periodic transactionsT .

Lemma 4.1: T is feasible iffHT (t) ≤ t for all t ≥ 0. 2

Lemma 4.1 will be used in Section 5 to derive solutions forEDF scheduling. Next, we present a technical result that is a

sufficient condition for a set of periodic transactionsT to be feasible usingEDF scheduler (see [20] for proof).

Lemma 4.2: Given a set of transactionsT , if
∑

τi∈T
Ci

min (Pi,Di)
≤ 1, thenT is feasible. 2

4.3 DesigningMLEDF Using a Sufficient Feasibility Condition

In this section, we investigate the design ofMLEDF using Lemma 4.2 for allτi with Di ≤ Pi. If Lemma 4.2 is used to

derive deadlines and periods forT , the optimization problem forEDF scheduling is essentially transformed to the following

problem.

Problem 4.2: EDF optimization problem with sufficient feasibility condition:

min
~P

U , whereU =
m

∑

i=1

Ci

Pi

(1 ≤ i ≤ m)

subject to:

•Validity anddeadlineconstraints in Problem 4.1, and

•Feasibility constraint:
∑m

i=1
Ci

Di
≤ 1. 2

It should be obvious thatU is minimized only ifPi + Di = Vi. Otherwise,Pi can always be increased and processor

utilization can be decreased. Without loss of generality, we assume that

Di =
1

Ni

Vi, (3)

Pi =
Ni − 1

Ni

Vi, (4)

wherePi + Di = Vi andNi ≥ 2 in order to satisfy the validity and deadline constraints inProblem 4.2.

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
P

U
 U

til
iz

at
io

n

Density Factor

Density Factor
Half-Half
ML(EDF)

Figure 3. Utilization comparison

Definition 4.1: Given a set of transactionsT , thedensity factorof T , denoted asγ, is
∑m

i=1
Ci

Vi
. 2

The following theorem provides a minimal solution for Problem 4.2.

Theorem 4.1: Given the minimization problem in Problem 4.2, there existsa unique minimal solution given byNk = N opt
ml =

1
γ

(1 ≤ k ≤ m & 0 < γ ≤ 0.5), which has minimum utilizationUopt
ml (γ) = γ

1−γ
. 2

Please refer to Appendix for proofs of all theorems and lemmas. Given a setT of m sensor transactions, the optimization

problem defined in Problem 4.2 can be solved inO(m). By discussion in Section 3, the utilization ofHH is Uhh(γ) = 2γ.

Theorem 4.2: Given a setT of sensor transactions (0 < γ ≤ 0.5), Uhh(γ) − Uopt
ml (γ) ≤ 3 − 2

√
2 ≈ 0.172. 2

The function curves ofγ, Uhh(γ) andUopt
ml (γ) (0 < γ ≤ 0.5), are depicted in Figure 3.MLEDF improves utilization

by solving Problem 4.2 in linear time. However, it does not necessarily produce an optimal solution for Problem 4.1 in

that the feasibility condition inMLEDF (i.e., Lemma 4.2) is sufficient but not necessary. There exist EDF feasibility

conditions that are both sufficient and necessary [1, 2, 16].For example, [16] presents a pseudo-polynomial algorithm

only for Ci ≤ Di ≤ Pi, whereas Lemma 4.1 [1] can be applied to any arbitrary deadlines. Next, we present our integer

programming based search algorithms, for assigning periods and deadlines usingEDF scheduling with relaxeddeadline

constraint, i.e.,Ci ≤ min(Di, Pi).

5 DesigningSearchAlgorithms Using EDF

This section presents algorithms – using the sufficient and necessary feasibility condition forEDF in Lemma 4.1 – to

searchfor optimal periods and deadlines of sensor transactions whenarbitrary deadlines are allowed. Section 5.1 defines

a generalEDF optimization problem with relaxeddeadline constraint, i.e., Ci ≤ min(Di, Pi). Section 5.2 shows the

optimality of EDF solutions compared to solutions produced by other periodicschedulers. Sections 5.3 and 5.4 present

branch and boundbased optimal and heuristic search algorithms, respectively, and show that the general problem can be

solved efficiently without reducing schedulability.

10

5.1 Formalizing the GeneralEDF Optimization Problem

Following Lemma 4.1, Problem 4.1 can be generalized to the following problem.

Problem 5.1: General EDF optimization problem:

Uopt
EDF = min

~P , ~D

U , whereU =

m
∑

i=1

Ci

Pi

subject to:

•Validity constraint: Pi + Di ≤ Vi.

•Deadline constraint: Ci ≤ min(Di, Pi).

•Feasibility constraint: ∀t,HT (t) ≤ t. 2

The problem of deciding whether sporadic task setT with arbitrary deadlines (i.e.,Ci ≤ min(Di, Pi)) is feasible with

given deadlines and periods is known to be inco-NP [1]. The feasibility test forT with given deadlines and periods is a

sub-problem of the optimization problem in Problem 5.1, i.e., Problem 5.1 contains a knownco-NPproblem.

By definition of Eq. 1 and 2,

HT (t) =

m
∑

i=1

max(0, (⌊ t − Di

Pi

⌋ + 1) · Ci). (5)

Note that the optimal solution can only be achieved whenPi + Di = Vi. Thus,Di = Vi − Pi, and considering thedeadline

constraintin Problem 5.1, we derive theperiod constraintas follows by replacingDi with Vi −Pi in thedeadline constraint:

Ci ≤ Pi ≤ Vi − Ci. (6)

ReplacingDi with Vi − Pi in Eq. 5, thefeasibility constraintin Problem 5.1 is:

HT (t) =

m
∑

i=1

max(0, (⌊ (t − Vi)

Pi

⌋ + 2) · Ci) ≤ t. (7)

Eq. 7 is also referred astime constraint. Thus, Problem 5.1 can be transformed into minimizingU subject to theperiod

constraint(Eq. 6) andtime constraint(Eq. 7). There are no existing solutions for this problem, which is difficult since it has

an unbounded variablet. Next, we present a lemma that gives a bound on the “time length” necessary for determining the

feasibility.

Lemma 5.1: Given a set of transactionsT with U < 1, let

tB(~P) = max(max
i

(Vi − 2Ci),

∑m
i=1(2 − Vi

Pi
)Ci

1 − U).

T is feasible iff∀t < tB(~P),HT (t) ≤ t. 2

11

Lemma 5.1 indicates that a feasibility testing algorithm does not have to check∀t ≤ P,HT (t) ≤ t, whereP is the least

common multiple of all periods. Thus a feasibility testing algorithm based on Lemma 5.1 can run inpseudo-polynomialtime

for a large percentage of sensor transaction sets, althoughit is exponential in the worst-case. Its complexity is similar to the

feasibility testing algorithms in [1, 16]. Note that Lemma 5.1 can only be applied when~P is known. It cannot be applied to

Problem 5.1 for feasibility test unless~P has been determined.

5.2 Optimality of EDF Solutions

EDF is not the only scheduler that can be used to schedule periodic tasks. One open question is whether an optimal

solution for Problem 5.1 minimizes utilization for all schedulers that can be used to derive periods and deadlines ofT .

Problem 5.1 can be further generalized as follows.

Problem 5.2: General scheduler optimization problem:

min
~P , ~D

U , whereU =

m
∑

i=1

Ci

Pi

subject to:

•Validity anddeadlineconstraints in Problem 5.1.

•Feasibility constraint: a periodic schedule from any scheduler that is feasible forperiodic transaction setT . 2

The following theorem shows optimality ofEDF solutions.

Theorem 5.1: An optimized utilization ofEDF solutions,Uopt
EDF , of Problem 5.1 is also optimal for Problem 5.2 in that if

there exists a periodic schedule that is feasible for Problem 5.2 with utilizationU , thenUopt
EDF ≤ U . 2

Next, we present a search algorithm, which uses thebranch and boundmethod in integer programming, to find an optimal

solution forEDF scheduling.

5.3 OSEDF : Optimal Search UsingEDF

This subsection presents ouroptimal searchalgorithm usingEDF scheduling, namelyOSEDF . It finds optimal~P that

minimizes processor utilization in Problem 5.1. We first give the high-level algorithm, then define its constituents.

OSEDF is depicted in Algorithm 5.1. It first relaxes Problem 5.1 by defining aproxyproblem that initially has no time

constraint. It then solves the proxy problem and obtains a trial solution ~PK (K = 0, 1, 2, ..). A testingproblem is defined

to test if ~PK satisfies all time constraints. If not, a new time constraintis added to tighten the proxy problem. Then the

algorithm iterates to solve the proxy problem again. This iteration continues until the trial solution~PK satisfies all time

constraints, or the proxy problem becomes unsolvable.

12

Algorithm 5.1 OSEDF :

1. Define a relaxed version of Problem 5.1, namely theproxy problem (see Problem 5.3). Problem 5.3 has no time

constraint in the first iteration. A new time constraint is added at each iteration. Therefore, Problem 5.3 has only a

limited number of time constraints in each iteration.

2. In theKth(K = 0, 1, 2,) iteration, solve Problem 5.3 to obtain a trial solution~PK . Since Problem 5.3 does not

have all time constraints (in Eq. 7), the utilization of its solution,UK , is no greater than that of the optimal solution to

Problem 5.1,Uopt
EDF .

3. Given trial solution~PK , solve thetestingproblem (see Problem 5.4). This determines whether any timeconstraint

(in Eq. 7) is violated. If so, the solution to Problem 5.4 identifies a time point,tK , at which the time constraint is the

tightest for the given~PK (i.e., ~PK exceeds the constraint to the largest extent attK). Then Problem 5.3 is updated by

adding a new time constraint attK . The trial solution to the updated Problem 5.3 in the next iteration is feasible for

more time constraints (in Eq. 7), or the problem becomes unsolvable.

4. Continue for Steps 2 and 3 until Problem 5.3 produces a solution that violates no time constraint in Problem 5.1, as

determined by Problem 5.4.

Theproxyproblem in Algorithm 5.1 is defined as follows:

Problem 5.3: Proxy problem:

UK = min
~z

m
∑

i=1

Ci

Vi−Ci
∑

j=Ci

zi,j

j
(8)

subject to:

zi,j ∈ {0, 1} and
Vi−Ci
∑

j=Ci

zi,j = 1, (9)

m
∑

i=1

Ci

Vi−Ci
∑

j=Ci

zi,j · max{0, ⌊ tk − Vi

j
⌋ + 2} ≤ tk, (10)

wherei, j, andk are integers, andi = 1, .., m, j = Ci, ..,Vi − Ci, k = 1, .., K. 2

UK is the minimized processor utilization at theKth iteration. Binary variablezi,j determines the value ofPi betweenCi

andVi − Ci(1 ≤ i ≤ m). Constraint 9 indicates that one and only onezi,j can be set to1 for eachτi. This implies that

Pi = j for zi,j = 1 (Ci ≤ j ≤ Vi − Ci). Note that

Vi−Ci
∑

j=Ci

jzi,j = Pi, (11)

Vi−Ci
∑

j=Ci

zi,j

j
=

1

Pi

. (12)

13

Constraint 10 satisfies time constraints (Eq. 7) at selectedtime pointst = t1, ..., tK . In the first iteration (i.e.,K = 0), no

time constraint is present.K is incremented in each iteration afterwards. Hence, Problem 5.3 only hasK time constraints as

opposed to an infinite number of time constraints in Problem 5.1.

Lemma 5.2 demonstrates a relationship between Problems 5.1and 5.3. It shows that the optimal utilization of Problem 5.3

for each iteration(K = 1, 2, ...,) constitutes a monotonically increasing sequence that is bounded by the optimal utilization

of Problem 5.1.

Lemma 5.2: Let ~zK be an optimal solution to Problem 5.3 in theKth iteration. IfUK is the minimized utilization in Eq. 8

wherezi,j = zK
i,j (1 ≤ i ≤ m, Ci ≤ j ≤ Vi − Ci), then

U0 ≤ U1... ≤ UK ≤ Uopt
EDF ,

whereUopt
EDF is the optimized utilization to Problem 5.1. 2

Lemma 5.2 implies that if~zK satisfies the time constraint at anyt ≥ 0, then the corresponding~PK must be an optimal

solution to Problem 5.1. Hence the solution obtained with Alg. 5.1 has optimal utilization.

Considering Eq. 7, we define

F (t) = t −
m

∑

i=1

max(0, (⌊ t − Vi

Pi

⌋ + 2)Ci).

To determine whether~PK violates any time constraint, we examine the minimumF (t) in theKth iteration, namelyFK . The

time constraint is violated ifFK < 0. This is formulated as an integer programming problem, namely the testing problem.

Problem 5.4: Testing problem:

FK = min
t,~y≥0

[t −
m

∑

i=1

max(0, (yi + 2)Ci)] (13)

subject to:
(t − Vi)

PK
i

− 1 ≤ yi ≤
(t − Vi)

PK
i

(1 ≤ i ≤ m), (14)

wheret and~y are integer variables, and~PK , the trial solution from Problem 5.3 in the same iteration, is an input parameter.

Variable~y is introduced to remove the floor function in the definition ofF (t). 2

Lemma 5.3 gives the rationale for formulating and solving Problem 5.4.

Lemma 5.3: Let ~zK optimize Problem 5.3 in theKth iteration, and

PK
i =

Vi−Ci
∑

j=Ci

jzi,j , i = 1, .., m.

Then ~PK is the optimal solution to Problem 5.1 if and only ifFK ≥ 0. 2

14

i Ci Vi OSEDF

Pi Di

1 1 5 4 1

2 3 15 11 4

3 6 30 14 16

Table 3. Example Parameters and Derived Pi and

Di for Illustration (D3 > P3)

Problem 5.3 Problem 5.4

K UK ~P K tK F K

0 0.751 (4, 12, 24) 6 −5

1 0.760 (4, 12, 23) 7 −4

2 0.773 (4, 12, 22) 8 −3

......

8 0.951 (4, 11, 14) 16 0

Table 4. OSEDF Iterative Process
It is noteworthy that Lemma 5.3 defines a stopping criterion,i.e., FK ≥ 0, for terminating the computation when an

optimal solution is found. Further, ifFK < 0, then the trial solution is infeasible for Problem 5.1. By definition of Eq. 13,

the time at whichFK reaches the minimum, denoted bytK , is the tightest time constraint where~PK exceeds the constraint

to the largest extent. We add the time constraint attK to Problem 5.3 in the next iteration.

Since there are only limited choices forzi,j (and thusPi) in Problem 5.3, the iteration in Algorithm 5.1 ends up in one

of two following situations: (1)FK in Problem 5.4 becomes non-negative, at which point an optimal solution is found (by

Lemma 5.3); (2) as more time constraints are added to Eq. 10, Problem 5.3 eventually becomes infeasible. This implies that

there exists a subset of time constraints in Eq. 10 (thus, in Eq. 7) that cannot be satisfied simultaneously. Note thatOSEDF

transforms Problem 5.1 to Problems 5.3 and 5.4, which are linear integer programming models that can be solved by the

branch and boundmethod [21] provided by commercial optimization software,e.g.,CPLEX1.

Illustration : We demonstrate how Alg. 5.1 works with the example in Table 3. Table 4 depicts the iterative process for

finding an optimal solution for the transaction set in Table 3. Starting fromK = 0 (i.e., the case of no time constraint),

the solution to Problem 5.3 is~P 0 = (4, 12, 24). Solving the testing problem (Problem 5.4),F 0 = −5. By Lemma 5.3,

the solution violates the time constraint. The tightest time constraint occurs att = 6, at whichF 0 = −5. Therefore, the

following time constraint att0 = 6 is added to Problem 5.3:

m
∑

i=1

Ci

Vi−Ci
∑

j=Ci

zi,j max{0, ⌊6 − Vi

j
⌋ + 2} ≤ 6.

Solving Problem 5.3 with updated constraints results in another solution~P 1 = (4, 12, 23). The corresponding solution

of the testing problem isF 1 = −4. The new trial solution~P 1 again violates time constraint (Eq. 7). The violation leadsto

another addition of time constraint att1 = 7 to Problem 5.3. The algorithm continues for7 more iterations until it obtains a

solution ~P 8 = (4, 11, 14), which is the optimal solution to Problem 5.1 becauseF 8 = 0. Note that the example transactions

in Table 3 are feasible with neitherMLEDF norMLDM .

1http://www.ilog.com/products/cplex

15

5.4 HSEDF : Heuristic Search UsingEDF

While OSEDF guarantees optimality, its applicability is limited by theproblem size. For each task, there areVi − 2Ci + 1

binary variableszi,j in Problem 5.3 as indexj is fromCi toVi −Ci. If the number of tasks and values ofVi − 2Ci are large,

then the model can involve a large number of binary variables, and the problem becomes difficult to solve. This is verified in

our experiments.

This section presents our heuristic algorithm, namelyHSEDF , which is more efficient for solving Problem 5.1.HSEDF

is based on the following rationale.

1. The objective functionU (in Problem 5.1) is a strictly decreasing function ofPi. Moreover, fort ≥ Vi,

Hi(t) = max{0, (⌊(t − Vi)/Pi⌋ + 2)Ci} (15)

decreases asPi increases. The larger the value ofPi (1 ≤ i ≤ m), the easier to satisfy Eq. 7. Therefore, at the

beginning ofHSEDF , Pi is set to be its largest possible value,Vi − Ci (i = 1, .., m).

2. Under the period constraint (Eq. 6), the initial solutiondrivesU to the minimum, which thus is the optimal solution if

it also satisfies the time constraint (Eq. 7) at allt. On the other hand, fort ≥ Vi(i = 1, .., m), it is impossible to reduce

Hi(t), since doing so requires increasingPi above its upper boundVi − Ci. Therefore, if the initial solution violates

the time constraint (Eq. 7) att for t ≥ Vmax, where

Vmax = max
i

(Vi), (16)

then the problem is infeasible.

3. Lemma 5.1 is used to test if a given~P violates any time constraint. Specifically, given~P , we calculatetB(~P) defined

in the lemma. For eacht ≤ tB(~P), we evaluateHi(t) according to Eq. 15. The summation ofHi(t) givesHT (t),

which should not exceedt. Otherwise the constraint Eq. 7 is infeasible under the current value of~P and an adjustment

is required. Note that once~P is changed, the value oftB(~P) is changed correspondingly.

4. Suppose the test by Lemma 5.1 shows that the initial solution violates the time constraint (Eq. 7) att′, i.e.,HT (t′) > t′.

In this case, given set{τi : Ci ≤ t′ < Vi − Ci} andHi(t
′) definition (Eq. 15),

Hi(t
′) =

0, Ci ≤ Pi < Vi − t′,

Ci, Vi − t′ ≤ Pi ≤ Vi − Ci

(17)

For transactionτi that satisfiesHi(t
′) = Ci, Hi(t

′) can be reduced to0 by settingPi = Vi − t′−1 if Vi − t′−1 ≥ Ci.

16

Otherwise it violates the period constraint (Eq. 6) at the lower end. Note that inHi(t
′),

⌊ t′ − Vi

Pi

⌋

≥ 0 t′ ≥ Vi,

= −1 Pi ≥ Vi − t′ & t′ < Vi,

≤ −2 Pi ≤ Vi − t′ & t′ < Vi.

(18)

These three cases of⌊ t′−Vi

Pi
⌋ are discussed below.

(a) ⌊ t′−Vi

Pi
⌋ ≥ 0 implies thatHi(t

′) ≥ 2Ci. ReducingPi increasesHi(t
′). This does not help reduceHT (t′). Thus,

Pi should not be changed.

(b) ⌊ t′−Vi

Pi
⌋ = −1 implies thatHi(t

′) = Ci. If Pi is reduced toVi − t′ − 1 ≥ Ci, then⌊ t′−Vi

Pi
⌋ = −2. In this case,

Hi(t
′) is reduced to0 from Ci. Thus,HT (t′) is reduced.

(c) ⌊ t′−Vi

Pi
⌋ ≤ −2 implies thatHi(t

′) = 0. If Pi is reduced,Hi(t
′) stays0 butU is increased. SoPi should not be

changed.

Thus,Pi can only be changed in case (b). Let

R(t′) = {τi : ⌊ t′ − Vi

Pi

⌋ = −1 & Vi − t′ − 1 ≥ Ci} (19)

be the set of transactions whose periods can be reduced toVi − t′ − 1. Note thatVi − t′ − 1 ≥ Ci implies that

t′ ≤ Vi − Ci − 1 ≤ Vi.

If R(t′) has a sufficient number of transactions, then reducing periods of some transactions may satisfy the time

constraint (Eq. 7) att′.

5. Nevertheless, reducingPi always increasesU . Specifically, ifPi (τi ∈ R(t′)) is reduced toVi − t′ − 1, thenU is

increased by the following positive amount:

δi ≡
Ci

Vi − t′ − 1
− Ci

Pi

.

ReducingPi not only affects the objective functionU negatively, but also increasesHi(t) for time t > Vi, which

tightens the time constraint (Eq. 7) at those points. Therefore, care needs to be taken to decide which transactions’

periods inR(t′) should be reduced so thatHτ (t) is not overly increased fort > Vi, thereby maintainingHτ (t) ≤ t. In

HSEDF , transactions are selected fromR(t′) for reducing their periods by solving the followingselection problem.

Problem 5.5: Selection Problem:

min
wi: τi∈R(t′)

m
∑

i=1

wiδi (20)

17

subject to:

wi ∈ {0, 1} &
∑

i:τi∈R(t′)

Ciwi ≥ HT (t′) − t′, (21)

wherewi : τi ∈ R(t′) are binary variables. 2

By solving Problem 5.5,Pi (τi ∈ R(t′)) is reduced toVi − t′ − 1 if wi = 1, or unchanged ifwi = 0. Thus periods

are reduced in a manner that the increment ofU is minimized. Eq. 21 eliminates the deficit of the time constraint,

HT (t′) − t′, at t′, which makes Eq. 7 feasible att′, i.e.,HT (t′) ≤ t′. We consider Problem 5.1 infeasible if Problem

5.5 is unsolvable. Each instance of Problem 5.5 is aKnapsackmodel that can be solved byCPLEX.

Algorithm 5.2 HSEDF :

1. Initialization: Pi = Vi − Ci, i = 1, .., m. With the initial solution, the time constraint is always satisfied att = 0 as

Hi(0) = 0. Set the starting timet = 1.

2. Calculate utilizationU(~P) (Problem 5.1). Stop ifU(~P) > 1, the problem is infeasible.

3. CalculatetB(~P) as given by Lemma 5.1.

If t = tB(~P), stop and return~P ∗ = ~P as the final solution.

4. If HT (t) ≤ t, which means that~P does not violate Eq. 7 att, sett = t+1 and go to Step 3. Otherwise, solve Problem

5.5, resetPi = Vi − t − 1 for τi ∈ R(t) with wi = 1, and go to Step 2. If Problem 5.5 is unsolvable, then stop –

Problem 5.1 is infeasible.

One salient feature ofHSEDF is that it only checks each time point once: if the algorithm reaches timet′, it is not necessary

to check feasibility fort < t′ even if ~P has been changed att′. This property is supported by Theorem 5.2.

Theorem 5.2: Let T (t′) be the transaction set with solution~P (t′) obtained after Step 4 in Alg. 5.2 at timet′ ≥ 0. ThenT (t′)

with ~P (t′) satisfies the time constraint at allt ≤ t′. That is, let

HT (t′)(t) =

m
∑

i=1

max(0, (⌊ (t − Vi)

Pi(t′)
⌋ + 2) · Ci),

thenHT (t′)(t) ≤ t for t ≤ t′. 2

Theorem 5.2 indicates only one pass is needed for each time point t in Alg. 5.2. The selection problem is solved when the

current solution violates the time constraint att andR(t) is not empty, which requirest ≤ Vmax (Eq.16). Therefore, Alg.

5.2 at most solves the selection problemVmax times, although it may iteratetB(~P ∗) time points where~P ∗ is the final solution

of Alg. 5.2. At each iteration, Alg. 5.2 tests feasibility conditionHT (t) ≤ t.

Illustration : To illustrateHSEDF , the algorithm is applied to the example in Table 3. Table 5 shows the iteration process.

At the starting point,~P = ~V − ~C = (4, 12, 24). As mentioned above, the solution always satisfies Eq. 7 att = 0, so the

18

algorithm starts att = 1. The time constraint is first violated att = 3, HT (t) exceedst by 1. Applying ~P andt′ = 3 to Eq.

19,R(t′) = {τ1, τ2}. At Step 4 of the algorithm,

P ′
1 = V1 − t − 1 = 1, P ′

2 = V2 − t − 1 = 11,

δ1 = C1(1/P ′
1 − 1/P1) = 0.75, δ2 = C2(1/P ′

2 − 1/P2) = 0.022.

This produces the following instance of Problem 5.5:

min
w1,w2

{0.75w1 + 0.022w2 : w1 + 3w2 ≥ 1}, (22)

The solution isw1 = 0, w2 = 1. P2 is changed to11 andP1 remains the same. It then proceeds tot = 4. Once~P is changed,

tB(~P) also needs to be updated.

As t increments and the iteration continues, either Eq. 7 (HT (t) ≤ t) is verified to hold att, in which case~P is unchanged,

or the time constraint is violated and~P is updated. In Table 5, an asterisk is added as superscript inthe first column for the

latter case. In these cases,HT (t) − t in the fourth column is calculated before the change of the solution while ~P in the

second column is the new solution. Overall,~P has been changed eight times beforet = 15 at which point~P = (4, 11, 14).

From time15 to tB(~P) = 38, Eq. 7 is satisfied and~P remains unchanged. Following Lemma 5.1, no time constraintcan be

violated if t > tB(~P) because
∑m

i=1 Ci/Pi < 1. Therefore, the algorithm stops att = 38. Solution(4, 11, 14) is the same

as that obtained withOSEDF . This demonstrates thatHSEDF andOSEDF can schedule a larger set of sensor transactions

than existing approaches.

OSEDF vs. HSEDF : Table 6 compares numbers of variables (Var#) and constraints (Cons#) in Problems 5.3, 5.4, and

5.5. ForOSEDF , the left number in a parenthesis represents Problem 5.3, while the right one represents Problem 5.4. The

table also compares numbers of iterations (Iter#) in Alg. 5.1 and 5.22 and along with optimization problem instances solved

by those algorithms (Inst#).OSEDF has significantly larger numbers of variables and constraints thanHSEDF . This is

why HSEDF is more efficient thanOSEDF , andOSEDF does not scale well with the problem size. The comparisons of

numbers of iterations and solved optimization problem instances are problem dependent. Note thatHSEDF still involves

solving the Knapsack problem with thebranch and boundmethod. Nevertheless, the number of variables is linear to the

number of transactions.

Optimization for τi with Di > Pi: Both Alg. 5.1 and 5.2 enableEDF scheduling for transactions with deadlinelarger than

period. Given transactionτi (1 ≤ i ≤ m) with Di andPi assigned by Alg. 5.2 (or Alg. 5.1), ifDi > Pi, it is possible to

skip certain transaction jobs given the following lemma:

Lemma 5.4: (Job Skipping) Given transactionτi (1 ≤ i ≤ m) with Di > Pi derived from Alg. 5.2, and jobsJi,j andJi,j+1

(j ≥ 0), if Ji,j cannot be started beforeri,j+1, thenJi,j can be skipped andJi,j+1 can be executed in[ri,j+1, di,j] while the

validity constraint is guaranteed. 2

2Note that ~P ∗ is the final solution in Alg. 5.2.

19

t ~P U HT (t) − t tB(~P)

1 (4, 12, 24) 0.750 0 31

2 (4, 12, 24) 0.750 −1 31

3∗ (4, 11, 24) 0.773 1 32

4 (4, 11, 24) 0.773 0 32

......

15∗ (4, 11, 14) 0.951 1 38

......

38 (4, 11, 14) 0.951 −4 38

Table 5. HSEDF Iterative Process

Alg. OSEDF HSEDF

Variable# (
∑m

i=1
(Vi − 2Ci + 1), m) m

Constraint# (K + m, m) 1

Iteration# K tB(~P ∗)

Instance# K Vmax

Table 6. OSEDF and HSEDF Comparison

6 Performance Evaluation

This section presents important results from our experimental studies of the proposedHSEDF andMLEDF algorithms.

6.1 Simulation Model and Parameters

We have conducted experiments to compare the performance ofHSEDF andMLEDF . In our experiments, we compare

the update transaction workloads produced byHSEDF andMLEDF . It is demonstrated thatHSEDF produces lower CPU

workload thanMLEDF .

A summary of the parameters and default settings used in experiments are presented in Table 7. The baseline values for

the parameters follow those used in [22], which are originally from air traffic control applications. For system configurations,

we only consider a single CPU, main memory based RTDBS. The number of real-time data objects is uniformly varied from

50 to 300 and it is assumed that the validity interval length of each real-time data object is uniformly varied from 4000 to

8000 ms. For update transactions, it is assumed that each transaction updates one real-time data object, and the CPU timefor

each transaction is uniformly varied from 5 to 15 ms.

20

Parameter Meaning Value

No. of CPU 1

No. of real-time data objects [50, 300]

Validity interval of data objects (ms) [4000, 8000]

CPU time per data access (ms) [5, 15]

Update transaction length 1

Table 7. Experimental Parameters and Settings

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50 100 150 200 250 300

C
P

U
 U

til
iz

at
io

n

No. of Transactions

Density Factor
HS (EDF)
ML (EDF)

Figure 4. MLEDF vs.HSEDF

6.2 Experimental Results

In our experiments, Alg. 5.2 is investigated with sensor update transaction sets, and its results are depicted in Figure4, in

which the x-axis is the number of update transactions and they-axis is the average CPU workload. Results ofHSEDF are

compared with those ofMLEDF . The density factor, which provides a lower bound of the utilization, is also plotted.

For tested data sets,HSEDF consistently outperformsMLEDF . Its advantage becomes increasingly obvious when

the number of transactions gets larger. In particular, the set of 300 transactions cannot be scheduled byMLEDF , but it

is schedulable underHSEDF . We have found out, through our experiments, the major reason why HSEDF outperforms

MLEDF in terms of CPU utilization is due to the more accurate schedulability condition in Lemma 4.1. We have also done

experiments with parameter settings different from Table 7. The results are similar to what is depicted in Figure 4.

Other Experiments: We conducted experiments for the comparison ofMLDM , EMLDM andHSEDF . We found out

that these algorithms produce about the same CPU workload ifthe set of sensor transactions are schedulable by all the

algorithms, butHSEDF andEMLDM can schedule a slightly larger set of sensor transactions due to the fact thatHSEDF

allows arbitrary deadlines. However, it is difficult to quantify how much they can improve the feasibility ofMLDM as the

workload generation plays an important role in such a comparison. This issue needs further investigation, which is leftas

21

future work.

We also conducted another set of experiments by replacing the deadline constraint in Problem 5.1 withCi ≤ Di ≤ Pi, i.e.,

deadlines are not greater than their corresponding periods. Then theHSEDF algorithm is slightly adjusted for the revised

problem. Compared toHSEDF to Problem 5.1, there is little difference for the CPU utilization resulting fromHSEDF for

both problems. This indicates that the relaxation of the deadline constraint has little impact on the resulted CPU utilization

of transactions. It only slightly improves the set of sensortransactions that can be scheduled.

7 Conclusions

Consistency maintenance of data is an important problem in real-time applications. We have proposed three novel ap-

proaches, namelyMLEDF , OSEDF andHSEDF , using theEDF scheduling algorithm.MLEDF is a linear algorithm but

it only supports transactions with deadlines no greater than their corresponding periods (i.e.,Di ≤ Pi for τi). Our analysis

for MLEDF in Section 4.3 sheds light on how muchMLEDF can improve over existingHH approach quantitatively. The

other two approaches outperformMLEDF as they are derived from processor demand analysis (Lemma 4.1), a more accu-

rate feasibility condition forEDF scheduling. This is clearly demonstrated in our experimental results. In contrast,OSEDF

andHSEDF support transactions with arbitrary deadlines. In particular, OSEDF is an algorithm that yields minimized

processor utilization for periodic sensor transactions although it is not as efficient as the heuristic algorithmHSEDF . Our

experimental results demonstrate thatHSEDF is an effective algorithm that assigns periods and deadlines with much lower

utilization thanMLEDF .

However, more investigation is necessary to understand theperformance difference of the alternate approaches studied in

this paper. In particular, we need to better understand howHSEDF performs in comparison toEMLDM . For scheduling

transactions witharbitrary deadlines, one of the important open questions is whether there is any sufficient and necessary

condition for schedulability ofEDF in temporal consistency maintenance. Further investigation on those questions will help

shed light on existing approaches for temporal consistencymaintenance.

References

[1] S. K. Baruah, A. K. Mok, L. E. Rosier, “Preemptively Scheduling Hard-Real-Time Sporadic Tasks on One Processor,”IEEE Real-
Time Systems Symposium, December 1990.

[2] S. K. Baruah, R. R. Howell, L. E. Rosier, “Algorithms and Complexity Concerning the Preemptive Scheduling of Periodic, Real-Time
Tasks on One Processor,”Real-Time Systems, 2(4), pp. 301-324, 1990.

[3] A. Burns and R. Davis, “Choosing task periods to minimisesystem utilisation in time triggered systems,” inInformation Processing
Letters, 58 (1996), pp. 223-229.

[4] R. Gerber, S. Hong and M. Saksena, “Guaranteeing End-to-End Timing Constraints by Calibrating Intermediate Processes,”IEEE
Real-Time Systems Symposium, December 1994.

[5] T. Gustafsson, J. Hansson, “Data Management in Real-Time Systems: a Case of On-Demand Updates in Vehicle Control Systems,”
IEEE Real-Time and Embedded Technology and Applications Symposium,pp. 182-191, 2004.

[6] T. Gustafsson and J. Hansson, ”Dynamic on-demand updating of data in real-time database systems,”ACM SAC, 2004.
[7] F. S. Hiller, G. J. Lieberman, “Introduction to Operations Research,”McGraw-Hill Publishing Company, 1990.
[8] K. D. Kang, S. Son, J. A. Stankovic, and T. Abdelzaher, “A QoS-Sensitive Approach for Timeliness and Freshness Guarantees in

Real-Time Databases,”EuroMicro Real-Time Systems Conference, June 2002.

22

[9] T. Kuo and A. K. Mok, “Real-Time Data Semantics and Similarity-Based Concurrency Control,”IEEE Real-Time Systems Sympo-
sium, December 1992.

[10] T. Kuo and A. K. Mok, “SSP: a Semantics-Based Protocol for Real-Time Data Access,”IEEE Real-Time Systems Symposium,
December 1993.

[11] S. Ho, T. Kuo, and A. K. Mok, “Similarity-Based Load Adjustment for Static Real-Time Transaction Systems,”IEEE Real-Time
Systems Symposium, 1997.

[12] J. P. Lehoczky, “Fixed Priority Scheduling of PeriodicTask Sets with Arbitrary Deadlines,”IEEE Real-Time Systems Symposium,
1990.

[13] C. L. Liu, and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,”Journal of the ACM,
20(1), 1973.

[14] J. Leung and J. Whitehead, “On the Complexity of Fixed-Priority Scheduling of Periodic Real-Time Tasks,”Performance Evaluation,
2(1982), 237-250.

[15] K. Ramamritham, “Real-Time Databases,”Distributed and Parallel Databases1(1993), pp. 199-226, 1993.

[16] I. Ripoll, A. Crespo, and A. Mok, “Improvement in Feasibility Testing for Real-Time Tasks,”Real-Time Systems, 11(1): 19-39, 1996.

[17] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On Task Schedulability in Real-Time Control Systems,”IEEE Real-Time Systems
Symposium,December 1996.

[18] D. Seto, J. P. Lehoczky, L. Sha, “Task Period Selection and Schedulability in Real-Time Systems,”IEEE Real-Time Systems Sympo-
sium,December 1998.

[19] X. Song and J. W. S. Liu, “Maintaining Temporal Consistency: Pessimistic vs. Optimistic Concurrency Control,”IEEE Transactions
on Knowledge and Data Engineering, Vol. 7, No. 5, pp. 786-796, October 1995.

[20] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo, “Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms,” Kluwer Academic Publishers, 1998.

[21] L. A. Wolsey, “Integer Programming,”John Wiley & Son, New York, 1998.

[22] M. Xiong and K. Ramamritham, “Deriving Deadlines and Periods for Real-Time Update Transactions,”IEEE Real-Time Systems
Symposium, 1999.

[23] M. Xiong, K. Ramamritham, J. Stankovic, D. Towsley, andR. M. Sivasankaran, “Scheduling Transactions with Temporal Constraints:
Exploiting Data Semantics,”IEEE Transactions on Knowledge and Data Engineering, 14(5), 1155-1166, 2002.

[24] M. Xiong, S. Han, and K.Y. Lam, “A Deferrable SchedulingAlgorithm for Real-Time Transactions Maintaining Data Freshness,”
IEEE Real-Time Systems Symposium, 2005.

[25] M. Xiong, B. Liang, K. Lam, and Y. Guo. “Quality of service guarantee for temporal consistency of real-time transactions,” IEEE
Transactions on Knowledge and Data Engineering, 18(8), pp. 1097-1110, 2006.

Appendix

Proof of Theorem 4.1:From the deadline constraint in Problem 4.2, we have

Pi ≥ Di =⇒ Ni − 1

Ni

Vi ≥
1

Ni

Vi =⇒ Ni ≥ 2,

Di ≥ Ci =⇒ Vi

Ci

≥ Ni.

Following Eq. 3 and 4, Problem 4.2 is reduced to the followingnon-linear programming problem with variable~N :

min
~N

U , whereU =

m
∑

i=1

NiCi

(Ni − 1)Vi

(1 ≤ i ≤ m)

subject to:

Ni ≥ 2 (23)

Vi

Ci

≥ Ni (24)

m
∑

i=1

Ni ·
Ci

Vi

≤ 1 (25)

23

It can be proved that the objective function and all three constraints areconvexfunctions. Thus this is a convex programming

problem, and a local minimum is a global minimum for this problem [7]. Considering Eq. 25 and Eq. 23 together, we have

2 · ∑m
i=1

Ci

Vi
≤ ∑m

i=1 Ni · Ci

Vi
≤ 1. That is,

m
∑

i=1

Ci

Vi

≤ 1

2
. (26)

Eq. 26 implies thatγ ≤ 1
2 .

For convenience, letwi = Ci

Vi
, γ =

∑m
i=1

Ci

Vi
=

∑m
i=1 wi, xi = Ni − 1. By definition ofU and Eq. 4,U =

∑m
i=1

NiCi

(Ni−1)Vi

=
∑m

i=1
xi+1

xi
wi, i.e.,U =

∑m
i=1 wi +

∑m
i=1

wi

xi
.

Following Eq. 23, 24 and 25, the problem is transformed to:

min
~x

m
∑

i=1

wi

xi

subject to:

xi − 1 ≥ 0 (27)

1

wi

− xi − 1 ≥ 0 (28)

1 − γ −
m

∑

i=1

wi · xi ≥ 0 (29)

Introducing Lagrangian multipliersλ1,i, λ2,i andλ3, we write Kuhn-Tucker condition as following(1 ≤ i ≤ m):

−wi

x2
i

+ λ3wi − λ2,i + λ1,i = 0, (30)

λ3(1 − γ −
m

∑

i=1

wixi) = 0, (31)

λ3 ≥ 0, (32)

λ2,i(xi − 1) = 0, (33)

λ2,i ≥ 0, (34)

λ1,i(
1

wi

− xi − 1) = 0, (35)

λ1,i ≥ 0. (36)

We use above conditions to construct an optimal solution. Supposeλ1,i = λ2,i = 0 andλ3 > 0. Following Eq. 30,

−wi

x2

i

+ λ3wi = 0. Therefore,xi = 1√
λ3

(λ3 > 0 & 1 ≤ i ≤ m). Followingλ3 > 0 and Eq. 31, we have

1 − γ − ∑m
i=1 wixi = 0.

Replacingxi with 1√
λ3

,

1 − γ − 1√
λ3

∑m
i=1 wi = 0.

24

Replacing
∑m

i=1 wi with γ,

1 − γ − 1√
λ3

γ = 0.

Solving the above equation, we haveλ3 = (γ
1−γ

)2. It is easy to check that

λ1,i = λ2,i = 0, λ3 = (
γ

1 − γ
)2 and xi =

1√
λ3

=
1 − γ

γ

satisfy Eq. 27 through Eq. 36, which means that~x reaches a local minimum. Because the objective function is convex and

constraints are all linear,~x is also a global optimal solution. SinceNi = xi + 1, U is minimized whenNi = N opt
ml = 1

γ
, and

the minimum utilization isUopt
ml (γ) =

Nopt

ml

Nopt

ml
−1

∑m
i=1

Ci

Vi
=

1

γ
1

γ
−1

γ = γ
1−γ

. 2

Proof of Theorem 4.2: Let D(γ) = Uhh(γ) − Uopt
ml (γ). From definitions ofUopt

ml (γ) andUhh(γ), it follows thatD(γ) =

2γ − γ
1−γ

. To obtain the maximum ofD(γ), we differentiateD(γ) with respect toγ, and set the result to 0:

dD(γ)
dγ

= 2γ2−4γ+1
(1−γ)2 = 0

Thus the maximum ofD(γ) is 3 − 2
√

2 whenγ = 1 −
√

2
2 . 2

Proof of Lemma 5.1: If T is not feasible, thenHT (t) > t (Lemma 4.1). We need to find the maximal timet = tB(~P) so

thatHT (t) > t may hold in[0, tB(~P)). BecausePi ≥ Ci, if

t ≥ max
i

(Vi − 2Ci), (37)

then(⌊ (t−Vi)
Pi

⌋ + 2) ≥ 0 (Remember thatPi ≥ Ci). Suppose Eq. 37 holds, we have

HT (t) =
∑m

i=1 max(0, (⌊ (t−Vi)
Pi

⌋ + 2) · Ci)

=
∑m

i=1(⌊ t−Vi

Pi
⌋ + 2) · Ci) {Eliminating the max function}

≤ ∑m
i=1

Ci

Pi
t +

∑m
i=1 Ci(2 − Vi

Pi
) {Eliminating the floor function}

If

t

m
∑

i=1

Ci

Pi

+

m
∑

i=1

Ci(2 − Vi

Pi

) ≤ t, (38)

thenHT (t) ≤ t. Solving Eq. 38, we have

t ≥
∑m

i=1(2 − Vi

Pi
)Ci

1 − ∑m
i=1

Ci

Pi

.

Considering Eq. 37, we haveHT (t) ≤ t if

t ≥ max(max
i

(Vi − 2Ci),

∑m
i=1(2 − Vi

Pi
)Ci

1 − U).

Following Lemma 4.1,T is feasible iff∀t < tB(~P),HT (t) ≤ t. 2

Proof of Theorem 5.1: Given a solutionK of Problem 5.2 with deadlines and periods derived from a schedulerS, suppose

that utilization ofK is UK, andUK < Uopt
EDF . K is feasible if it is scheduled byS. SinceEDF is an optimal scheduler [20],

25

if K can be scheduled byS then it can also be scheduled byEDF. Thus,K is also a feasible solution for Problem 5.1. But

UK < Uopt
EDF contradicts thatUopt

EDF is the optimized (minimized) utilization for Problem 5.1. ThusUopt
EDF is optimal for

Problem 5.2. 2

Proof of Lemma 5.2: First, we prove thatUK ≤ Uopt
EDF . Suppose~P ∗ is the optimal solution to Problem 5.1, thenP ∗

i (i =

1, ..., m) is an integer betweenCi andVi − Ci that can be expressed as

P ∗
i =

Vi−Ci
∑

j=Ci

jz∗i,j ,

wherez∗i,j = 1 if j = P ∗
i ; otherwise,z∗i,j = 0. Note that

1

P ∗
i

=

Vi−Ci
∑

j=Ci

z∗i,j
j

. (39)

For anyk = 0, 1, .., K, z∗i,j (Ci ≤ j ≤ Vi − Ci) (which determines~P ∗) is thus a feasible solution to Problem 5.3 because

(1) ~P ∗ satisfies Constraint 9; (2) the set of time constraints of Problem 5.3 (Constraint 10) is asubsetof that of Problem 5.1

(Eq. 7). Following Eq. 10,

∑m
i=1 Ci

∑Vi−Ci

j=Ci
z∗i,j max(0, ⌊ tk−Vi

j
⌋ + 2)

=
∑m

i=1 max(0, (⌊ tk−Vi

P∗

i

⌋ + 2)Ci)

{Moving Ci andz∗i,j into the max function, and by Eq. 39}

≤ tk {P ∗
i satisfying Eq. 7.}

By definition of Problem 5.3, all feasible solutions that satisfy Problem 5.3,zi,j = zK
i,j produces the minimumUK . Therefore,

UK ≤ Uopt
EDF .

We can prove thatUn−1 ≤ Un (1 ≤ n ≤ K) similarly. 2

Proof of Lemma 5.3: 1. (If) By the definition ofFK , if FK ≥ 0 then

t ≥
m

∑

i=1

max{0, (⌊ t − Vi

PK
i

⌋ + 2)Ci}.

This implies that Eq. 7 holds. So~PK satisfies both theperiod and time constraints in Problem 5.1. By Lemma 5.2,

UK ≤ Uopt
EDF . Thus~PK also minimizes processor utilization in Problem 5.1, and itis an optimal solution.

2. (Only if) This can be proved in a manner similar to theif case. 2

Proof of Theorem 5.2: If ~P (t′) is obtained after Step 4 in Alg. 5.2 at timet′ ≥ 0, thenHT (t′)(t
′) ≤ t′ for ~P (t′)’s

corresponding transaction setT (t′). First, ~P (0) must be feasible for the time constraint att′ = 0. Otherwise, the selection

problem is unsolvable and the algorithm is terminated, which is contradictory to the assumption that~P (t′) is obtained after

Step 4 at timet′ ≥ 0.

Suppose that~P (t′) satisfies the time constraint at allt ≤ t′, i.e.,HT (t′)(t) ≤ t. If ~P (t′) also satisfiesHT (t′)(t
′ + 1) ≤ t′ + 1

at timet′ + 1, then set~P (t′ + 1) = ~P (t′) andHT (t′)(t) ≤ t holds fort ∈ [0, t′ + 1]. Otherwise,Pi(t
′) (τi ∈ R(t′)) is

26

reduced, and~P (t′) is changed to~P (t′ + 1), which satisfies the time constraint att′ + 1 (by Step 4). Furthermore,Pi is only

changed forτi ∈ R(t′). By R(t′) definition (Eq. 19), we have

Pi(t
′ + 1) = Pi(t

′) if t′ + 1 ≥ Vi, (40)

Pi(t
′ + 1) ≤ Pi(t

′) if t′ + 1 < Vi. (41)

Givent < t′ + 1 and the definition ofHT (t′+1)(t),

HT (t′+1)(t)

=

m
∑

i=1

max(0, (⌊ (t − Vi)

Pi(t′ + 1)
⌋ + 2) · Ci)

≤
m

∑

i=1

max(0, (⌊ (t − Vi)

Pi(t′)
⌋ + 2) · Ci) {By Eq. 40, 41, andt − Vi < 0 if t′ + 1 < Vi}

= HT (t′)(t)

≤ t {By induction assumption}

Therefore, for allt ≤ t′ + 1, HT (t′+1)(t) ≤ t, which proves the theorem. 2

Proof of Lemma 5.4:Note thatJi,j is guaranteed byEDF scheduling to complete bydi,j (note thatri,j+1 < di,j if Di > Pi).

If it cannot be executed before timeri,j+1, then it will haveCi time units allocated from the processor for its execution in

[ri,j+1, di,j]. SuchCi time units can also be used byJi,j+1 if Ji,j is skipped. 2

27

