
ValFinder: Finding Hidden Value-Type Classes
Arjun H Kumar

s21008@students.iitmandi.ac.in
Indian Institute of Technology Mandi, India

Manas Thakur
manas@iitmandi.ac.in

Indian Institute of Technology Mandi, India

ABSTRACT
In modern object-oriented programming languages, object identity
enables fundamental features such as field mutation and synchro-
nization. However, it also significantly affects the performance. In
particular, each distinct field access requires a memory load of the
corresponding object followed by an indirection. Several compiler
analyses and optimizations such as escape analysis and field scalar-
ization can eliminate these costs in specific scenarios; however,
such optimizations are usually limited in their scope and applica-
bility. Languages like Java allow for optimizing the access cost for
objects of certain “primitive” types; however, OO programs often
contain additional user-defined types whose objects do not depend
on an identity that is separate from their “value”. An important
development in this space has been the Project Valhalla [2], which
aims to improve the performance profile of conventional objects in
Java, and make it comparable to the performance of primitive types.
Valhalla introduces the notion of value types [4], which essentially
empowers objects to be identity-less. In order to facilitate an im-
proved performance for such objects, an important optimization
that can be performed by a value-types supporting Java Virtual
Machine (JVM) is object inlining [1] or flattening.

Figure 1: Example of object inlining.

Inlining an object modifies the reference to a field inside a class
object such that the object pointed to by the field is encoded directly
inside the object of the class containing the same (the “container”
object). An inlined object avoids overheads from object headers,
memory indirections, as well as heap allocation, and exhibits im-
proved cache locality. Figure 1 illustrates this idea. Here, on the
right-hand side, two Point objects, pointed to by the fields start and
end, are inlined into a container object of type Line. As a result,
accesses to the objects pointed to by start and end can be done
directly from the container object of type Line.

Figure 2 further illustrates a realistic use-case of value types. The
method isLimitExceeded in class A is a representative transaction
limit-checker executed by transaction processing engines. It con-
tains a for loop iterating through all transactions on a current day,
and a condition check that refers to a field of an object that stores

AORCPT ’22, November 15-17, 2022, Toronto, Canada
2022. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 class TransnInfo { //Container Class

2 long transactionID;

3 AccountDetails debAccnt, credAccnt;

4 double amount; }

5 class AccountDetails { //Primitive Value Class

6 long accID; }

7 class A {

8 final double LIMIT = 5000000;

9 public boolean isLimitExceeded(long accID) {

10 double amountSpent = 0;

11 List<TransnInfo> tInfoLst = getCompletedTs();

12 for (TransnInfo trnsInfo : tInfoLst) {

13 if (trnsInfo.debAccnt.accID == accID)

14 amountSpent += trnsInfo.amount; }

15 return amountSpent >= this.LIMIT; } }

Figure 2: Use case scenario of object inlining.

account details of the source account of the corresponding transac-
tion. Each access to the field accID of an AccountDetails object
would effectively require two memory indirections, one for the
TransnInfo object and another for the field debAccnt. However, if
we inline the fields of AccountDetails objects into the container
TransnInfo object, the field access becomes much cheaper and two
fewer objects get allocated on the heap for every TransnInfo object.
Additionally, the likelihood of cache misses reduces for consequent
accesses. In a real world scenario, millions of such transactions
might happen on a daily basis, which indicates the magnitude of
the impacts such an elegant optimization can bring about.

Reckon that given a program, it may not be straightforward to
identify the classes that could be marked as value types. Similarly,
it may neither be possible to inline all the objects of value types
(e.g. atomicity checks for nullness) nor may it be beneficial to do
so (e.g. increase in object size). Hence, the current implementation
in Eclipse OpenJ9 [3] first filters value types by putting additional
restrictions to identify primitive types, and then uses a fixed flat-
tening size parameter (ValueTypeFlatteningThreshold) to determine
if the objects of primitive types can be inlined into suitable con-
tainer objects by the JVM instance. In this talk, we describe our tool
ValFinder, which identifies and marks value and primitive types in
real-world Java programs.

ValFinder uses the Soot framework [7] to perform static analysis
of Java Bytecode, and identifies classes that can be marked as value
and primitive. It then uses JavaParser [5] to transform Java source
code accordingly. Project Valhalla is expected to be launched as
part of Java 20. In the meanwhile, we intend to extend ValFinder
to identify (objects of) value and primitive types that could offer
significant benefits due to object inlining, and to implement the
same in OpenJ9 as an alternate, more flexible object flattening
strategy. We hope to finally propose a static+dynamic [6] approach
that allows JVMs to best utilize the potential benefits offered by the
notion of immutability brought in by value types.

https://doi.org/XXXXXXX.XXXXXXX

AORCPT ’22, November 15-17, 2022, Toronto, Canada A.H. Kumar and M. Thakur

REFERENCES
[1] Julian Dolby and Andrew Chien. 2000. An Automatic Object Inlining Optimization

and Its Evaluation. SIGPLAN Not. 35, 5 (may 2000), 345–357. https://doi.org/10.
1145/358438.349344

[2] Brian Goetz. 2021. State of Valhalla. https://openjdk.org/projects/valhalla/design-
notes/state-of-valhalla/01-background

[3] Dan Heidinga and Sue Chaplain. 2018. Eclipse OpenJ9; not just any Java Virtual
Machine. https://www.eclipse.org/community/eclipse_newsletter/2018/april/
openj9.php

[4] Dan Smith. 2021. JEP draft: Value Objects (Preview). https://openjdk.org/jeps/
8277163

[5] JavaParser Development Team. 2021. Javaparser. https://javaparser.org/
[6] Manas Thakur and V. Krishna Nandivada. 2019. PYE: A Framework for Precise-

Yet-Efficient Just-In-Time Analyses for Java Programs. ACM Transactions on
Programming Languages and Systems 41, 3, Article 16 (July 2019), 37 pages. https:
//doi.org/10.1145/3337794

[7] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization Framework. In
CASCON First Decade High Impact Papers (Toronto, Ontario, Canada) (CASCON
’10). IBM Corp., USA, 214–224. https://doi.org/10.1145/1925805.1925818

https://doi.org/10.1145/358438.349344
https://doi.org/10.1145/358438.349344
https://openjdk.org/projects/valhalla/design-notes/state-of-valhalla/01-background
https://openjdk.org/projects/valhalla/design-notes/state-of-valhalla/01-background
https://www.eclipse.org/community/eclipse_newsletter/2018/april/openj9.php
https://www.eclipse.org/community/eclipse_newsletter/2018/april/openj9.php
https://openjdk.org/jeps/8277163
https://openjdk.org/jeps/8277163
https://javaparser.org/
https://doi.org/10.1145/3337794
https://doi.org/10.1145/3337794
https://doi.org/10.1145/1925805.1925818

	Abstract
	References

