Caption Alignment for Low Resource Audio-Visual Data

Vighnesh Reddy Konda\(^1\), Mayur Warialani\(^1\), Rakesh Prasanth Achari\(^1\), Varad Bhatnagar\(^1\), Jayaprakash Akula\(^1\), Preethi Jyothi\(^1\), Ganesh Ramakrishnan\(^1\), Gholamreza Haffari\(^2\) and Pankaj Singh\(^1\)

\(^1\)Indian Institute of Technology Bombay, India
\(^2\)Monash University, Australia

{vighnesh, mayurwarialani}@cse.iitb.ac.in

Abstract

Understanding videos via captioning has gained a lot of traction recently. While captions are provided alongside videos, the information about where a caption aligns within a video is missing, which could be particularly useful for indexing and retrieval. Existing work on learning to infer alignments has mostly exploited visual features and ignored the audio signal. Video understanding applications often underestimate the importance of the audio modality. We focus on how to make effective use of the audio modality for temporal localization of captions within videos. We release a new audio-visual dataset that has captions time-aligned by (i) carefully listening to the audio and watching the video, and (ii) watching only the video. Our dataset is audio-rich and contains captions in two languages, English and Marathi (a low-resource language). We further propose an attention-driven multimodal model, for effective utilization of both audio and video for temporal localization. We then investigate (i) the effects of audio in both data preparation and model design, and (ii) effective pretraining strategies (Audioset, ASR-bottleneck features, PASE, etc.) handling low-resource setting to help extract rich audio representations.

Index Terms: multimodal models, low-resource audio-visual corpus, caption alignment for videos

1. Introduction

Rooted in video understanding, temporally localizing captions within videos is a relatively new and challenging task where sentences are provided alongside videos, and the task involves predicting start and end times where the sentence best aligns with the video \([1, 2, 3, 4]\). Grounding the caption within video could be particularly useful for indexing and retrieval applications that extract specific segments within a video corresponding to a sentence. An established approach to tackle the alignment problem is to extract frame-level video features (e.g. from 3-D convolutional neural network encoders), and compare their similarity with sentence level features (e.g. from recurrent neural network encoders). This is based on the idea that in some latent space the most similar video features will be closest to the sentence features. However, these techniques do not exploit the multimodal nature of videos and ignore the audio modality altogether.

In this paper, we aim to improve performance of temporal localization in videos by incorporating audio in an effective way. Even for existing datasets, the audio modality may benefit sentence alignment annotations, e.g. for ActivityNet \([5]\) where the ground truth sentence alignments were created by largely ignoring the audio modality. What if the ground truth sentence alignments were instead created in an audio-sensitive and not an audio-agnostic manner, which is crucial when the audio is largely speech in a specific language? What is the effect of the language of the audio speech and that of the sentence captions on the quality of the output alignment? What are the learnings from existing datasets that can be leveraged for a new language?

We investigate these questions through a new dataset MALTA\(_{av}\) (illustrated in Figure 1) which we make available through this work, and MALTA which is our proposed architecture.\(^1\) MALTA\(_{av}\) is a dataset consisting of 492 videos, with an average length of 80 seconds and around 7 sentences describing every video in each of two languages, viz., Marathi and English, along with background speech in Marathi rich in content.

The main contributions of this work hinge on the following key points:

(i) The ground truth of MALTA\(_{av}\) was generated by instructing close to 10 annotators to pay close attention to the audio as well as the visual streams while aligning the sentence captions with the video. We observe that this process is a lot more intensive than the video-driven and largely audio-agnostic alignment process that has been employed to create erstwhile datasets. We empirically quantify this slowdown to be by a factor of 3 by also having another subset of annotators align captions with a subset of our videos by ignoring audio (as is typically done in benchmark datasets). We refer to this subset as MALTA, and we use it only for evaluation purposes as test data. While we observe (as expected) that the use of the audio stream indeed improves the accuracy of sentence alignment on MALTA\(_{av}\) (just as in the case of other English language datasets), we also empirically show by contrasting performances on MALTA, against those on MALTA\(_{av}\) that the gains might get incorrectly dampened if the ground truth in the evaluation data is created in an audio-agnostic manner. We empirically demonstrate that MALTA is effective even when the language of the speech in the videos is different from the language in which the sentences are expressed.

(ii) Another surprising observation on erstwhile datasets is that, when the video and audio modalities are combined using the architecture of MALTA, there is only a slight drop when the audio and corresponding video are deliberately designed to be incongruent. On the other hand, MALTA\(_{av}\) clearly demonstrates and underlines the importance of unambiguous annotation semantics – there is a greater drop in accuracy of MALTA when we introduce incongruency or white noise in MALTA\(_{av}\).

(iii) Due to the slowdown in the annotation process involving both audio and video modalities, it is somewhat challenging to scale up the number of annotated videos in MALTA\(_{av}\). Consequently, to compensate for the relatively smaller (though richer) dataset, our approach in MALTA makes effective use of pre-
training of the audio (speech) features using existing speech
dataset in the new language (Marathi) while leveraging pre-
trained visual features using the existing large caption align-
ment datasets (such as ActivityNet) in English.
(iv) Summarily, MALTA is based on (a) language specific pre-
training of the audio modality, (b) mutual co-attention between
the three audio, video and text modalities for their effective
combination, (c) analyzing the role of audio in performance
by manipulating the videos to have incongruent audio and
using caption-audio from different languages.

Our paper is organised as follows. In Section 3.1, we mo-
tivate the design of our MALTA architecture by describing the
obvious and subtle aspects of our MALTA _av_ (and MALTA _v_)
dataset. In Section 4 we present detailed experimental analy-
sis. We present related work in Section 2 and conclusions in
Section 6

2. Related Work

To match the query and video frame candidates, one approach
is to map the visual features of the frame candidates and the
textual feature of the caption into a shared space and measure
their semantic similarity. This is the basis of Moment Context
Network (MCN) [3] and Cross-modal Temporal Regression Lo-
calize (CTRL) [6] where the two works differ in the way they
build (i) a context-dependent encoding of the video frames, i.e.
neighboring local frames in CTRL vs all global frames in MCN,
and (ii) an encoding of the sentence caption, i.e. last LSTM
state MCN vs skip-thoughts in CTRL. [4] proposed the use of
attention mechanism to flexibly adapt to relevant cues in the
caption. Most relevant to our work is Attention Based Location
Alignment (CTRL) [16] where the two works differ in the way they
localization of sentences within videos for settings where the
alignment needs to be performed based on both video and au-
dio modalities. In Figure 1, we illustrate the obvious as well
as subtle aspects of such a task on a video segment (from our
dataset), whose (rich) audio modality also consists of speech.
The speech, in turn might be in a language different from
that of the sentence. In our problem setting (wrt the Fig-
ure 1), we have two synonymous versions of the sentences to be
aligned (‘rub...vigorously’ printed in pink color), viz., English
and Marathi, of which we will be provided captions in exactly
one of the two languages. The ground truth alignment for the
sentence is between 17.3 and 24.5 seconds (pink) when the au-
dio modality is carefully considered. However, going simply by
the image frames in the video, the alignment is inferred (by an-
other annotator) to be between 16.1 and 24.3 seconds (green).
This discrepancy is simply because the rubbing of the palms
is reflected in the speech and sound only starting at 17.3 sec-
onds, though the palms themselves are visible starting at 16.1
seconds. However, such careful annotation, driven by both au-
dio and visual modalities comes at the price of slowdown in
the annotation process at least by a factor of 3. In addition to
such data being harder and slower to create, the speech (or the
text) could be in a language (such as Marathi) with a limited
number of available videos. The sentences and speech could ei-
ther be in the same language or different languages. Our model

3. MALTA: Dataset and Architecture

Through our dataset MALTA _av_, we extend the task of temporal
localization of sentences within videos for settings where the
alignment needs to be performed based on both video and au-
dio modalities. In Figure 1, we illustrate the obvious as well
as subtle aspects of such a task on a video segment (from our
dataset), whose (rich) audio modality also consists of speech.

Several techniques have been employed in prior work to
leverage information from both audio and visual modalities for
the task of caption generation. Ramanishka et. al. [15] and Jin
et. al. [16] leveraged multimodality within an encoder-decoder
model and obtained a boost in performance. Jin et. al. [17] and
Hori et. al. [18] also used speech features from the audio mod-
ality to gain further improvements. On other tasks such as video
event classification [19], [20] and [21] have shown improve-
ments by using audio features along with visual features. As
for the use of multiple modalities for caption alignment, there is no
specific prior work that has come to our attention.

Figure 1: Illustrating temporal sentence localization based on audio-visual features for a video (https://tinyurl.com/sm7wwfh) from our
dataset, showing annotations specific to MALTA _av_ (in pink) and MALTA _v_ (in green). Please note for the sake of the readers, that the
two call outs at the beginning and end are English translations of the original Marathi speech.
MALTA captures both these settings: specifically in the case of the data MALTA was released with this paper, we consider the case in which videos contain audio in the Marathi language and sentences are available in both English and Marathi. Pre-training can help (partially) address both the limited training data and language-mismatch constraints. Examples of benefiting from audio pre-training include use of bottleneck layer or the phoneme probabilities after pre-training an ASR model on the language of the audio-speech or even simpler MFCC features. Pre-trained cross-lingual models such as XLM [22], FastText [23] could also be leveraged on the textual side.

We also make some subtler observations in Figure 1. The speech (call out, translated from Marathi) ‘This ... Chemistry’ is an abstract statement between 1 and 3 seconds even before any experiment or any variety of colors are observed! Cross-modal attention could help address this; the image features from the video between 6 and 30 seconds capturing the different colors - white and reddish-crimson as well as the interactions between the powders to yield a different colored output can help attend to the features from the speech segment between 1 and 3 seconds. On the other hand, consider the speech (call out, translated from Marathi) between 30 and 34 seconds: ‘White .. reddish-crimson’. In the video frames corresponding to that speech, neither Phenolphthalein nor the alkali nor the process of transformation can be seen. This motivates the need for attention from audio to video; the speech features in this segment containing references to white phenolphthalein and white alkali can help attend to the features from the video frames between 5 seconds and 18 seconds in which the white powders are actually shown.

MALTA is an attention-driven multimodal architecture that supports mutual co-attention between the audio, video and text modalities. The flexible attention schemes between modalities in MALTA allows for a wide spectrum of tasks (e.g., rich in video, rich in audio, audio is in a language different from the captions, etc.) to be easily handled. Section 3.1 describes the specific attention schemes that we use, along with the loss functions that are used to explicitly supervise the modality-specific attentions by treating ground truth alignments as hard attentions.

3.1. Attention Based Location Regression

Our multimodal architecture MALTA scaffolds on Attention Based Location Regression (ABLR) [7] It is an end-to-end architecture to convert video and sentence inputs to the temporal coordinates in the output. MALTA comprises three main components as depicted in Figure 2: (i) context-dependent feature encoding of the input audio, video streams and sentence, (ii) multi-modal co-attention interaction highlighting important audio, visual segments in the video and words in the sentence, and (iii) attention based output prediction which can directly regress the temporal coordinates of the target video.

Assume access to a set of \(N \) training instances, \(\{A_i, V_i, S_i, t_i^s, t_i^e\}_{i=1}^N \) consisting of audio features \(A_i \), video features \(V_i \) and an accompanying sentence describing a segment in the video \(S_i \) with start and end times, \(t_i^s \) and \(t_i^e \) respectively. At test time, for a given video and sentence, our task involves predicting the start and end times demarcating the temporal alignment of the sentence within the video.

![Figure 2: our proposed MALTA (an extension of ABLR)](image-url)
finally sum the attention distributions over both video and audio modalities, normalize it and use the resulting distribution to regress the temporal coordinates of the sentence within the video. (See Figure 2.)

We denote the final attention representations by a_V for the audio, and a_U for the video respectively. $a_{V,j}$, $a_{U,j}$ denotes the relative importance of video, audio respectively in the j-th clip for the given sentence.

3.1.3. Training Objective:

Let the ground-truth start and end times of sentence S_i in i^{th} video of duration d_i, be τ^s_i and τ^e_i, respectively.\(^1\) The predicted start and end times, $\hat{\tau}^s_i$ and $\hat{\tau}^e_i$, are obtained using the sum of final audio and video attention weights and directly regressing the temporal coordinates:

$$(\hat{\tau}^s_i, \hat{\tau}^e_i) = f^{(v)}(W^{(av)}_a V^A + h^{(av)}_a)$$

we use a linear interpolation of two losses, L_{reg} and L_{cal}, to supervise the prediction of temporal coordinates of a sentence within a video.

$$L_{reg} = \sum_{i=1}^N [R(\hat{\tau}^s_i - \tau^s_i) + R(\hat{\tau}^e_i - \tau^e_i)]$$

$$L_{cal} = -\sum_{i=1}^N \sum_{j=1}^{M} \delta_{i,j} \log (a_{V,i,j} * a_{A,i,j})$$

where $R(\cdot)$ is a smooth L1 function \([7]\), $\delta_{i,j} = 1$ if the j^{th} segment in V_i is within the interval $[\tau^s_i, \tau^e_i]$ and 0 otherwise. Here, $a_{V,i,j}$ denotes the relative importance of video in the j-th clip for the given sentence.

3.2. Attending to Audio, Video and Textual Modalities

ABLR uses only video and sentence-based features while completely neglecting audio-based features. We extend the ABLR model to leverage the audio modality. Our claim on the design appropriateness of MALTA is reinforced in two skyline experiments (c.f. §4) wherein we use (i) ground truth based hard attention (instead of attentions inferred from MALTA) and (ii) speech-to-text (ASR) output of the speech channel as the input instead of the audio channel; the sentences are largely expected to have significant n-gram overlap with the speech transcripts.

3.2.0.1. Audio Encoding:

For encoding the audio modality, we use VGGish features \([25]\) and linearly map the audio features to video segments. As such, the audio U is also divided into M clips $\{u_1, \ldots, u_M\}$ in sequential order. Finally, these VGGish features are passed to a bidirectional LSTM network to generate context-aware audio feature representations, $[u_1, \ldots, u_M] \in \mathbb{R}^{2h_{aux} \times M}$. These features are then integrated within ABLR via multimodal co-attention.

3.2.0.2. Co-Attention between Video, Audio and Text:

After creating context-dependent representations of audio, video and text, we devise two multimodal co-attention schemes in MALTA to guide the model towards focusing on relevant parts of different modalities in order to better align the sentence with the video.

(1) In our first scheme, we consider sentence-video and sentence-audio interactions independently and compute attention distributions over the video/audio modalities using co-attention. We use the sentence to learn attention on both video and audio modalities separately and then concatenate both attended features to further attend to the sentence. We use the attended sentence features to attend once again to the audio and video modalities separately. We finally sum the attention distributions over both video and audio modalities, normalize it and use the resulting distribution to regress the temporal coordinates of the sentence within the video. (See Figure 2.) We will refer to a model trained with this scheme as CONC-AV.

(2) In our second scheme, we enable more explicit interactions between the video and audio modalities. Instead of developing coattention mechanisms independently between sentence-video and sentence-audio modalities, we use attended video features (driven by the initial sentence) to learn an attention distribution over the audio features. The attended audio features are subsequently used to learn an attention distribution over the sentence. These multimodal attended sentence features are finally used to attend to both the audio and video modalities. (See Figure ??.) We will refer to a model trained with this scheme as JOINT-VA. We denote the final attendances representations by a_U for the audio, and a_V for the video respectively. Similar to $a_{V,i,j}$ (for video), $a_{U,i,j}$ denotes the relative importance of audio in the j-th clip for the given sentence. Summarily, CONC-AV gives equal importance to both the video and audio modalities initially and are independently driven by the sentence. In a second attention step, the audio and video attention vectors are concatenated to further attend to the sentence. In JOINT-VA, the video modality is given higher importance and attended video features (driven by the sentence) are used to learn an attention distribution over the audio features.

4. Experimental Results

We attempt to answer the following questions through our experiments. (i) Do we consistently benefit from attending to multiple modalities? (ii) What is the effect of use of different modalities when the ground truth sentence alignments are created in an audio-video-driven (as against only video-driven) manner? (iii) What is the effect of the language of the speech in the audio and the language of the sentence captions on the quality of the alignment output? (iv) How does performance vary using MALTA when we deliberately manipulate videos to have incongruent audio? We investigate (i), (ii), (iii) and (iv) in this section.

4.0.0.1. Datasets

We conduct experiments on our newly constructed multimodal data MALTA\(_w\) as well as two standard benchmarks, namely Charades-STA \([6]\) and ActivityNet \([5]\). We will release our dataset upon acceptance of this paper. MALTA\(_w\) consists of simple video tutorials of two types: (i) that describes the creation of scientific toys from waste material\(^2\) (ii) ATMA\(_w\) that features farmers describing and demonstrating organic farming techniques. Both video collections have speakers in the background narrating the process in Marathi. These videos are rich

\(^1\)The ground-truth start and end times are normalized by the duration of the video. That is, $(\bar{\tau}^s_i, \bar{\tau}^e_i) = (\tau^s_i/d_i, \tau^e_i/d_i)$

\(^2\)We downloaded these videos from http://www.arvindguptatoys.com/toys-from-trash.php and obtained consent from the content creator.
in both video and audio content. consists of 492 videos, with an average length of 80 seconds and around 7 sentences describing every video in each of two languages, viz., Marathi and English, along with background speech in Marathi. On the other hand, ATMA_{av} is relatively smaller, consisting of 95 videos, with an average length of 111 seconds and around 18 sentences describing every video in a single language, viz., Marathi, accompanied by background speech in Marathi.

Charades-STA contains 16128 clip-sentence pairs; we created training/test splits containing 12408/3720 pairs, respectively. ActivityNet is significantly larger containing 20K videos and 100K sentences annotated with start and end times. We used the publicly-available train set for training and the validation set to evaluate our models.

4.0.0.2. Evaluation metric.
Following the metrics adopted in prior work for temporal localization of sentences in videos [6], for each sentence, we calculate the Intersection over Union (IoU) between the predicted and ground truth temporal coordinates. \(\alpha \) denotes the percentage of the sentence queries which have an IoU larger than \(\alpha \).

4.0.0.3. Implementation Details.
Videos in ActivityNet, Charades-STA and MALTA_{av} were split into 8922:4369 , 5338:1334 and 389:103 clips for training and testing, respectively. We extracted 4096-dimensional C3D features for each dataset to serve as the video features and 128-dimensional audio features were extracted using VGG. Bidirectional LSTM layers with a hidden state size of 256 were used for each modality. We used the Adam optimizer to train MALTA with a learning rate of 0.001.

4.0.0.4. Pretrained ASR-specific features.
We used the Kaldi toolkit [26] to train a state-of-the-art time delay neural network (TDNN) acoustic model on roughly 100 hours of weakly labelled Marathi spoken tutorials.\(^\text{\#2}\) (These utterances are weakly labelled as we use subtitles in the videos to extract transcriptions for speech.) The TDNN model has 12 layers with a 128-dimensional bottleneck layer before the penultimate layer. We decoded Marathi speech from the videos in MALTA_{av} using this trained network and extracted bottleneck features. These features will henceforth be referred to as ASR-bnf.

4.0.0.5. PASE features
PASE [27] is a pretrained speech model consisting of multiple workers that are jointly trained to optimize seven different speech-driven self-supervised tasks, including regression tasks that involve predicting the waveform, MFCC [28] and prosody features and binary discrimination tasks that differentiate between positive and negative samples based on an anchor utterance. We do not make use of the speech labels while extracting PASE features.

4.1. Single Modality
In order to systematically analyze the importance of combining modalities, we first investigate systems that only consider co-attention between a single modality (video or audio) and the sentence. Table 1 reports our results on all three datasets;

<table>
<thead>
<tr>
<th>Activity-Net</th>
<th>MODEL</th>
<th>IoU= .1</th>
<th>IoU= .3</th>
<th>IoU= .5</th>
<th>IoU= .7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-ONLY</td>
<td>0.6941</td>
<td>0.5203</td>
<td>0.3373</td>
<td>0.1705</td>
<td></td>
</tr>
<tr>
<td>V-ONLY</td>
<td>0.7236</td>
<td>0.5454</td>
<td>0.3571</td>
<td>0.1786</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charades-STA</th>
<th>MODEL</th>
<th>IoU= .1</th>
<th>IoU= .3</th>
<th>IoU= .5</th>
<th>IoU= .7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-ONLY</td>
<td>0.6450</td>
<td>0.5002</td>
<td>0.3583</td>
<td>0.1537</td>
<td></td>
</tr>
<tr>
<td>V-ONLY</td>
<td>0.5947</td>
<td>0.4910</td>
<td>0.3611</td>
<td>0.1462</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MALTA_{av}</th>
<th>MODEL</th>
<th>IoU= .1</th>
<th>IoU= .3</th>
<th>IoU= .5</th>
<th>IoU= .7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-ONLY</td>
<td>0.34</td>
<td>0.24</td>
<td>0.14</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>ASR-BNF-ONLY</td>
<td>0.3314</td>
<td>0.2459</td>
<td>0.1528</td>
<td>0.0557</td>
<td></td>
</tr>
<tr>
<td>V-ONLY</td>
<td>0.32</td>
<td>0.23</td>
<td>0.13</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Results on ActivityNet, Charades-STA, MALTA_{av} using a single modality

A-ONLY refers to using the audio VGG features alone, and V-ONLY refers to using just the C3D video features. We observe that V-ONLY outperforms A-ONLY on ActivityNet. On Charades-STA and MALTA_{av}, A-ONLY on MALTA_{av} is better than V-ONLY (with the margin being larger for MALTA_{av}). We also observe that the ASR specific features perform even better than the VGG features on MALTA_{av}, thus confirming our claim that MALTA_{av} benefits from good features encoding the underlying Marathi speech.

4.2. Combining Modalities
Here we investigate question (i) mentioned at the start of Section 4: Does attending to multiple modalities always help? We use two multimodal co-attention schemes, CONC-AV (shown in Figure 2 and JOINT-VA (shown in Figure 7)), to leverage information from both audio and video modalities. Table 2 shows the performance of both multimodal schemes on ActivityNet and Charades-STA. We report consistent improvements in performance with using JOINT-VA over ABLR [7], which is a near-state-of-the-art system on both ActivityNet and Charades-STA. JOINT-VA is marginally better than CONC-AV thus highlighting the potential utility of explicitly modeling interactions between the video and audio modalities. The asymmetry in JOINT-VA in using the video modality to attend to audio (rather than going

<table>
<thead>
<tr>
<th>Activity-Net</th>
<th>MODEL</th>
<th>IoU= .1</th>
<th>IoU= .3</th>
<th>IoU= .5</th>
<th>IoU= .7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRN [29]</td>
<td>0.5037</td>
<td>0.3129</td>
<td>0.1617</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Xu et al [18]</td>
<td>-</td>
<td>0.4530</td>
<td>0.2770</td>
<td>0.1360</td>
<td></td>
</tr>
<tr>
<td>ABLR [7]</td>
<td>0.7330</td>
<td>0.5567</td>
<td>0.3679</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CONC-AV</td>
<td>0.7173</td>
<td>0.3588</td>
<td>0.3636</td>
<td>0.1872</td>
<td></td>
</tr>
<tr>
<td>JOINT-VA</td>
<td>0.7410</td>
<td>0.5523</td>
<td>0.3739</td>
<td>0.1924</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charades-STA</th>
<th>MODEL</th>
<th>IoU= .1</th>
<th>IoU= .3</th>
<th>IoU= .5</th>
<th>IoU= .7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL [31]</td>
<td>0.5457</td>
<td>0.3560</td>
<td>0.1580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu et al [19]</td>
<td>-</td>
<td>0.5470</td>
<td>0.3611</td>
<td>0.1462</td>
<td></td>
</tr>
<tr>
<td>ABLR [7]</td>
<td>0.5947</td>
<td>0.4910</td>
<td>0.3611</td>
<td>0.1462</td>
<td></td>
</tr>
<tr>
<td>CONC-AV</td>
<td>0.6510</td>
<td>0.5220</td>
<td>0.3650</td>
<td>0.1490</td>
<td></td>
</tr>
<tr>
<td>JOINT-VA</td>
<td>0.6462</td>
<td>0.5238</td>
<td>0.3664</td>
<td>0.1447</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results on ActivityNet, Charades-STA using multimodal co-attention. “-” corresponds to missing entries for these cells in the respective papers.

\(^\text{\#2}\)Available from: https://spoken-tutorial.org/
from audio to video) is justified for ActivityNet and Charades-STA where video is much richer in content compared to audio. Table 3 shows the improvement in performance with using CONC-VA, JOINT-VA and JOINT-AV on our audio-rich MALTA_av dataset. We report consistent improvements in performance with using both audio and video modalities. We also see a larger differential in performance between V-ONLY and CONC-VA compared to ActivityNet and Charades-STA, which points to the audio modality being much richer in content in MALTA_av. We observe the benefits of using speech-aware ASR features with CONC-VA compared to using either VGG or MFCC-based audio features. Also, JOINT-AV is consistently better than JOINT-VA for MALTA_av which is justified since MALTA_av is rich in speech content.3

4.3. Skylines for Audio Modality

Our claim on the appropriateness of the design of MALTA is reinforced in two skyline experiments wherein (i) we use ground truth based “hard” attention (instead of attentions inferred from MALTA) to regress the temporal coordinates for ActivityNet and (ii) we use transcriptions for the speech channel in MALTA_av (derived using Google’s speech recognition API for Marathi) as an input modality instead of audio features. Table 5 shows results from both these skyline experiments. We expect the ASR-based transcriptions to serve as a skyline because we expect the Marathi transcriptions from Google’s API to be largely accurate, in which case the sentences are expected to have significant n-gram overlap with the speech transcriptions.

4.4. Sensitivity to Incongruent Audio

We investigate question (iv) mentioned at the start of Section 4: How does performance vary using MALTA when we deliberately manipulate videos to have incongruent audio extracted randomly from another video? The results are reported in Table

Table 4: Results on the MALTA_av dataset. from audio to video is justified for ActivityNet and Charades-STA where video is much richer in content compared to audio. Table 3 shows the improvement in performance with using CONC-VA, JOINT-VA and JOINT-AV on our audio-rich MALTA_av dataset. We report consistent improvements in performance with using both audio and video modalities. We also see a larger differential in performance between V-ONLY and CONC-VA compared to ActivityNet and Charades-STA, which points to the audio modality being much richer in content in MALTA_av. We observe the benefits of using speech-aware ASR features with CONC-VA compared to using either VGG or MFCC-based audio features. Also, JOINT-AV is consistently better than JOINT-VA for MALTA_av which is justified since MALTA_av is rich in speech content.3

4.3. Skylines for Audio Modality

Our claim on the appropriateness of the design of MALTA is reinforced in two skyline experiments wherein (i) we use ground truth based “hard” attention (instead of attentions inferred from MALTA) to regress the temporal coordinates for ActivityNet and (ii) we use transcriptions for the speech channel in MALTA_av (derived using Google’s speech recognition API for Marathi) as an input modality instead of audio features. Table 5 shows results from both these skyline experiments. We expect the ASR-based transcriptions to serve as a skyline because we expect the Marathi transcriptions from Google’s API to be largely accurate, in which case the sentences are expected to have significant n-gram overlap with the speech transcriptions.

4.4. Sensitivity to Incongruent Audio

We investigate question (iv) mentioned at the start of Section 4: How does performance vary using MALTA when we deliberately manipulate videos to have incongruent audio extracted randomly from another video? The results are reported in Table
dio modality with CONC-AV compared to using only the video modality.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>IoU=.5</th>
<th>IoU=.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-ONLY</td>
<td>0.1428 ± 0.006 0.0452 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>CONC-AV with ASR-bnf</td>
<td>0.1490 ± 0.005 0.0566 ± 0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Results on MALTA_oe when speech is in Marathi but the captions are in English.

5. Discussion and Analysis

We observe that the differences between V-only and Conc-AV, A-only and Joint-VA on ActivityNet and Charades-STA are marginal. This is largely because of audio being less prominent in most videos. Among the few videos where audio was more dominant, we observed that our joint audio-video models performed significantly better than the V-only model. Further, as expected, we observe that the use of the audio modality indeed improves the accuracy of sentence alignment on MALTA_oe, just as in the case of other popular benchmark datasets. We also empirically find that MALTA is effective even when the language of the speech in the videos is different from the language in which the sentences are expressed.

6. Conclusion

We present an approach MALTA for localizing sentences/captions in videos that leverages both audio and video modalities and that can generalize to new and possibly low-resource language settings. Our approach bootstraps around pre-training of the respective modalities, use of co-attention across the audio-visual and textual modalities and taming of the respective attentions. We present a rich new dataset MALTA_oe, whose annotation is driven by both audio and visual modalities and which is richer in the audio modality than previous datasets. Further, MALTA_oe has sentences in two languages (including the language of the speech in the audio modality). We study a state-of-the-art model as well as MALTA on existing monolingual, video-heavy benchmarks as well as on our dataset and present how performance of architectural variations in the model corresponds to the modalities that were used to drive the sentence alignment annotation. We also experimentally validate that speech-heavy audio modality could also benefit sentence alignment when the sentence is in a language different from that of the speech.

7. Acknowledgements

We are grateful to IBM Research, India (specifically the IBM AI Horizon Networks - IIT Bombay initiative) for their support and sponsorship.

8. References

