Seminar Report

Multi-party authentication in Web Services

Madhumita Chatterjee (04429802)
Kanwal Reiki School of Information Technology
Indian Institute of Technology, Mumbai.

April 28, 2005

Abstract:
Web Services are rapidly evolving, emerging technologies. A Web Service may be composed of multiple service instances taking part in several business workflows simultaneously. Since they are based on message exchanges over the net, security is a major concern. It is essential to establish trust relationships amongst the different service instances. Standard Web Service technologies such as SOAP, XML, SOAP-DSIG, address the security concerns to some extent. However it is the dynamic behavior of multiple parties participating in a workflow that introduces new security challenges. It is necessary to authenticate session participants, without prior knowledge of all parties, participating in the session.
A session-oriented multi-party authentication protocol was suggested in [1], which establishes trust relationships among such session participants. This protocol provides a commonly shared session secret for all service instances however individual instances cannot be distinguished. An improved design was presented in [2] where each service instance of a given session is provided with a unique identifier. In this report we discuss and analyze the two approaches and suggest an adaptive approach where simple Web Services can rely on existing authentication approaches, using SOAP-DSIG, PKI and XML while for sophisticated Web Services involving long running transactions a trust model with a third party credentialing may be desirable.

Keywords: Web services, SOAP, WSDL, UDDI, Authentication,

1. Introduction
Web services are Internet-based, self-contained, modular applications that can be published, located, and invoked across the Web. They can communicate with other components automatically without human intervention. They perform functions, which can be simple requests to complicated business processes. Examples of typical Web services are, airline ticket reservation process, real time travel advisory, or sometimes even a restaurant review article. Once a Web Service is deployed, other applications (and other Web Services) can discover and invoke the deployed service. This interoperability allows businesses to dynamically publish, discover and aggregate a range of Web services through the Internet to more easily create innovative products, business processes and value chains. Use of Web Services on world-wide-web is expanding rapidly with growing need for inter-operability and application-to-application communication.

Each new request to a Web service is automatically spawned as a new thread in the Web Service process and the service allocates a service instance to handle requests pertaining to this flow. Multiple service instances can be combined to form a business flow and could take part in different workflows simultaneously. A Service could also delegate tasks to other services. The dynamic behavior of these short-lived services, introduce new security challenges. It becomes
necessary to ensure that the participants in a flow all belong to the same session. The need arises therefore to authenticate these dynamically generated session participants. While standard technologies such as SOAP, XML, and SOAP-DSIG do address these concerns to some extent, they haven’t really progressed beyond securing communications between trusted parties. Focus has not been given on the malicious use of Web Service Interfaces. There is an inherent need to develop new security protocols, which can establish trust relationships amongst the different service instances.

Hada and Maruyama in [1] presented a protocol for session authentication between dynamically generated instances of a business flow. Their protocol was able to establish a trust relationship between session participants by distributing a common session secret to all participants of a session. However the protocol did not have a measure to validate the identity of a Web service instance that applies to enter a session. So an attacker who has managed to compromise an instance of a Web Service could communicate with other session participants and gain their trust. Zhang and Xu, suggested an improvement to this design in their protocol [2], wherein they provide a means to distinguish instances of one session from those of another session. Each instance is provided with a unique identifier and a session management protocol enhanced with an attack containment scheme. An analytical model proposed by the authors, shows that the time consumed in the authentication process increases linearly with an increase in the number of session participants. However the overhead of message exchanges required for distinguishing instances using the Diffie Hellman key exchange is quite large.

We suggest an adaptive approach based on requirements of users. For simple Web services existing protocols and security measures would suffice whereas for sophisticated Web services involving long and multiple transactions across enterprise boundaries, a trust model based on third party credentialing may be desirable.

The rest of the report is organized as follows: Section 2 introduces the Web Service architecture and a typical business workflow. Section 3 deals with Web Service security challenges, threats and existing security measures. Section 4 discusses the session authentication protocol [1] introduced by Hada Maruyama and discusses its advantages and drawbacks. Section 5 introduces the multi-party authentication protocol [2] along with a detailed analysis of the same. Section 6 talks about a different approach altogether which would involve a trusted third party to do the authorization each time a new instance is created. Section 7 introduces the idea of an adaptive approach and in 8 we conclude the discussion with a brief look into the scope for future work in this area.

2. Web Service Architecture

At the heart of the Web Service Architecture is the need for program-to-program communications. In order for that communication to take place, it is essential to first describe the Web Service itself in detail, so that other programs can understand it and connect to it. Essential components of a Web service are: XML, SOAP, WSDL and UDDI.

- Extended Markup Language (XML) is the universal platform used for deploying and delivering these applications on a global scale. It provides a universal data exchange standard that allows access to data irrespective of its format or location. The provider hosts the XML service description for the Web service, which includes details about the service, including its location, transport protocols and message formats it uses.
- Web Service Description Language (WSDL) is the language used to create service descriptions. It is able to create descriptions not only about the location of the service and how to run it, but also higher-level information, such as what business is hosting the
service, the kind of service it is, keywords associated with the service and similar information.

- Simple Object Access Protocol (SOAP) is the protocol [7] through which the service provider, service registry and service requestor communicate. It's an XML-based technology, used to exchange structured data between network applications. SOAP is used to publish the service description to a service registry. It describes what is on the message and who should deal with it. Similarly, all other interactions between service registry, service requestor and service provider are done via SOAP i.e. it enables systems to talk to one another and make requests.

- Universal Description Discovery and Integration (UDDI) is the directory technology used by service registries that contain the description of Web services and that allows the directory to be searched for a particular Web service. UDDI is in essence a Yellow Pages that can be used to locate Web services. There can be both private and public UDDI directories.

![Figure 1: Execution of Web Services](image)

2.1 Typical Web Service Scenario

The following scenario demonstrates a business-level transaction involving a set of web services. Consider an industrial company that purchases Iodine from a chemical manufacturer on the Web. In order for the buyer to purchase the Iodine, she requires additional value-added services provided by third parties, such as shipping with specific delivery terms, payment financing, casualty insurance, and government compliance for safe transport. So for the business transaction to be completed all these services have to be available.

The software providing the top-level business transaction needs to coordinate with each of the participating web services. These include (1) the chemical provider's inventory system; (2) an insurance policy service to insure the product being shipped; (3) a financing service to ensure
payment according to vendor terms; (4) a transportation service to guarantee timely shipment and
delivery of product; and (5) a regulatory service to ensure compliance with government safety
requirements.

Figure 2: Typical Web Service Scenario

3. Web Service Security

Since Web services are based on message exchanges on the net with the possibility of dynamic
short-term relationships, security is a major concern. Most of the application internals are
exposed to the outside world. As the application is closer to the data it opens room for security
threats.

Hacking and traffic snooping problems are solved easily, using SSL at the protocol layer, and
encrypting SOAP messages. Authentication and identity management are two of the most
significant Web Service security problems as the transactions are conducted between two
computers. For e.g. many companies, like Deutsche Bank, are building portals that call on Web
services to gather data from back-end applications. The problem is that those applications don’t
know where the request is coming from.

Broadly Web Services Security requires [6]:

Authentication: Establishing identity of user by providing a set of credentials. In return user
receives a security token that can be used to access the server.

Authorization: Establishing what a user is allowed to do.

Confidentiality: Ensuring that only the intended recipient can read the message, accompanied by
encryption.

Integrity: Ensuring that the message has not been tampered with, generally accomplished with
digital signatures.
Non-Repudiation: Requiring that neither the sender nor the receiver can refute having sent the message.

3.1 Threats and Countermeasures

Malicious web service threats typically fall into one of three categories:
- Identity threats, such as authentication attacks, eavesdropping etc.
- Content-borne threats, which are attacks with elements in the actual XML payload, such as XML viruses.
- XML Denial of Service (XdoS), which are new application-level versions of network level DoS attacks.

3.1.1 Identity Threats

The top Identity threats directed at Web Services [10] are:
- Unauthorized access
- Parameter manipulation
- Network eavesdropping
- Disclosure of configuration data
- Message replay

![Figure 3: Top threats and attacks directed at Web services](image)

Unauthorized Access
Weak authentication and authorization can be exploited to gain unauthorized access to sensitive information and operations. These could be taken care of by either using password digests, or Kerberos tickets or X.509 certificates in SOAP headers for authentication. Role based authentication could also be used to restrict access to Web services.

Parameter Manipulation
Parameter manipulation refers to the unauthorized modification of data sent between the Web service consumer and the Web service. For example, an attacker can intercept a Web service
message, perhaps as it passes through an intermediate node en route to its destination; and can then modify it before sending it on to its intended endpoint. To prevent this the messages could be digitally signed and encrypted.

Network Eavesdropping

With network eavesdropping, an attacker is able to view Web service messages as they flow across the network. For example, an attacker can use network-monitoring software. Transport level encryption such as SSL or IPSec could be used if one can control both endpoints. The message payload could be encrypted to provide privacy. This approach would work in scenarios where the message travels through intermediary nodes route to final destination.

Message Replay

Web service messages can potentially travel through multiple intermediate servers. With a message replay attack, an attacker captures and copies a message and replays it to the Web service impersonating the client. The message may or may not be modified. The threat of message replay could be countered by use encrypted communication channel like SSL, encryption of message payload, and a unique message ID or nonce with each request to detect duplicates.

Disclosure of Configuration Data

There are two main ways in which a Web service can disclose configuration data. First, the Web service may support the dynamic generation of Web Service Description Language (WSDL) or it may provide WSDL information in downloadable files that are available on the Web server. This may not be desirable. Second, with inadequate exception handling the Web service may disclose sensitive internal implementation details useful to an attacker. This could be tackled by authorizing access to WSDL files using NTFS permissions or by removing WSDL files from Web Server.

3.1.2 XML Virus Attacks

Content borne attacks [10] are generally intended to affect actual applications that run Web Services after tunneling unnoticed through the security infrastructure. Two examples are SQL injection attacks and buffer over-flow attacks. SQL injection is the practice of inserting malicious SQL statements into XML to disrupt back-end systems. If a Web Service connected to a database doesn’t validate SQL, an incoming XML message containing rogue XML statements could break out of the expected database query and be used to obtain unauthorized information or data. A buffer overflow attack is aimed at the service end-point and capitalizes on vulnerabilities there, such as not setting aside enough memory to deal with a large variety of inputs. Protection against content attacks requires robust parsing and XML Schema validation capabilities.

3.1.3 Denial of Service Attacks:

The first widespread XDoS attack was the ‘entity attack’ where unprivileged users could use completely correct entity declarations in an XML message to wreak havoc on an unprotected XML 1.0 standard-compliant parser. Recursive entity declarations can cause the parser to shutdown with an out-of-memory error. Inadvertent DoS attacks can occur as a result of simple human error, such as a programmer mistakenly sending 100 requests per second instead of 10.

3.2 Web Service Scenario: Challenges and Issues

SOAP messages are sent from an initial SOAP sender to an ultimate SOAP receiver along a SOAP message path consisting of zero or more SOAP intermediaries that process and transform
the SOAP message. A challenge is to preserve security properties of the SOAP message from the initial SOAP sender to the ultimate SOAP receiver. Transport layer security mechanisms such as HTTP over TLS may be used to secure messages between two adjacent SOAP nodes, whereas message layer security mechanisms defined in the Web Services Security standard must be used in the presence of intermediaries or when data origin authentication is required. Security headers may contain multiple Security Tokens, Security Token References, Nonces, Signatures, Encrypted Keys, Encrypted Data, and at most one Timestamp. Each security header is targeted to a specific SOAP actor. A SOAP message may contain multiple security headers, however each must be targeted to a different SOAP actor. Each security header may contain multiple Security Tokens.

SOAP messages are composed of XML elements. Elements may be signed and/or encrypted by being referenced from a Signature [8] or a Reference List within an Encrypted Key. Individual elements within a message may be referenced from multiple Signatures and/or Reference Lists and messages may be composed of signed and/or encrypted elements from other messages. As intermediaries process messages, they potentially sign and encrypt new and pre-existing data, as well as consume signed and encrypted data targeted at a SOAP actor that they portray. It is important to preserve the security context of the message as it undergoes these transformations.

Traditionally SSL, TLS, VPNs and IPSEC are some of the common ways of securing content. However these are point-to-point technologies. They create a tunnel through which data can pass. IPSEC can authenticate hosts on either side of the communication. With SMIME (Secure Multi-purpose Internet Mail Exchange) protocol, data could be sent digitally signed and encrypted over the Internet. Both these protocols require that the communicating parties have persistent identities. However these protocols cannot be applied to authenticate participants of dynamically generated sessions. Web Services require more granularity. They have to maintain secure content and control according to their security policies. Following is a set of challenges:

- Inter-enterprise Web services are dealing with un-trusted clients
- End-to-end isn’t just point-to-point. The creator of the message wrote the payload but intermediaries may touch or rewrite the message afterwards.
- Clients and services do not have a way to negotiate their mutual constraints and capabilities before interacting.

3.3 SSL is Not Adequate for Securing Web Services

SSL along with TLS is used to provide transport level security for Web Service authentication. Between the web site and the web service there is a need for persistent message security for SOAP documents. SSL is inadequate for this type of security. While SSL encrypts the data stream, it doesn't support end-to-end confidentiality; it leaves the data exposed between the web site and the web service provider. The limitations can be summarized as follows:

- SSL provides point-to-point security or operates between end-points (and not applications), but for web services we need end-to-end security in which multiple intermediate nodes could exist between the two end-points. In a web services environment, there could be multiple XML-based business documents going through multiple intermediary nodes and it will be difficult for such nodes to participate in security operations in an integrated fashion.
SSL operates at the transport level and not at the message level. In other words, messages are protected only while in transit. That is, you cannot save the message for later to prove that it hasn't been modified.

SSL provides confidentiality and sender/receiver authentication but doesn't support non-repudiation. Using SSL, a communicating partner cannot prove that the other party has performed a particular transaction. That is, SSL doesn't support an end-to-end audit trail from service request to service response.

SSL doesn't support element-wise signing and encryption. Given a large XML order document, one may want to only sign or encrypt the credit card info...and that is difficult in SSL. This is because SSL is a transport-level security scheme as opposed to a message-level scheme.

4. Need for Session Authentication for Web Services

A Web Service is a static long-lived entity with a unique identifier globally known. When it receives an initial request to participate in a business flow, a new instance is invoked to handle the requests pertinent to this flow see Fig [4].

![Figure 4: Typical Business Flow Scenario](image)

We consider here a typical scenario where two different users contact different service providers i.e. a travel agency, for booking tickets for different journeys. User1 wishes to book his airline reservation for a flight from Bombay to Delhi. He also wishes to get a car booking confirmed and
hotel reservations in Delhi provided his flight reservation is confirmed. User 2 contacts a different travel agency service to book tickets from Bombay to Madras.

The airline’s application is designed to perform a transaction under which a reservation for the passenger is made and charged to the credit card system. The airline could also contact the credit card company’s charging service in order to perform that operation. The booking service providers initiate different sessions for users 1 and 2 and invoke different service instances, which send requests to the flight reservation database. It further dynamically initiates instances for contacting the car booking service provider and hotel booking service provider for users. Both these services create their own instances to handle these requests. The hotel booking service and car booking service send notifications to the respective travel agency services, over a SSL connection signed by a CA. This does not provide the guarantee to the travel agency service that it is an instance of the session initiated by itself. There could be hundreds of instances simultaneously participating in different transactions and if someone compromises/confuses this instance a false notification may be generated. Thus the need, to authenticate dynamically generated participants belonging to a particular session.

4.1 Hada - Maruyama’s Protocol

The protocol [1] is split into two parts. A message authentication protocol transports authentication information between session participants and session management protocol is responsible for starting, running and ending a particular session. There is a session authenticator (SA) component, which is responsible for distributing session keys and authenticating messages.

4. 1.1 The Message Authentication Protocol

The protocol is based on the assumptions that a service is a persistent long-lived entity with a globally known identifier such as a URL while a service instance is a transient, short-lived entity. There are two levels of message authentication protocols used in the proposed session management protocol.

1. Session Authenticator
 Allows service instances to mutually verify their transient membership. It is a protocol for the sending service instance to send a MACed SOAP envelope to the receiving instance, which may not yet have the session key. The following are the steps involved:
 i. Sending instance prepares SOAP envelope.
 ii. Can optionally use XML encryption to encrypt the envelope
 iii. Adds authentication information to SOAP header. This consists of session handle, message identifier, sending service’s certificate and receiving service’s certificate. This identifier is essential to avoid replay attacks. Session handle may also include expiration date.
 iv. Sending instance uses SOAP-DSIG to apply a MAC to the entire SOAP envelope under the session key. This MACed envelope is then sent to receiving service.
 v. On receiving MACed envelope, receiving service checks whether it already has a valid session secret for the session. If not, it obtains the same from session management protocol.
vi. Having session key, receiving service instance validates MAC and accepts SOAP envelope after successful validation. If the envelope was encrypted then decryption is done.

vii. Thus receiving instance receives authenticated message and session handle.

2. **Service Authenticator**

 This is the protocol for the sending web service to send a SOAP envelope to a receiving web service.

 i. Sending service prepares SOAP envelope to send.
 ii. The Authentication header is added
 iii. SOAP-DSIG is used to digitally sign the message. Optionally XML encryption could be used to encrypt the digitally signed envelope.
 iv. Signed (encrypted) envelope is sent to receiving service.
 v. Receiving service decrypts it, validates the signature, verifies the certificates specified as the receiver’s certificate as its own and accepts this as a message.

4.1.2 **Session Management Protocol**

 The underlying assumption here is that the messages will be sent using service authenticator and SSL/TLS. Further assume the presence of entity session authenticator that manages the sessions. SA could be initiator of the session or any other instance. SA is responsible for
 - Assigning session Ids.
 - Creating session secrets.
 - Maintaining status information for each session.
 - Keeping participants informed of the status.
 - Shutting down sessions.

 The protocol has the following steps:
 - A session is created by sending a `<start-session>` request to the SA. Reply to `<start-session>` command contains session handle and session secret that were created for that session.
 - A would-be participant can send a `<join-session>` message to the SA and get back the secret in return.
 - A participant can request shutting down a session by `<end-session>` request.
 - SA keeps track of information about a session by `<query-session>` request.
 - SA can send a `<notify-session>` message to its participants to notify shutting down of a session.
 - One participant can invite another to participate in the session by sending a `<forward-session>` message. This message needs to be protected from eavesdroppers as it contains the session secret.
 - The SA must digitally sign the Admission policy admitting a participant to a session. Messages are sent using the message authentication protocol such as service authenticator and SSL/TLS as required.
4.2 Online Session Management

There are two ways for a participant to join a session, offline and online. In the online mode, first the requester initiates a session by sending a start-session request to SA. It receives the session secret as a reply to this request. Using this secret it now sends an application to a Web service (denoted service#1 in fig [5]), over the message authenticator. On receiving this message the service is given the session handle and asked to join the session. A new instance is spawned by the service and control is transferred. SA, following a join-session request admits this instance to the session. The same session key is also passed on to this instance. Since the instance has the session secret it now authenticates the received message and obtains payload. If the service instance needs to delegate its operation to some other service, it can send a message the other service via session authenticator. The same process is repeated till second service instance also obtains the session secret.
Thus ultimately all session participants obtain the same session secret and can trust each other once they are admitted to the session. See Fig [5]

![Diagram of Online Session Management](image)

Figure 5: Online Session Management

4.3 Offline Session Management

The online scenario requires extra communication in order to acquire the session secret. By using the <forward-session> message, the requester can create a new service instance and send this message. The newly created instance now has the session secret. If it needs to further delegate to a third Web Service and is allowed to do so by the admission policy, it can re-forward this session. The requestor itself can act as SA in this scenario also. The <forward-session> message could be piggybacked on the <notify-session> messages to further reduce communication overhead during session management.
However in the offline scenario, the list of session participants cannot always be maintained accurately.
4.4 Scenario where the protocol fails

Consider the example of airline ticket reservation discussed earlier. Suppose that after user 1 has sent request to TA-1, and the later prepares a MACed envelope and sends to Airline service. This message could be intercepted en-route by some malicious service or by a malicious party say C. C now sends a request to the session authenticator and obtains the session key and can then validate the message. C can now prepare forged message and send it to the Airline with message id and sender’s certificate changed but receiver’s certificate kept intact. Thus C has managed to compromise a Web service instance and obtain the session secret, as well as it has gained the trust of the Airline Service.

4.5 Drawbacks of the Session Authentication Protocol

- The protocol does not provide a unique identifier for each participant in a session.
- An attacker who has compromised a Web Service instance and obtained the session secret can communicate with other session participants and gain their trust.
- The SA component does not have a measure to validate the identity of a Web Service instance that applies to enter a session. Any Web service instance as long as it holds the session ID can contact SA and apply to enter the session.

5. Multi-Party Authentication Protocol for Web Services

The Session Management protocol proposed by [1] does not provide a unique identifier for each participant of the session, leaving loopholes for attackers who can compromise an instance. Dacheng Zhang and Jie Xu in their work [2], proposed a protocol where, within a session each instance holds a unique key, which can therefore be used to identify the instance.

5.1 Instance ID Authenticator Protocol

The dynamism of Web service instances gives rise to the need for dynamic and unique identifiers for the instances of a given session. Within a session, each instance holds a unique security key, which can be used to identify that instance. The Diffie Hellman key exchange protocol is used to exchange a key safely among service instances. For e.g. if there are two instances A and B which agree on a large prime p and a number g which is a primitive root of p then gmodp, g^2modp, g^3modp, ... , g^(p-1)modp are distinct integers from 1 to p-1 in some permutation. Following are the notations used in the protocol:

- p: a large prime number
- g: a primitive root of p
- R: random no. chosen by a service instance of the session
- g^R: g^R mod p is the unique identifier used by the instance.
- K_{x,y}: security key shared by service instance x and y.
- MAC_{x,y}(M): MAC code for msg M under key K_{x,y}.
- U(R, g^R): Service Instance U with pvt msg R and identifier g^R.
5.2 Basic Protocol Steps

A service instance wanting to communicate with another instance for the first time sends a <start-communication> message. The recipient on receiving and verifying this message sends back a Boolean value “true” or “false”.

1. Web service prepares a SOAP envelope in order to send a message to participants of a given session
2. The instance inserts the authentication information (i.e. session handle, identifier of sending instance, sender service’s certificate, receiver service’s certificate) into the header of the envelope.
3. Sending instance uses Diffie-Hellman algorithm to calculate a secret key with its private message and the identifier of the intended receiver.
4. It then applies MAC code generated with secret key to the SOAP message. Finally sending instance sends SOAP message to the receiving instance.
5. Upon receiving message, receiver instance uses its own private key and the identifier of the sender to regenerate the secret key. By comparing newly generated MAC with the MAC appended to message, the receiver can verify identity of the sender.

E.g. consider two instances A and B with identifiers g^x and g^y. A sends $g^x \mod p$ to B and B sends $g^y \mod p$ to A. B now computes $K2 = (g^x \mod p)^y = g^{xy} \mod p$.
Similarly A computes $K1 = (g^y \mod p)^x = g^{xy} \mod p$.
Thus both have the same secret key $g^{xy} \mod p$.

5.3 Example Scenario

Consider the following scenario, which initially consists of a session manager service and a user instance (UI (x, g^x)).
1. UI contacts the session manager.
2. Session manager invokes service instance (MI(y, g^y)). Fig [2]
3. MI and UI exchange identifiers g^x and g^y and a session instance is initialized.
4. Suppose UI wants to contact service #1. A new service instance (NI(z, g^z)) is invoked to manage UI’s request.
5. UI and NI exchange identifiers g^x and g^z and some related information (e.g URL of MI and g^y).
6. UI then needs to send <Introduction-of-new-Instance> message to MI, before MI accepts NI as a participant of the session. Fig [7].
7. Suppose NI needs to contact another service #2. So another service instance (NI2(n, g^2)) is invoked by NI and recommended to MI.
8. Since NI2 does not know UI’s identifier, it sends MI an <identifier-query> message to check UI’s identity in order to communicate with UI.
9. On getting UI’s identifier from MI, NI2 will send a <start-communication> message to UI.
10. After receiving message from NI2, UI needs to contact MI to verify the identity of NI2, since it has not communicated with NI2 before. If the reply from MI is true, UI then verifies MAC appended with the message and sends a reply back to NI2. See Fig. <4>

Figure 7: Interactions between UI and NI^2

Figure 8: Interaction between UI and NI^2
5.4 Key Observations

- Each service instance of a session has a private secret and a public identifier.
- The public identifier is transported over the Internet.
- Private secrets are kept by the instances securely.
- Attackers cannot get the key shared by the instance participating in a communication from the plain text and MAC code.
- It is computationally difficult for an attacker to impersonate one or more participants.
- Service instance that attempts to join a session must be recommended by a session participant to “SA” first. So a malicious instance will be detected by session manager. This further improves the security of the system.

5.5 Session Management Protocol

The Multi-party authentication protocol stated above also takes care of complicated cases like a participating service instance having local operations not supposed to be known to other participants. The session management protocol uses co-ordinated atomic action mechanism to dynamically manage sessions. A CA action is a mechanism for co-ordinating multi-thread interaction. Web Services are concurrent execution threads. These when participating in a given CA action, enter and leave the action synchronously. Within the CA action, operations on objects can be performed co-operatively.

In the session management protocol, a set of nested CA actions structure a workflow. Nested actions could be pre-defined or invoked dynamically. A service instance or a role in a CA action may only communicate with other roles in the same action. A CAA manager must ensure that there is no error or exception unsolved. There are separate protocol operations that provide functions to manage a set of nested CA actions.

5.6 Analysis of the protocol

As can be seen from the protocol each session has a unique manager instance, which behaves as a trusted third party for that session. There are separate manager instances for separate sessions. The manager instance’s identifier is equal to the identifier of the session and it is the manager instance, which guarantees that every identifier is unique within that session.

We consider the same example of airline ticket reservation discussed earlier. Now if a Web instance message is intercepted, and substituted by some malicious instance then it would not be accepted into the session by the manager instance because, the later does not have any recommendation about this malicious instance. Thus new instances cannot arbitrarily be included into the session unless one of the session participants has recommended it to the manager.

The authors in [2] have created a mathematical analytical model to study the performance of the session authentication system with concurrency and we give their analysis below.
Notations used:

- P_i: Service instance, which is the I-th instance introduced in the session
- $T_{\text{inst},i}$: Time consumed to spawn a new service instance P_i
- $T_{\text{key-pair}(j,i)}$: Time consumed to generate the j-th private key and public key in process of introducing P_i into the session.
- $T_{\text{sec}(j,i)}$: Time consumed to generate the j-th secret key in process of introducing P_i into the session.
- $T_{m(j,i)}$: Time consumed to generate and transport j-th message between the two Web-service instances in process of introducing P_i into the session.

In the multi-party authentication protocol proposed, a user instance first contacts a session authority to initiate a session and then the session authority assigns an SA instance to manage the session. The user is regarded as the first session partner of the session. Whenever a new session has accepted as a new partner it must first be introduced to the SA. This is normally done by session partner who has introduced the new instance.

From the example scenario explained in section 5, fig [8] there are at least five messages that should be sent over the network when a partner of a session attempts to introduce a newly generated Web service instance to the SA of that session.

E.g. considered here is that of a session partner that attempts to introduce a newly spawned Web service instance P_i to the SA. Assuming that in worst case the process will be successful after x_i identifier selections, the total time consumption of this process $T_{\text{total},i}$ is:

$$T_{\text{total},i} \leq \sum_{j=1}^{4x_i+1} (T_{m(j,i)}) + \sum_{j=1}^{x_i} T_{\text{key-pair}(j,i)} + \sum_{j=1}^{2(x_i+1)} (T_{\text{sec}(j,i)}) + T_{\text{inst},i} \quad \text{.........(1)}$$

For a session where n service instances are accepted into the session, total time consumption $T_{\text{n-total}}$ could be expressed as:

$$T_{\text{n-total}} = \sum_{i=1}^{n} T_{\text{total},i} \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{4x_i+1} (T_{m(j,i)}) + \sum_{j=1}^{x_i} T_{\text{key-pair}(j,i)} \right) + \sum_{i=1}^{n} \left(\sum_{j=1}^{4x_i+1} (T_{m(j,i)}) + \sum_{j=1}^{x_i} T_{\text{key-pair}(j,i)} \right)$$
\[2(x_i + 1) + \sum_{j=1}^{2(x_i + 1)} (T_{sec(j,i)}) + T_{inst,i} \]

\[= [4(x_1 + x_2 + x_3 + \ldots + x_n) + n](T_{message}) + (x_1 + x_2 + x_3 + \ldots + x_n) + n](T_{key-pair}) \]

\[+ 2[(x_1 + x_2 + x_3 + \ldots + x_n) + n](T_{secret}) + nT_{instant} \ldots \ldots \ldots \ldots (2) \]

where

\[T_{message} = \frac{\sum_{i=1}^{n} (\sum_{j=1}^{4x_i + 1} (T_{m(j,i)}))}{\sum_{i=1}^{n} (4x_i + 1)} \]

\[T_{key-pair} = \frac{\sum_{i=1}^{n} (\sum_{j=1}^{x_i} (T_{key-pair(j,i)}))}{\sum_{i=1}^{n} x_i} \]

\[T_{secret} = \frac{\sum_{i=1}^{n} (\sum_{j=1}^{2x_i + 1} (T_{sec(j,i)}))}{\sum_{i=1}^{n} (2x_i + 1)} \]

\[T_{instance} = \frac{\sum_{i=1}^{n} (T_{inst,i})}{n} \]

If the key space for a security system is large enough, the probability that two partners within the same session select the same private key is extremely small. Thus for every \(i \) in \(\{1,2,\ldots,n\} \), \(x_i \approx 1 \). That is the value of \((x_1 + x_2 + x_3 + \ldots + x_n) \) in equation (2) is approximately \(n \). When all operations execute sequentially then:
Equation (3) implies that, in order to accept \(n \) service instances into a session, there will be \(5n \) messages transported, \(n \) key pairs, \(4n \) secret keys and \(n \) new service instances generated. In worst case the time consumption of introducing service instances into a session increases linearly with the amount of the session partners. Thus this approach suggested by Zhang and Xu, appears to take care of the problem of authenticating dynamically generated session participants. However the message exchange overhead is quite large as has been shown in the mathematical simulation above. Besides, the protocol relies heavily on Diffie Hellman exchanges, which are prone to attacks. The time taken to compute the secret key after each Diffie Hellman exchange could also prove to be a bottleneck in real-time applications.

6. Authorization using trusted third party

An alternative approach suggested in [6] is to set up a security assertion authority as a trusted third party. Then two parties could interact with each other via this authority. For e.g a buyer could send a request to the authority with a user id and password. The authority could authenticate the buyer and issue a document containing authentication and attribute assertions. The buyer could then send a purchase order to the supplier, attaching the security assertion as a SOAP header. The supplier could perform authorization relying on the received assertion. A security assertion document is a kind of a ticket. The identity of the carrier is not authenticated by the receiver. This implies the possibility of a single sign-on for distributed multiparty Internet services. By providing trusted third parties to play the role of assertion authorities, an open-ended, flexible e-business infrastructure is proposed [6]. SAML provides a technology basis for such a business structure.

7. An Adaptive Approach

In online business trading such as supply chains in which orders may pass from one office to another, an initial transaction (e.g an order for an aircraft engine) may spawn multiple supporting transactions (orders to individual parts, orders for shipping containers and so on.) This would involve handling of high volumes of traffic. Business processes that require a mixture of long-running and short-running transactions would require further customization of security. Requirements for human users can vary. For e.g. customers of an online bookseller would not take on the burden of digital signatures in order to securely order books but bookstore owners would be interested in PKI to protect financial data transactions. Non-repudiation would also be an important aspect in such transactions. The goal should be to apply only as much security as a particular transaction requires, rather than increasing infrastructure costs and applying stringent security measures uniformly to every node and transaction. An example that illustrates the natural need for an adaptive approach to implementing security is the decision of most companies to postpone the use of Digital signatures as the cost for implementing a PKI infrastructure is very high.
Thus for simple Web services having one to one or one to many applications, the existing security mechanisms in Web services do suffice, but when it comes to sophisticated Web services involving long running transactions that traverse multiple enterprise boundaries there is a need to protect messages persistently. Security measures like XML encryption and Digital Signatures work well for such enterprises but at the same time a trust model with a third party credentialing may be desirable.

8. Conclusions and Future Work

This report has presented a discussion of two methods of authenticating dynamically created instances of a given session during a Web Service workflow. In the protocol discussed in section 4, all instances of a session share a common secret key and authenticate themselves. However individual instances cannot be distinguished and identified using this session secret. An attacker who has managed to compromise an instance of a Web Service could communicate with other session participants and gain their trust. The protocol discussed in section 5 is an improvement on this design. Here each service instance of a given session is provided with a unique identifier. An unknown instance would not be permitted to enter the session, unless recommended by one of the existing session participants. The scalability of the design has been studied using an analytical model proposed by the authors, showing that the time consumed in the authentication process increases linearly with an increase in the number of session participants. The overhead of message exchanges required for distinguishing instances using the Diffie Hellman key exchange is quite large. Further the Diffie-Hellman protocol is itself prone to attacks. The scenario wherein the Session Authenticator itself is malicious has not been taken into consideration in either of the two protocols. Scope for further work therefore could be to achieve the above functionality with fewer overheads of message exchanges. An adaptive approach could be considered wherein for simple Web services the existing security measures suffice while for sophisticated Web services involving multiple short and long running transactions, a trust model with a third party credentialing is adopted.

9. Acknowledgements

I take this opportunity to thank Professor Bernard M. and Prof G.Sivakumar for their invaluable guidance and support.

10. Appendix

10.1 Security Standards for Securing Web Services [9]:

- **XML Signature**: A standard specification developed jointly by the W3C and IETF (Internet Engineering Task Force). An XML signature is equivalent to a digital signature; it can be used to digitally sign portions of an XML document. It is used with SOAP messages.
- **XML Encryption**: A standard specification developed by the W3C proposes to encrypt portions of XML documents. This specification can be used to assure confidentiality in
case of a security context ranging over several SOAP intermediaries. To do that, portions of the SOAP message are kept confidential from SOAP intermediaries while the message is in transit.

- **XML Key Management Specification (XKMS)**: Developed by the W3C to allow clients to obtain cryptographic key information (such as keys and certificates). It also describes protocols for key management such as registration and revocation, suitable to be used together with XML Signature and XML Encryption.

- **Security Assertions Markup Language (SAML)**: Defined by OASIS, it outlines a framework for exchanging authentication and authorization information. It is used for user identity assertions and for asserting actions performed by various elements of an enterprise infrastructure.

- **XML Access Control Markup Language (XACML)**: The primary goal of this specification is to standardize access control language in XML syntax. Such a language can be used to express access control policies like who can do what and when. The Web Services Policy Language (WSPL), which is based on XACML, is a generic language for expressing policy information.

- **WS-Security**: The OASIS Web Services Security specification provides a way to ensure that messages remain confidential, haven’t been tampered with, and are actually from senders asserting to have sent them. WS-Security specifies the use of XML Digital Signature and XML Encryption with SOAP, enabling the application developer to insert a security token that identifies the original sender and optionally captures information about intermediate destinations of the XML message. Security tokens can be as simple as a name, IP address, and password or as complex as a PKI certificate or a SAML assertion. The specification supports common encryption algorithms and techniques. The standard provides ways to encrypt all or just parts of the XML in the message. Selective encryption and signing also lets senders add different signatures and keys to parts of a single document that are designated for different recipients. However, the process of identifying which data is supposed to be confidential, based on information listed in a header manifest, adds overhead to a system.

11. References

5. V. Vasudevan, “A Web Services Primer”,
7. W3C NOTE, Simple Object Access Protocol (SOAP) 1.1,
 http://www.w3.org/TR/SOAP/