Attacks on Diffie-Hellman Protocol

Network Security - IT653

Deepti Agrawal
KReSIT, IIT Bombay
Diffie-Hellman Protocol

Alice

Choose a

$A = g^a \mod P$

Send

Bob

Choose b

$B = g^b \mod P$

Send

Compute

$K_{ab} = B^a \mod P$

$K_{ba} = A^b \mod P$

$3^5 \mod 13 = 9 = 10^8 \mod 13$
Diffie-Hellman Conjecture

- Discrete Logarithm Problem (DLP)
 - To find z given g^z

- DH problem (DHP)
 - Problem of solving the shared key

- DH conjecture (DHC)
 - Solving DLP amounts to solving DHP
Basics

- **Group**

 (G, +) satisfying the properties of closure, associativity, identity and inverse.

- **Cyclic Group**

 A group that can be generated by a single element g (the group generator).

- **Subgroup**

 Subset H of group elements of a group G that satisfies the four group requirements.
Trivial attacks on Diffie-Hellman Protocol

- **Simple Exponent**
 1. \(a = 1 \) or \(b = 1 \)
 2. \(a = p-1 \) or \(b = p-1 \)

- **Simple Substitution Attacks**
 \(g^a = 1 \) or \(g^b = 1 \)
Mathematical attacks on Diffie-Hellman Protocol

- **Subgroup Confinement Attack**

 Example: \(p = 19, \ g = 2 \)

 Generated group
 \[
 \{2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1\}
 \]

 \(a = 2, \ A = 2^2 = 4 \)

 Subgroup generated by \(A = S_A = \{4, 16, 7, 9, 17, 11, 6, 5, 1\} \)

 \(b = 3, \ B = 2^3 = 8 \)

 Sub-group generated by \(B = S_B = \{8, 7, 18, 11, 12, 1\} \)

 \(K_{ab} = 2^6 = 7 \)

 Note: \(K_{ab} \) belongs to \(S_A \) intersection \(S_B \)

 Solution: Use Safe primes (\(p = 2q + 1 \))
Mathematical attacks on Diffie-Hellman Protocol (Cont..)

- Attacks based on composite order subgroup

The shared secret key $g^{(abq)} = (g^{(ab)})^{((p-1)/2)}$ can take only one of 2 possible values:
- $g^{((p-1)/2)}$ or 1
 according as whether $(g^{(ab)})$ is odd or even!

Think : How is this different from the conventional man in the middle attack?)
Conclusion

- Diffie-Hellman Conjecture does not hold for some keys in DHP.