Improving Stack Allocation on Eclipse Open]9 using
Precise Static Analysis

Nikhil TR
IIT Mandi, India
b16066@students.iitmandi.ac.in

Arjun Bharat
IIT Madras, India
cs17b006@smail.iitm.ac.in

Daryl Maier
IBM Canada
maier@ca.ibm.com

1 Abstract

Modern object-oriented programming languages such as
Java and C# have a managed runtime. The idiomatic way
to write programs in Java is to organize computation in
classes, which are then instantiated to create objects allo-
cated on the heap memory. These objects interact with each
other through methods, and are deallocated post usage by a
garbage collector. While the usage of objects gives higher-
level programming abstractions, it also leads to multiple
performance overheads. We focus on two such overheads:
(i) accessing the fields of objects on the heap can be more
expensive (in the worst case requires two memory accesses)
than stack accesses (requires at most one memory access);
and (ii) memory management (garbage collection) overheads.
Thus, larger the number of objects allocated on the heap,
higher may be the overheads.

In this context, an important compiler optimization per-
formed in context of languages with a managed runtime is
stack allocation: If an object can be allocated on the stack
frame of a method, the occupied memory is automatically
freed as soon as the method finishes its execution during
runtime. A popular way to identify objects that can be al-
located on the stack frame of a method is by performing
escape analysis [1], which essentially checks if a given object
is local to the method in which it is allocated.

As an example of the possible scenarios in which objects
can be allocated on the stack, consider the Java code snippet
shown in Figure 1. Say the abstract object(s) allocated at line
are represented as O;. Here, the object Os is clearly local to
the method foo and can be allocated on its stack. Further,
if we analyze the method bar, it can be deduced that the
object Oy4 can also be allocated on the stack of foo. Object
Og becomes reachable from a static field (g) and hence in
general should remain on heap; however, if found useful, it

AORCPT 20, November 10-13, 2020, Virtual Event
2020. ACM ISBN 978-x-xxxx-xxxX-X/YY/MM... $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Dheeraj
IIT Mandi, India
b17041@students.iitmandi.ac.in

Vijay Sundaresan
IBM Canada

vijaysun@ca.ibm.com

Manas Thakur
IIT Mandi, India
manasthakur@iitmandi.ac.in

Swapnil Rustagi
IIT Mandji, India
b17104@students.iitmandi.ac.in

Andrew Craik
IBM Canada
ajcraik@ca.ibm.com

V. Krishna Nandivada
IIT Madras, India
nvk@iitm.ac.in

1 class C {
2 static D g; 0 id bar(p) {
void bar
3 void foo() { P
10 g =p.f;
4 D x = new DQ); I)
5 Dy = new D(Q);
12} /*class Cx/
6 x.f = new D();
13 class D { D f; }
7 // y used but doesn't escape
8 bar(x); }

Figure 1. A Java code snippet to demonstrate possibilities
of stack allocation.

can still be allocated on foo’s stack till the call to bar at line 8.
Such possibilities of allocating a large number of objects on
stack are usually prevalent even in real world code; how-
ever, finding them requires performing precise (in this case,
interprocedural and flow-sensitive) escape analysis, which
consumes time and memory, and is in general expensive.
Such a precise analysis can be prohibitive in the context of
managed runtimes.

In order to balance the tradeoff between the precision
of program analysis and the time taken during JIT compila-
tion, traditional just-in-time (JIT) compilers in popular JVMs,
such as Testarossa and C2 in Eclipse Open]J9 [2] and Oracle
HotSpot [3], respectively, perform conservative intraproce-
dural analyses on the method being compiled. Consequently,
existing JIT compilers will be able to stack-allocate only the
object Os for the toy code shown in Figure 1 (ignoring the
possibilities of inlining).

Thakur and Nandivada recently proposed a framework
called PYE [4] as a way to use the results of precise static
analyses during JIT compilation. PYE encodes the depen-
dences between various changeable parts of a program as
conditional values, and resolves the associated conditions dur-
ing JIT compilation. Among other optimizations, PYE was
shown to improve the number of synchronized operations
that could be elided using a precise thread-escape analysis.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

AORCPT ’20, November 10-13, 2020, Virtual Event

In this project, we are working on extending the idea of
splitting the analysis between static and JIT compilation
from PYE to enable the stack allocation of a larger number of
objects compared to the existing imprecise escape analysis in
Eclipse Open]J9. In the proposed talk, we would discuss our
static escape analysis, an optimistic scheme that allocates
objects on the stack during JIT compilation based on hints
obtained from static analysis, and a planned scheme to split
the range in which a given object (or some fields of it) stays
on the stack versus the heap. We would also present some
initial results that show a good potential for improvement.

About the Speaker

Manas Thakur is an Assistant Professor at Indian Institute
of Technology Mandi, India. His research interests include
program analysis and compiler optimizations.

References

[1] Bruno Blanchet. 2003. Escape Analysis for JavaTM: Theory and Prac-
tice. ACM Trans. Program. Lang. Syst. 25, 6 (Nov. 2003), 713-775. DOI:
http://dx.doi.org/10.1145/945885.945886

[2] Eclipse Open]9. 2020. The Eclipse OpenJ9 Virtual Machine.
https://www.eclipse.org/openj9/. (2020).

[3] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
HotSpotTM Server Compiler. In Proceedings of the 2001 Symposium
on]avaTM Virtual Machine Research and Technology Symposium -
Volume 1 (JVM’01). USENIX Association, Berkeley, CA, USA, 1-1. http:
//dl.acm.org/citation.cfm?id=1267847.1267848

[4] Manas Thakur and V. Krishna Nandivada. 2019. PYE: A Framework for
Precise-Yet-Efficient Just-In-Time Analyses for Java Programs. ACM
Trans. Program. Lang. Syst. 41, 3, Article 16 (July 2019), 37 pages. DOI:
http://dx.doi.org/10.1145/3337794

http://dx.doi.org/10.1145/945885.945886
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://dx.doi.org/10.1145/3337794

	1 Abstract
	References

