Previous APS

- Issues in Secure Group Communication
- Group Key management Taxonomy
- Comparative Survey
- Need for Admission Control & Authentication

Integrated Framework for Authentication and Access Control in Peer to Peer Groups

Madhumita Chatterjee (044298602)
Advisors:
Prof M. Bernad & Prof G. Sivakumar.

Introduction

- Popularity of Web based collaborative groups
- Peers with common interests create interest groups among each other
- Group is governed by a set of rules e.g Yahoo Groups, Google Groups
- Applications like --- file-sharing, online gaming, video/audio conferencing, collaborative work-space, virtual meetings etc.

Outline

- Peer-to peer groups
- Admission and Access control
- Related work
- Proposed Integrated Framework
- Protocols for member join and level updation.
- Hybrid access control policy
- Future work

Security in collaborative groups

- governed by
 - authentication & membership control
 - access control
 - key management.

Advantages of peer to peer

- Scalability:
- Reliability: No single point of failure
- Self-organization: Autonomous decisions to adapt to different loads
- Resource aggregation: Take advantage of existing resources
Access control Cont...

Dynamic Access Control
- Trust Based access control
 - Reputation Based
 - Ebay online auction
 - Kazaa file sharing
 - Global reputation based
 - Eigen Trust
 - P2PRep – peers polling for reputation

Access control

Static access control
- Identity based access control
- Role Based access control
 - Non-authenticated
 - authenticated
- Attribute based access control

Eigen Trust

- Local trust is calculated as
 \[s_{ij} = \sum_k \text{tr}_{ij} = (\text{sat}(i,j) - \text{unsat}(i,j)) \]
- Global trust is
 - local trust value assigned to peer \(i \) by other peers, weighted by global reputations of assigning peers.
 - Value is normalised between 0 and 1

Drawbacks of reputation based model
- **Ebay**—relies on centralised system to store ratings
- Overall reputation is summation of ratings over 6 months
- Sellers may gain good reputation fast but may default on larger orders
- **Kazaa**—good behavior is rewarded but bad behavior is not punished.

Related Work in SGC

- Antigone project includes a flexible framework for secure group communication
 - utilizes a centralized member admission approach
 - not designed for peer to peer
- Secure group layer SGL
 - access control mechanism is not dynamic or scalable.

Drawbacks of Eigen trust model
- Does not differentiate between:
 - peers with whom peer \(i \) did not interact,
 - or peers with whom peer \(i \) has poor experience
- Does not take into account:
 - user dynamics
 - user credibility
Scenario

- Massively Multiplayer Online Games (MMO)
- Video/audio conferencing
- Collaborative news-groups
- Secure Messaging

Related work....

- Secure Spread
 - distributed group key generation protocol
 - does not provide any authentication or group access control mechanisms
- Kim et al proposed an admission control framework for peer to peer groups
 - scheme lacks the attributes of peers
 - all members have equal access rights,

Motivation.....

- Need for framework which integrates authentication, access control and key management in decentralized groups

Motivation

- Peers in self-organizing groups with multi -levels should have the right to
 - dynamically change access levels
 - collaboratively modify the access control policies governing them
 - allow incremental building of trust during the communication.
- Should support
 - Dynamic authentication of participants who were previously part of group.

Functional Components of a peer

- Attribute Manager
- Authentication Manager
- Authorization Manager / Policy Manager
- Trust Engine
- Updation Manager
- Key Manager

Proposed Integrated Architecture

- Every peer Pi has a unique user identity UUIDi
- Peers should be individually capable of performing the tasks of authentication, admission control, access control and key management.
- Each peer can have different functional components
Phases in Proposed Model

- Group Initialization
- Admission Request
- Authentication
- Voting and Authorization
- Access control and Trust Building
- Key Management
- Per-Session Authentication

Notations used

- P_{new}: New Peer
- P_i: Existing Peer
- SK_i: Private key of i
- PK_i: Public key of i
- UUID: Unique user ID of i
- Cert: Certificate of i which contains the ID, Public key, Level/rating, Validity period.

Cases

- **New** peer wishing to join an existing group.
- **Existing** member of the group who wants his access level updated.
- A peer who was previously part of the group and wishes to rejoin in a new session.
- Dynamic leaving of peers from the group.

Steps in Protocol

1. Group Initialization and Advertisement
 - Periodic broadcast by existing peers
 - Details of group included in group charter
 - New peer wishing to join searches for relevant group

Protocol for New Member Join
3. Authentication

- Receiving peer computes hash and verifies possession of secret key
- Broadcasts voting request
- Co-signs certificate of requesting peer
- \(P_i \rightarrow \text{All}(P_n) : \{ \text{JoinREQ} \}_{\text{SK}_n} \backslash \{ \text{Cert}_{\text{new}} \}_{\text{SK}_i} \backslash \text{VoteReq} \)

2. Admission Request

- \(P_{\text{new}} \rightarrow P_i : \{ \text{JoinREQ} \}_{\text{SK}_{\text{new}}} \backslash \text{Cert}_{\text{new}} \)
- \(\text{Cert}_{\text{new}} = \text{UUID}_{\text{new}} \backslash \text{PK}_{\text{new}} \backslash \text{Rating}_{\text{new}} \backslash \{ H[\text{UUID}_{\text{new}} \| \text{PK}_{\text{new}}] \}_{\text{SK}_{\text{new}}} \)
- Digital signature serves as credential for joining peer

Format of \(\text{GC}_{\text{new}} \)

- The certificate would contain
 - UUID, and PK
 - Access Rights– Level, rights, allow, deny
 - UUID of issuer
 - Signature of issuer
 - Expiry Date and Time

4. Voting and Authorization

- Peers all verify the authenticity of the new peer
- Return the results of voting to Access Policy Manager of the peer who had initiated it.
- \(P_n \rightarrow P_i : \{ \text{Vote}, \text{Level} \}_{\text{SK}_i} \)
- Policy manager issues \(\text{GC}_{\text{new}} \) signed with \(\text{G}_{\text{key}} \) of appropriate level
- \(P_i \rightarrow P_{\text{new}} : \{ \text{GC}_{\text{new}} \}_{\text{G}_{\text{key}}} \)

Protocol for Existing Member Level Update

- Periodic request for rating.
- Appropriate access privileges granted based on a scoring system.
- A rating certificate used as a means of recommendation
- Local Trust calculator available with each peer to compute the rating of every other peer.

5. Key Management.

- Peer receives membership certificate encrypted with group key of proper level
- Submits this to key management component to invoke group rekeying
Member Level Updation

- Peer
- Reputation E
- Peer, Trust Engine
- R
- Update Manager
- Entry into new level
- Key Mgmt System
- Policy Manager
- (is Value > threshold?)

Rating Certificate
- Recommending peer’s identity
- Recommended peer’s identity
- Original trust value
- Contribution score
- Issuing date and time
- Expiry date and time
- Signature of recommending peer

2. Access Control

- Policy Manager takes inputs from Trust engine and feedback engine
- Peer with overall trust value > threshold is granted GC of higher level
- Policy itself is flexible so that it can be modified after a certain level

Steps

1. Request for Updation
 - P1 -> P2 : {UpdateREQ}sk1, Cert
 - Cert includes rating certificates from other peers.
 - Updation manager calls trust engine and calculates value. Checks for revoked certificates.
 - Gives input to policy manager

Trust calculation

- Direct trust: \(T_{ij} \)
 peer J’s belief on peer J based on direct interaction
 \(k \)
- Indirect trust: \(T_{ij} = \sum (T_{ik} * T_{kj})/k \)
 Peer i’s belief on peer j based on recommendations from other peer’s (k)
 K is a number fixed by i.

Rating Algorithm

- Factors on which reputation depends are
 - Peer Feedback
 - Weighted Cost of transaction
 - Credibility of peer who is giving the rating.
Reputation index

- Recommendations from different peers are weighted differently depending on trust level of recommending peers.
- \(R_{ij} = R_{ij} \times \sum T_{ij} \times \text{Trans-cost} \)
 (for transactions whose cost or weight is > \(\theta \))
 (\(\theta \) is upper bound on transactions)

Weighted Cost

- \(\theta \) is an upper bound on transactions
- \(\forall \) transactions whose cost or weight is < \(\theta \)
 - reputation is calculated normally
- For every transaction with weight > \(\theta \),
 - the reputation value is multiplied by a constant which is a multiple of this threshold value.

3. Key management

- TGDH protocol may be used
- Rekeying at level \(i+1 \) would invoke rekeying at level \(i \) also

Summary....

- Updation of access level possible within a group
- Voting need not always be invoked
- Opinions of peers are weighted by credibility of rating peer
- Opinions of peers are weighted by cost of transaction
- Evaluation could be restricted to \(\theta_{r} \) trusted responses

Dynamic Leaving of Members

- Peers may send a query message to find out when a particular peer last communicated.
- Periodic re-keying could also be performed
- Member could periodically assert its presence in a group

Per-Session Authentication of Previous Member

- Existing member has copy of signed recommendations from other peers while leaving the group.
- This could serve as an authentication token
- Policy Manager checks validity period and current member list plus rating in certificate.
Future scope
- Refinement of proposal and implementation of test bed to measure:
 - Latency of join and leaves
 - Computational overhead of storage at peers
 - Functionality of individual peers in a group
 - Effect of authentication and access control on re-keying
 - Effect of dynamic revocation of access rights.

Authentication overhead
- Could be reduced by restricting no of responses required to calculate trust
- Signed hash of rating could be added instead of signing each individually
- Information need not be stored uniformly at all peers...maybe only neighboring peers

Future scope
- Addition of levels in self-organising groups and modification of policies at higher levels
- Dynamic leaving of peers
- Measuring inter-group trust metrics
- Behaviour of system with malicious peers
- Handling of dishonest feedbacks

Future scope
- Composition of groups
 - Groups may be formed with peers having different functional roles/rank.
 - Peer with maximal role may not be highest level peer
 - Quantum of functionality to be assigned to a peer?
 - Effect on the working of the group?
 - How could this be achieved in a distributed manner?

JXTA
- set of open protocols that allow any connected device on the network.
- standardize the manner in which peers:
 - Discover each other
 - Self-organize into peer groups
 - Advertise and discover network services
 - Communicate with each other
 - Monitor each other

Implementation of Secure Multi Chat
- Initial test bed
- Centralized framework
- Voting, security and rekeying added
- Minimum level access policy implemented
Sample policy in XML

```xml
<rules>
  <rule>
    <requestname>="join" permission = "grand" />
    <condition>
      <parametername>="vote" minbound = "100" />
    </condition>
  </rule>
  <rule>
    <requestname>="update" permission = "grant" />
    <condition>
      <parametername>="performance" minbound = "cpu" />
    </condition>
  </rule>
</rules>
```

Policy......

```xml
<rules>
  <rule>
    <requestname>="read" permission = "grant" />
  </rule>
  <rule>
    <requestname>="write" permission = "grant" />
    <condition>
      <parametername>="rating" min = "20" />
    </condition>
  </rule>
  <rule>
    <requestname>="modify" permission = "deny" />
    <condition>
      <condition>
      </condition>
    </condition>
  </rule>
</rules>
```
Admission Control in Peer-to-Peer: Design and Performance Evaluation

A Framework for Role Based Access control in Group Communication Systems

Access control in Peer to Peer collaborative Systems

A trust based access control framework for P2P file sharing systems

Trust Management with Delegation in Grouped Peer to Peer Communities

Thomas Repantis, Vassilis Kalogeraki: Decentralized Trust Management for AdHoc Peer to Peer Networks, MPAC, November 27- December 1, ACM 2006

Bibliography

Acknowledgements

Prof G. Sivakumar

Prof M. Bernard