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Abstract
We focus on the audio-visual video parsing (AVVP) prob-

lem that involves detecting audio and visual event labels with
temporal boundaries. The task is especially challenging since it
is weakly supervised with only event labels available as a bag
of labels for each video. An existing state-of-the-art model for
AVVP uses a hybrid attention network (HAN) to generate cross-
modal features for both audio and visual modalities, and an at-
tentive pooling module that aggregates predicted audio and vi-
sual segment-level event probabilities to yield video-level event
probabilities. We provide a detailed analysis of modality bias in
the existing HAN architecture, where a modality is completely
ignored during prediction. We also propose a variant of fea-
ture aggregation in HAN that leads to an absolute gain in F-
scores of about 2% and 1.6% for visual and audio-visual events
at both segment-level and event-level, in comparison to the ex-
isting HAN model.
Index Terms: AVVP, weakly-supervised learning, modality
bias

1. Introduction
The Audio-Visual Video Parsing (AVVP) [1] task involves the
fine-grained parsing of a video to generate temporal audio,
video and audio-visual event labels. The additional challenge
in this task is that there is only weak supervision during train-
ing in the form of event labels for the entire video, whereas the
objective is to predict fine-grained audio and visual events for
temporal event segments. AVVP is regarded as a Multimodal
Multiple Instance Learning (MMIL) problem and it has a num-
ber of applications in audio-visual source separation and other
video understanding tasks.

In order to utilize the weak labels effectively, Tian et. al. [1]
proposed a Hybrid Attention Network (HAN) that generates ag-
gregated feature representations for the audio and visual modal-
ities with attention within and across modalities. These ag-
gregated representations are further processed by an attentive
MMIL pooling module that combines the representations using
attention weights to produce a probability distribution across
event labels for each video. This probability distribution can be
directly used within a cross-entropy loss with the weak video-
level labels serving as ground-truth.

After carefully analyzing the training losses and the as-
sumptions in the model proposed by [1], we revisit their design
choice of using cross attention for both modalities when con-
structing aggregated features. We hypothesize that using cross-
modal attention on the audio modality but only self-attention
on the visual modality could be more effective. And we indeed
empirically verify that this variant outperforms the model in [1]
with significant gains on the visual evaluation metrics.

When learning from multiple modalities, the model could
establish spurious correlations between the target event and one
(or more) modalities and not extract meaningful signals from all

modalities. Such spurious correlations could lead to reasonable
downstream task performance on the training dataset. However,
the resulting models would demonstrate a modality bias and
would not generalize well to test instances where the ignored
modalities have rich signals. Tian et. al. [1] aim at alleviat-
ing modality bias by added modality-specific losses and label
smoothing. Our experiments reveal that label smoothing could
in fact reinforce modality biases depending on which modalities
use smoothed labels, and hence should be used carefully.

Our main contributions can be summarized as follows:

1. We propose a simple and well-motivated variant of fea-
ture aggregation within the Hybrid Attention Network
that yields significant gains on the evaluation metrics
compared to [1].

2. We carefully analyze the effect of label smoothing and
explain how it causes drastic shifts in the audio-visual at-
tention distributions generated by attentive MMIL pool-
ing. We also examine its impact on the final performance
using a detailed ablation study 1.

2. Related Work
2.1. Audio-Visual Representation Learning

Videos contain information in both audio and visual modalities.
Due to temporal synchronization in audio and visual data, most
works [2, 3, 4, 5, 6, 7, 8] focus on learning joint embedding
to exploit information present in both the modalities. Ying et.
al. [3] employ cross-attention and self-attention for audio-visual
representation learning. Ruohan et. al. [2] propose an attention
based LSTM network for fusing audio-visual information and
use it for action recognition. George et. al. [4] use cross-modal
alignment for robust speech recognition. The Hybrid Attention
Network HAN [1] jointly models the audio and visual modali-
ties via self-attention and cross-attention.

2.2. Multiple Instance Learning (MIL)

Multiple instance learning (MIL) [9, 10, 11, 12, 13, 14] is a form
of supervised learning in which the dataset consists of bags.
Each bag contains multiple training instances and we have la-
bels for a bag; each instance in the bag is itself unlabeled. From
a collection of labeled bags, the learner tries to induce a model
that will label individual instances correctly. Yapeng et. al. in
[15] formulate audio-visual event localization as a MIL prob-
lem. They use an audio-visual snippet pair as a single instance,
in contrast to AVVP in which the audio and visual snippet at the
same time instance are considered as two separate instances.
Similarly, multiple instance learning has also been used for ob-
ject detection [16, 17].

1More details at: https://www.cse.iitb.ac.in/

˜malta/mbias

https://www.cse.iitb.ac.in/~malta/mbias
https://www.cse.iitb.ac.in/~malta/mbias


Figure 1: Depiction of architectural changes made to the HAN
network [1]. The block in the aqua colour highlights modifica-
tions made to the attention module for Across, Vself (there is
no cross attention for visual features).

3. AVVP
As described in [1], each video in the AVVP task is divided
into T segments of audio and visual snippet pairs denoted by
{At, Vt}Tt=1. Each snippet {At, Vt} is associated with an event
label set yt = {ya

t , y
v
t , y

av
t }; here, ya

t , y
v
t , y

av
t are vectors of

dimensionality C denoting audio, visual and audio-visual event
labels respectively, where C is the size of the event label set.
Only video-level labels are assumed to be available during train-
ing (resulting from weak supervision), while audio and visual
events will be predicted for each video snippet during inference.

[1] proposed the use of a hybrid attention network (HAN)
and attentive multimodal multiple instance learning (MMIL)
pooling for the AVVP task. First, the audio and visual snippet
pairs {At, Vt}Tt=1 are passed through pretrained feature extrac-
tors to generate audio and visual representations {f t

a}Tt=1 and
{f t

v}Tt=1, respectively. Next, HAN learns hybrid attention func-
tions from both audio and visual representations at each time-
step t, fa = [f1

a , f
2
a , ..., f

T
a ] and fv = [f1

v , f
2
v , ..., f

T
v ], to yield

the following aggregate audio (Across or f̂ t
a) and video (Vcross

or f̂ t
v) representations:

Across ≡ f̂ t
a = f t

a + gsa(f
t
a,fa) + gca(f

t
a,fv) (1)

Vcross ≡ f̂ t
v = f t

v + gsa(f
t
v,fv) + gca(f

t
v,fa) (2)

where gsa and gca are self-attention and cross-modal atten-
tion functions, respectively. These attention functions capture
intra-modal and inter-modal similarities and are computed us-
ing the standard attention formulation [18]: gsa(f

t
a,fa) =

softmax(
ft
af

⊺
a√
d
)fa and gca(f

t
a,fv) = softmax(

ft
af

⊺
v√
d
)fv ,

where d is the dimensionality of the audio/visual features.

Attentive MMIL Pooling. [1] uses attentive MMIL pooling to
leverage weakly-supervised video-level labels during training.
In [1], the aggregated temporal features {f̂ t

a, f̂ t
v}Tt=1 are passed

through a shared fully-connected (FC) layer with sigmoid ac-
tivation to obtain output probabilities for each individual event
category. The predicted audio and visual event probabilities for
time-step t are pta and ptv , respectively. The audio and visual
event probabilities are aggregated using attentive MMIL pool-
ing to predict the video-level event probability p̄wsl as follows:

p̄wsl =

T∑
t=1

M∑
m=1

(Wtp ⊙Wav ⊙ P )[t,m, :] (3)

where P (t, 1, :) = pta and P (t, 2, :) = ptv , ⊙ denotes element-
wise multiplication, M is the total number of modalities (i.e.,
2 in AVVP where m ∈ {1, 2} refers to the audio and vi-
sual modalities, respectively). Wtp and Wav are temporal at-
tention and audio-visual attention tensors predicted from the
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Figure 2: Comparison between loss values of visual loss Lv ,
audio loss La, and weakly-supervised loss Lwsl for HAN [1]

.

aggregated features {f̂ t
a, f̂ t

v}Tt=1 respectively. Wtp and Wav

are computed as Wtp[:,m, c] = softmax(Ftp[:,m, c]) and
Wav[t, :, c] = softmax(Fav[t, :, c]) where Ftp and Fav re-
fer to two different fully-connected layers, t = 1, 2, . . . , T ,
m = 1, 2 and c = 1, 2, . . . , C. The ground truth labels ȳ
and the predicted video-level event probabilities p̄wsl are used
to optimize the binary cross-entropy loss function specified as:
Lwsl = CE(p̄wsl, ȳ) = −

∑C
c=1 ȳ[c]log(p̄wsl[c]).

For better results and to alleviate modality bias, [1] pro-
poses the use of cross-entropy losses specific to each individual
modality. This modality-guided loss, Lg is computed as fol-
lows: Lg = La + Lv = CE(p̄a, ȳa) + CE(p̄v, ȳv), where
ȳa and ȳv are video-level ground truth labels for the audio
and visual modalities, respectively (that is simply initialized as
ȳa = ȳv = ȳ), p̄a and p̄v are video-level audio and visual
event probabilities given by:

p̄a =

T∑
t=1

(Wtp ⊙ P )[t, 1, :] (4)

p̄v =

T∑
t=1

(Wtp ⊙ P )[t, 2, :] (5)

During training, the model is optimized over the combined loss
L = Lwsl + Lg .

Label Smoothing. Since we do not have video-level ground
truth labels for each modality, ȳa and ȳv are set to ȳ which
lacks modality-specific information. Tian et. al. [1] suggest
using label smoothing on ȳa and ȳv , as some events in ȳ
can be noise for a particular modality. For example, if ȳ
= {Telephone bell ringing, Cat}, the telephone bell could be
ringing in the background without any accompanying visual
cues and conversely, the cat could only be seen in the video
and not heard at all. Label smoothing is implemented in [1] as:
ȳm = (1− δm)ȳ+ δm

K
where m ∈ {a, v} for audio and visual

modalities; δm ∈ [0, 1) is the confidence parameter yielding a
convex combination of (i) the event probability distribution and
(ii) the uniform distribution U = 1

K
(where K > 1) which

helps in smoothing the event probability distribution.

Behaviour of Training Losses. Figure 2 shows the loss values
corresponding to La, Lv , and Lwsl during training. We ob-
serve that the weakly-supervised loss Lwsl and the audio loss
functions La nearly coincide. The mean squared difference be-
tween Lwsl and La for 40 epochs denoted by MSEwsl,a is



9e-8. In contrast, the mean squared difference between Lwsl

and Lv denoted by MSEwsl,v is 0.104. This curious training
artefact of Lwsl and La mirroring each other can be explained
as follows.

Given that Lwsl is a binary cross-entropy loss function be-
tween p̄wsl and ȳ and La is a binary cross-entropy loss function
of p̄a and ȳ, the only difference appears in the event probability
values. For Lwsl to imitate La, the video-level event probabil-
ity values p̄wsl and the audio event probabilities p̄a should be
very close to each other. From equations 3, 4, and 5, p̄wsl can
be written as a weighted combination of p̄a and p̄v:

p̄wsl = Wa ⊙ p̄a +Wv ⊙ p̄v (6)

where Wa = Wav[:, 1, :] and Wv = Wav[:, 2, :] correspond
to audio and visual attention tensors, respectively. If pwsl and
pa become close to each, then Wa ≈ 1 and Wv ≈ 0. This
could be attributed to label smoothing (which will be discussed
in detail in Section 5.3). This modality bias also motivates us
to explore different variants of the aggregate features that we
outline in the next section.

4. Proposed Variants of Aggregate Features
Tian et. al. [1] propose using the HAN network to generate ag-
gregate audio and video representations, viz., f̂ t

a and f̂ t
v , each

containing both self-attention and cross-attention based func-
tions. However, this symmetric treatment of constructing audio
and video representations may not be the best choice due to
the nature of the modalities involved. Consider the example of
ȳm = {Telephone bell ringing, Fire alarm}. These events can
occur in the background without any supporting visual clues,
and hence will not appear in the ground truth event labels for
the visual modality. However, cross-attention from audio in this
case could induce false signals of the presence of these events
in the visual modality and subsequently hurt performance. Au-
dio events, on the other hand, could benefit from the visual
modality in helping disambiguate between audio sounds (e.g.,
{Blender, Vacuum cleaner}) using visual clues. These observa-
tions suggest that a model with visual features aggregated us-
ing only self-attention and audio features aggregated using both
self-attention and cross-attention might perform better.

We remove the cross-modal attention function gca() while
computing aggregated features for the visual modality to get:

Vself = f̃ t
v = g(f t

v,fa,fv) = f t
v + gsa(f

t
v,fv) (7)

For a complete analysis, we can similarly remove cross-
attention from the aggregated features for the audio modality
to get:

Aself = f̃ t
a = g(f t

a,fv,fa) = f t
a + gsa(f

t
a,fa) (8)

Recall that in Eq. (1) and (2), we referred to the aggregated
audio and visual features as Across and Vcross, respectively.

The model Across+Vself will refer to the above-mentioned
feature aggregates where the visual features do not use cross-
attention from audio. For the sake of completeness, we also
compare against the remaining three variants, Aself + Vself ,
Aself +Vcross and Across+Vcross. Note that Across+Vcross

is the same model proposed in [1].

5. Experiments
5.1. Experimental Setup

The LLP dataset [1] contains 11,849 YouTube video clips with
25 event categories for a total of 32.9 hours. Each video is 10-

Figure 3: Category-wise audio-visual attention weights distri-
bution aggregated over the test set for different types of label
smoothing. Visual(A), Audio(B), no smoothing(C) and Audio-
Visual(D)

second-long. The training set consists of 10,000 videos with
weak labels i.e video-level event labels. The validation and
test sets (that are manually annotated with segment-level la-
bels) have 649 and 1200 videos, respectively. Following [1], we
sample these videos at 8 frames per second and break into non-
overlapping segments of length 1 second. Features extracted
from ResNet152 [19] and 3D ResNet [20] are fused to get 512-
dimensional segment-level visual features. We use a VGGish
extractor [21] to extract 128-dimensional segment-level audio
features. We train our model for 40 epochs with batch size 16,
Adam as the optimizer, and initial learning rate set to 3e-4. The
learning rate is dropped by a factor of 0.1 after every 10 epochs.

5.2. Evaluation Metrics

All our models are evaluated on the metrics proposed by [1].
We use F-scores for audio, visual, and audio-visual events for
segment-level and event-level metrics, indicating segment-level
performance and video-level performance, respectively. To cal-
culate event-level metrics, consecutive events of the same cat-
egory are concatenated, and the F-score is calculated based on
mIoU = 0.5 as the threshold. The Ty@AV metric refers to an
average over audio, visual, and audio-visual evaluation results.
The Ev@AV metric calculates the F-score for all audio and vi-
sual events of each video.

5.3. Results and Analysis

Table 1 shows the segment and event-level F1-scores for AVVP
using the four different variants of aggregate features detailed
in Section 4. We make the following two key observations.
1. Across + Vself is the best performing variant across all
five evaluation metrics, and consistently outperforms the base-
line model [1], viz., Across + Vcross. 2. Using Aself instead
of Across leads to a large and consistent drop in performance
across all metrics. This suggests that the audio modality clearly



Table 1: Results of AVVP on LLP dataset for different variants
of HAN

Event type Method Segment
level

Event
level

Audio

Aself + Vself 52.1 41.6
Aself + Vcross 49.9 39.2
Across + Vself 60.5 51.9

Across + Vcross [1] 60.1 51.3

Visual

Aself + Vself 53.4 48.7
Aself + Vcross 53.9 49
Across + Vself 54.9 51.2

Across + Vcross [1] 52.9 48.9

Audio
&

Visual

Aself + Vself 41.2 33.4
Aself + Vcross 40 30.9
Across + Vself 50.5 44.3

Across + Vcross [1] 48.9 43

Ty@AV

Aself + Vself 48.9 41.2
Aself + Vcross 48 39.7
Across + Vself 55.3 49.1

Across + Vcross [1] 54 47.7

Ev@AV

Aself + Vself 52.2 42.7
Aself + Vcross 51.5 42.3
Across + Vself 56.5 48.9

Across + Vcross [1] 55.4 48

benefits from cross-modal attention from the visual modality.

Label Smoothing. Figure 3 shows the audio-visual attention
weight distributions aggregated for the test set using four dif-
ferent types of label smoothing, viz., (A) Smoothing of labels
of only the audio (LS-A) or (B) only of video (LS-V), (C) no
smoothing at all (No-LS) and (D) smoothing the labels of both
modalities (LS-AV). It is evident that smoothing only the la-
bels of one modality (i.e., visual in plot A and audio in plot B)
leads to the attention weights being completely biased towards
the other modality (i.e., audio in plot A and visual in plot B).
Removing label smoothing entirely or adding label smoothing
to both modalities yields attention distributions without a clear
modality bias (shown in (C) and (D)).

This behaviour can be explained by examining the effect
of label smoothing on the losses and its subsequent effect on
the audio-visual attention weights. Adding smoothing to a par-
ticular modality m ∈ {a, v} makes ȳm a real-valued vector,
increasing the terms in Lm to the total number of events. In the
case of multi-hot vectors, only a few terms equal to the number
of ground-truth events are present. This poses a challenge to
minimizing the loss. In LS-A, ȳ, ȳv are multi-hot vectors and
ȳa is a real-valued vector. Setting Wa = 0 and Wv = 1 will
yield p̄wsl in the form of a multi-hot vector and will thus min-
imize Lwsl. Any other Wa and Wv will not generate a multi-
hot vector. Similarly, in LS-V, the model picks Wa = 1 and
Wv = 0 to minimize Lwsl. In LS-AV, for p̄wsl to be closest
to the multi-hot vector form, in the absence of an event, setting
Wm = 1 for modality with least probability is the best resort for
Lwsl. Similarly, in the presence of an event, setting Wm = 1
for modality with the highest probability will minimize Lwsl

more. When there is no label smoothing, such extreme skew-
ness vanishes.

Table 2 shows the segment-level and event-level results us-

Table 2: Effect of Label Smoothing on HAN [1] i.e. Across +
Vcross and Across + Vself . No-LS implies no label smoothing;
LS-A denotes smoothing only in audio modality; LS-V denotes
smoothing only in visual modality; LS-AV denotes smoothing on
both audio and visual modalities.

Event
type

Smoothing
modality

Across + Vcross[1] Across + Vself

Segment
level

Event
level

Segment
level

Event
level

Audio

No-LS 58 49.7 60.3 52.1
LS-A 57.9 49.1 60.3 51.8
LS-V 60.1 51.3 60.5 51.9

LS-AV 57.5 48 59.9 51

Visual

No-LS 52.6 48.6 53.7 50
LS-A 53.1 48.5 53.7 50.4
LS-V 52.9 48.9 54.9 51.2

LS-AV 54.3 50.3 49.3 42.8

Audio
&

Visual

No-LS 47.6 41.4 49.4 43.8
LS-A 47.7 41 49.4 43.8
LS-V 48.9 43 50.5 44.3

LS-AV 48.6 42.2 49.3 42.8

Ty@AV

No-LS 52.7 46.6 54.5 48.7
LS-A 52.9 46.2 54.5 48.7
LS-V 54 47.7 55.3 49.1

LS-AV 53.4 46.8 54.3 47.7

Ev@AV

No-LS 54.3 47.3 56.3 48.7
LS-A 54.9 47 56 48.8
LS-V 55.4 48 56.5 48.9

LS-AV 54.7 46.6 56 47.8

ing Across+Vself and Across+Vcross with four types of label
smoothing (LS-A, LS-V, No-LS and LS-AV). When compared
to the model No-LS, the model LS-V shows a significant in-
crease in the performance of the audio modality. Similarly, label
smoothing on audio modality i.e., LS-A shows a drop in audio
evaluation metrics and some gain on visual evaluation metrics.
On applying label smoothing on both modalities i.e., LS-AV,
the model favors the visual modality more. This aligns with the
audio-visual attention weights in Fig. 3 (D). Another interesting
observation from Table 2 is that Across + Vself is more robust
to label smoothing compared to Across + Vcross; the averaged
variance of F1-scores of audio, visual and audio-visual events
across types of label smoothing is 0.35 for Across+Vself com-
pared to 0.95 for Across+Vcross. Such empirical stability, par-
ticularly in the segment-level evaluation metrics, is owing to our
reformulated HAN- Across+Vself and aligns with the intuition
stated in Section 4. Audio events can occur in the background
with no support for visual cues in the frames. Using such events
as ground truth in Lv reduces the performance, since the ground
truth itself is noisy, and thus label smoothing helps.

6. Conclusions
In this work, we focus on the AVVP problem and specifically
study the issue of modality bias in the main model proposed for
this task in [1]. We trace the source of modality bias to label
smoothing that was a part of the originally proposed framework
for AVVP. We propose a new variant for aggregating features
within this framework that is not only more accurate than the
baseline but is also more robust to label smoothing. As part of
future work, we propose to develop modality-aware techniques
that explicitly discourage modality bias in the model objective.
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Appendix
A. Qualitative Analysis

Figure 4: Example 1: Comparison of audio-visual probabilities
of a video segment. (A) Across + Vcross (B) Across + Vself .
Audio ground truth {Accordion}, Visual ground truth {}.

We saw Across +Vself outperforming the Across +Vcross

model quantitatively. To explore how Across + Vself performs
well, we analyze some instances qualitatively. In figure 4, no
events occur in the visual modality, and the event Accordion
occurs in the audio modality. But, due to cross attention from
audio modality, visual modality might have received spurious
signals. As shown in the figure 4 (A) both audio and vi-
sual modalities predict the event Accordion. In figure 4 (B),
Across +Vself assigns less probability for visual modality pro-
ducing correct results.

Figure 5: Example 2: Comparison of audio-visual probabilities
of a video segment. (A) Across + Vcross (B) Across + Vself .
Audio ground truth {Speech, V iolin fiddle}, Visual ground
truth {Speech}.

Figure 5 represents probabilities for a video with audio
events {Speech, V iolin fiddle} and visual events {Speech}.
In figure 5 (A), cross attention from audio confuses vi-
sual modality that leads to incorrect prediction of the event
V iolin fiddle that occurs only in audio modality. Across +
Vself ( figure 5 (B) ) increase audio probability and reduces vi-
sual probability for event V iolin fiddle. We can also see in
figure 5 (B) that Across + Vself improves the audio and visual
probability of event Speech aiming to get closer to the ground
truth.

Recall, we said it is plausible that audio events can occur
in the background and have no visual cue in the video segment

Figure 6: Example 3: Comparison of audio-visual probabilities
of a video segment. (A) Across + Vcross (B) Across + Vself .
Audio ground truth {Speech, Clapping}, Visual ground truth
{}.

(telephone ringing example). One such instance is represented
using figure 6. The video is of an interview at some press con-
ference where the interviewer is not in the frame. On the in-
terviewee’s response (not in the frame), people clap, and the
interviewer proceeds to ask another question leading to no vi-
sual events. We have {Clapping, Speech} as audio events. In
fig. 5 (A), Across+Vcross incorrectly predicts event speech for
visual modality with high probability. Across+Vself (fig. 6 (B))
placates this issue as no cross attention from audio is present to
misguide. It also increases audio and diminishes visual proba-
bility for event Clapping. As audio is noisy, the event Singing
is also predicted. Across + Vself reduces the probabilities
for both the modalities and succeeds to bring audio probabil-
ity below the classification threshold (0.5) for the event
Singing.

B. Comparison of losses with variants of
label smoothing

Figure 7: Comparison of audio loss La, visual loss Lv , WSL
loss Lwsl with label smoothing variants (No-LS, LS-A, LS-V,
LS-AV).

We compare how losses change with label smoothing. As
discussed earlier, label smoothing challenges the model and
adds more terms in cross-entropy loss as ground truth is a real-
valued vector. This increases the loss noticeably. As seen in



the figure 7, adding label smoothing to a modality causes an in-
crease in the loss for that particular modality. Lwsl is less in all
variations of label smoothing since the ground truth is a multi-
hot vector. Fig. 7 gives a high-level view of losses and hints
at how Lwsl redistributes audio-visual attention weights to be
minimal and remain in the same loss range. It aligns with the
explanation that label smoothing is the root of the skewness in
audio-visual attention distribution, validating our analysis.
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