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ABSTRACT

KEYWORDS: Program analysis, Context-sensitivity, Just-in-time compilers

While translating programs from one form to another, compilers and related tools

perform a series of analyses on the input program. The results of these program analy-

ses, apart from many other applications such as program understanding and debugging,

are also used to drive several dependent optimizations that result in the generation of an

optimized binary. In general, the higher the precision of a program analysis, the higher

is the expected number of generated optimization opportunities. However, performing

precise analyses usually affects the compilation time adversely, leading to tradeoffs be-

tween precision and efficiency. These tradeoffs also play a prominent role in virtual

machines with just-in-time (JIT) compilers, where an increased analysis time directly

affects the execution time of the program. This thesis proposes several methodologies

that help compilers perform JIT as well as static analyses that are precise-yet-efficient,

especially for programs written in Java-like object-oriented languages.

To balance the tradeoff between the efficiency and precision of performing program

analyses during JIT compilation, this thesis proposes a two-step (static+JIT) analysis

framework called PYE that helps generate precise analysis-results at runtime, at a very

low cost. PYE achieves the twin objectives of precision and performance during JIT

compilation, by using a two-pronged approach: (i) It performs expensive analyses dur-

ing static compilation, while accounting for the unavailability of the runtime libraries

by generating partial results, in terms of conditional values, for the input application.

(ii) During JIT compilation, PYE resolves the conditions associated with these values,

using the pre-computed conditional values for the libraries, to generate the final results.

The extensive evaluation results for two instantiations of PYE show that the proposed

strategy works quite well and fulfills both the promises it makes: enhanced precision

while maintaining efficiency during JIT compilation.
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To improve the scalability and precision of static analyses, wherein, in order to

scale value-contexts based whole-program heap analyses, this thesis proposes a three-

staged approach. The approach is based on a novel idea of level-summarized relevant

value-contexts (LSRV-contexts), which take into account an important observation that

we do not need to compare the complete value-contexts at each call-site. The three

stages of the overall approach are: (i) a fast pre-analysis stage that finds the portion

of the caller-context which is actually needed in the callee; (ii) a main-analysis stage

that uses LSRV-contexts to defer the analysis of methods that do not impact the callers’

heap and analyze the rest efficiently; and (iii) a post-analysis stage that analyzes the

deferred methods separately. The evaluation of two LSRV-contexts based non-trivial

analyses against their traditional value-contexts based versions shows that the proposed

approach not only reduces the analysis time and memory consumption significantly, but

also succeeds in analyzing otherwise unanalyzable programs in less than 40 minutes.

This thesis next improves the precision of LSRV-contexts by cloning the heap and

considering the k-level object context as the context abstraction (resulting in the notion

of LSRVkobjH). The thesis instantiates LSRVkobjH with k = 1 for performing control-

flow analysis, and compares the same with a one-level object-sensitive analysis with

one level of heap cloning (abbreviated as 1obj1h). The results show that the proposed

scheme scales up to large benchmarks (terminates within an hour), while significantly

enhancing the precision (for example, about 5% over plain LSRV-contexts and about

12% over 1obj1h, for one of the precision-indicating clients for control-flow analysis).
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CHAPTER 1

INTRODUCTION

The world of twenty-first century runs using computer programs. Whether it is a hand-

held gadget or a powerful supercomputer, humans write programs, often in a high-level

programming language (such as C, Java, Python, R, OCaml, and so on), to commu-

nicate with these digital devices. However, in order to execute a program on a given

machine, the program first has to be converted to a form that can be understood by that

machine. Akin to the communication between any two persons who speak and under-

stand different languages, human-computer interaction, thus, also requires a translator.

Two primary examples of translators that convert the high-level language of computer

programs to the low-level language of machines are interpreters and compilers.

An interpreter executes a program instruction-by-instruction. On the other hand,

typical compilers, while translating code from one form to another, perform a series

of analyses on the input program. The results of these program analyses are used to

drive a plethora of applications: understanding the semantics of a program, debugging

an erroneous program, finding out whether a program is secure, and optimizing the

program in terms of the resources it may consume (time, memory, energy, etc.), to

name a few. Depending on the time at which a compiler translates a program, there are

two kinds of compilers and program analyses: static and just-in-time (or JIT).

A static compiler analyzes a program before the program executes, that is, of-

fline. On the other hand, a JIT compiler analyzes a program while the program is

already executing, that is, on-the-fly. In general, the higher the precision of a program

analysis, the higher is the expected number of generated optimization opportunities.

However, performing precise analyses usually affects the compilation time adversely,

leading to trade-offs between precision and efficiency. Though the compilation time

should not be prohibitively high for static analyses, the trade-offs between precision

and efficiency play a more prominent role in just-in-time compilers, where an increased

analysis time directly affects the execution time of the program. This thesis proposes



several methodologies that help compilers perform just-in-time as well as static analy-

ses that are precise-yet-efficient. The focus is on the compilers for programs written in

Java (Arnold et al., 2005), which is a popular object-oriented language driving a large

number of applications, on computers and mobiles alike (Wilson, 2016).

1.1 Precise and Efficient Just-In-Time Analyses

Modern languages like Java and C# follow a two-step process for compilation and exe-

cution: the input program is statically compiled to an intermediate language (for exam-

ple, Bytecode for Java and CIL for C#), which is then executed on a possibly remote

virtual machine (for example, JVM and .NET). Many virtual machines (Paleczny et al.,

2001; Alpern et al., 2005) use inbuilt just-in-time (JIT) compiler(s) to generate opti-

mized assembly code that can be directly executed on the hardware. While this can

lead to significant performance gains compared to the “interpreter only” mode, it also

brings in some interesting challenges.

One of the main challenges in JIT compilation arises from the fact that the time

spent in compilation, which includes program-analysis time, gets added to the execu-

tion time of the program. Hence, it is important that the time spent in JIT compilation

is not prohibitively high. Consequently, typical JIT compilers in popular virtual ma-

chines (such as the HotSpot JVM (Paleczny et al., 2001) and the Jikes RVM (Alpern

et al., 2005)) perform imprecise analyses in place of precise whole-program analyses

and end up sacrificing precision for efficiency.

An alternative to performing imprecise analyses during JIT compilation is to per-

form expensive whole-program analyses during static compilation, and use the results

during JIT compilation. However, the runtime libraries (such as the JDK) on the ma-

chine where the program is executed may differ from those available statically on the

machine where the program is compiled. As a result, though this alternative does not

impact the JIT compilation time much, the static analyses have to handle calls to library

methods in a conservative manner, which may again lead to imprecision.

Thus, both the practical alternatives – (i) whole-program analysis at compile-time

2



1 class X { Y g; }
2 class Y { Z h; }
3 class B {
4 X f;
5 B() {
6 f = new X();
7 f.g = new Y();
8 f.g.h = new Z();
9 }

10 void bar() {
11 B r1 = new B();
12 List r2 = new AList();
13 r2.add(r1);
14 X x = r1.f;
15 Y y = x.g;
16 Z z = y.h;
17 ...
18 }
19 }

(a)

1 class AList<E> extends List<E> {
2 // AList is a fixed size list.
3 // 1. arr is a final field
4 // allocated in the constructor.
5 // 2. size is a private field
6 // initialized in the constructor.
7

8 void add(E elem) {
9 arr[size++] = elem;

10 }
11 }

(b)

Figure 1.1: (a) A snippet of a synthetic Java program. (b) Simplified code for the li-
brary method AList.add. While analyzing the method bar, the code for
AList.add is not available, and vice-versa.

and (ii) fast analysis during JIT compilation – may lead to imprecise results. These

issues can be illustrated in the context of a points-to analysis that is used to remove

unnecessary “null-dereference-checks” in Java programs.

In Java, before executing each statement that dereferences an object, the JVM needs

to check whether the object being dereferenced is null; and if so, a NullPointerException

must be thrown. Consider the Java code snippet shown in Figure 1.1. In the method

bar, the statements 13, 14, 15 and 16 dereference objects. As the variables r1 and r2

point-to concrete objects allocated at lines 11 and 12, respectively, the null-dereference

checks at lines 13 and 14 can be safely skipped. Further, the null-dereference checks

at lines 15 and 16 can also be skipped, if (i) r2 is known to point to an object of type

AList, and (ii) the method AList.add does not modify the object pointed-to via

the fields of its parameter. Thus, the number of null-dereference checks that can be

skipped (or eliminated) depends directly on the precision of the underlying points-to

analysis used. The next two paragraphs discuss the impact of the two above-discussed

analysis alternatives on null-dereference-check elimination, in the context of the Java

code snippet shown in Figure 1.1.
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Alternative A1: Analysis during static compilation. A statically performed whole-

program flow- and field-sensitive points-to analysis must assume the code of the method

AList.add as unavailable (else risk the results being unsound). Thus, the alternative

A1 can elide the null-checks at lines 13 and 14, but not the ones at lines 15 and 16.

Alternative A2: Analysis during JIT compilation. Typical JIT compilers restrict

themselves to very imprecise analyses. For example, the points-to analysis used by the

HotSpot Server Compiler (C2) is only intraprocedural. Thus C2 can again elide the

null-checks only at lines 13 and 14.

As a step towards realizing precise and efficient JIT analysis, this thesis proposes a

two-step analysis framework called PYE (“Precise-Yet-Efficient” framework) that ad-

dresses all the issues discussed above. PYE helps generate highly precise analysis-

results for application programs during JIT compilation, at a very low cost. PYE

achieves this objective using a two-pronged approach: (i) It offloads expensive anal-

yses to the static Java compiler, where, in contrast to traditional summaries for each

method, it generates “partial summaries". To avoid the imprecision arising out of the

unavailable runtime libraries, PYE is based on the novel notion of “conditional values",

as a way to store the dependencies between the application and the libraries. For ex-

ample, in the context of null-dereference-check elimination, using traditional simple

values, we say that a variable x may point to either a concrete-object or a null-object

(concrete- and null-objects are the simple values). In contrast, the proposed conditional

values allow us to reach conclusions of the form: variable x may point to a concrete

object, if another variable y points to a concrete object, and null otherwise. The par-

tial summaries consist of a set of conditional values for each program element in the

method being analyzed. (ii) PYE passes the output of the static compiler (class files +

partial summaries) to the JVM, where a newly added component of the JIT compiler

evaluates the conditional values in the partial summaries, after merging the partial sum-

maries of the libraries (pre-computed, once for each library installation), and generates

final analysis-results.

PYE addresses the three challenges that can be envisaged in such a multi-step anal-

ysis framework: (i) It handles the possible imprecision arising out of the unavailable

parts of a program while performing precise whole-program analyses. (ii) It makes
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sure that the generated partial summaries are succinct and do not lead to any significant

storage overhead. (iii) It loads and resolves the partial summaries efficiently without

increasing the time spent during JIT compilation.

This thesis uses PYE to design two context-, flow-, and field-sensitive heap-based

analyses. The first one is a Points-to Analysis to perform null-Check Elimination

(PACE, in short), which elides unnecessary null-dereference checks in Java programs.

For the code shown in Figure 1.1, PACE generates partial summaries which indicate

that while the null-dereference checks at lines 13 and 14 can be unconditionally elided,

the same at lines 15 and 16 can be elided only if the method AList.add does not

assign null to the fields of its first parameter. During JIT compilation, after loading the

library-partial-summary (which indicates that the method AList.add does not mod-

ify any field of the first parameter), PACE resolves the partial summary for bar and

elides all the null-dereference checks in bar. Importantly, PACE achieves high preci-

sion without incurring any significant overhead during JIT compilation. This thesis also

uses PYE to design an Escape Analysis (Blanchet, 2003) and demonstrate its effects on

Synchronization Elimination (EASE, in short). Escape analysis finds objects that are

local to a thread, and is widely used for eliminating useless synchronization (Blanchet,

2003; Ruf, 2000; Choi et al., 1999); see Section 2.3.1 for a brief background on escape

analysis. These two analyses were chosen because though both are based on pointer

analysis, they have different types of lattices, and are quite pedagogical and illustrative

of the intricacies involved in their design.

The core of the PYE framework as well as the two analyses PACE and EASE have

been implemented in two parts: (i) the components associated with the static compiler

– implemented in the Soot optimization framework (Vallée-Rai et al., 1999); and (ii)

the components associated with the JIT compiler – implemented in the HotSpot Server

Compiler (C2) of the OpenJDK HotSpot JVM (Paleczny et al., 2001).

The thesis evaluates PYE using PACE and EASE on a series of benchmarks from

the SPECjvm (2008), DaCapo (Blackburn et al., 2006) and JGF (Daly et al., 2001)

suites, and SPECjbb (2005). The evaluation shows that the strategy adopted by PYE

works quite well: (i) PACE inserts 17.36% fewer null-checks during JIT compilation,

on average, than the existing technique employed by C2. (ii) Compared to the existing
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escape-analyzer of C2 (which elides only 0.03 synchronization operations, on average),

EASE elides more synchronization operations (1.13, on average) during JIT compila-

tion. Importantly, compared to the existing analyzers of C2, the improved precision of

PACE does not significantly affect the JIT compilation time; and in case of EASE, it

actually improves the JIT compilation time by 1.9%, on average. Further, the storage

overheads for partial summaries are quite low: 6.41% and 3.96% over the class files for

PACE and EASE, respectively.

PYE can, in general, be used to perform any whole-program modular dataflow anal-

ysis having: (i) a finite-height lattice of dataflow values; (ii) inter-dependent application

and library analysis-results; and (iii) dynamically-refinable static-analysis results. Sim-

ilarly, the discussed points-to and escape analyses can be extended to other respective

related JIT optimizations, such as method inlining (Muchnick, 1997), garbage collec-

tion (Domani et al., 2002), and so on. Though this thesis presents PYE in the context

of Java, the techniques proposed are general enough to be extended to other languages

such as C# that deploy a two-step compilation process.

1.2 Scalable Context-Sensitive Static Analyses

Heap analysis refers to a broad category of program analyses that statically approximate

the information about the runtime heap of a program. For example, thread-escape anal-

ysis (Choi et al., 1999; Blanchet, 2003) identifies objects that do not escape the thread

of their allocation, interprocedural control-flow analysis (Palsberg and Schwartzbach,

1991; Shivers, 1991) identifies the potential targets of method calls, and so on. The

precision of heap analyses determines the precision of several analyses and optimiza-

tions, and has been a prominent area in compiler research (Lhoták and Hendren, 2006;

Smaragdakis et al., 2011; Milanova et al., 2005; Whaley and Lam, 2004; Xu and Roun-

tev, 2008; Thiessen and Lhoták, 2017).

The precision and scalability of interprocedural heap analyses may vary based on

whether the analysis is context-sensitive or not (Shapiro and Horwitz, 1997). A context-

insensitive analysis does not differentiate among the various calls to a method, and

generates a single summary that can be used at all of its call-sites. A context-sensitive
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analysis, on the other hand, distinguishes between the “contexts” in which a method is

called, and generates a summary for the method in each distinct context. Though the

results generated by context-sensitive analyses have been shown to be more precise than

context-insensitive analyses (Lhoták and Hendren, 2006), the scalability of the former

in analyzing large programs continues to be a cause of concern.

The classical call-strings approach (Sharir and Pnueli, 1978; Shivers, 1991), which

identifies contexts based on the call-string formed by a method’s callers, is one of the

oldest and widely-used approaches of defining the context abstraction. For example,

consider the snippet of Java code shown in Figure 1.2a. A call-string based context-

sensitive analysis would analyze the method bar in two contexts (created at lines 5

and 6), and the method fb in four contexts (two contexts for each context of bar). A

major drawback of the call-string based approach is that in the presence of recursion

and deep nesting of multiple calls, the length of the call-strings, and hence the number

of contexts, may grow combinatorially. This makes the analysis unscalable to large

real-world programs. Consequently, the call-string based analyses usually impose a

limit on the call-string length, and treat the contexts of greater lengths conservatively.

While such an approach improves the scalability of the analysis, it compromises on the

resulting precision.

The clever value-contexts approach (Khedker and Karkare, 2008; Padhye and Khed-

ker, 2013) addresses the scalability challenges in the call-strings approach by using

dataflow values to restrict the potentially unbounded growth of call-strings, without

sacrificing precision. For the code shown in Figure 1.2a, if Figure 1.2b and Figure 1.2c

depict the points-to graphs at lines 5 and 6 respectively, then the value-contexts ap-

proach would analyze (i) bar in two contexts, as the value-contexts (points-to graphs

reachable from formal parameters) at lines 5 and 6, shown in Figures 1.2d and 1.2e,

respectively, are different; (ii) fb in only one context for each context of bar, as the

points-to graphs at lines 11 and 12 match. Though the value-contexts approach is a

breakthrough in performing precise context-sensitive analyses, it still does not scale

for various popular heap analyses. Based on a study of many such heap analyses, this

thesis identifies two main reasons for the lack of scalability: (i) time overheads in-

volved in comparing the value-contexts and in redundantly analyzing many methods;
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1 class A {
2 A f1,f2;
3 void foo(){
4 ...
5 c.bar(a);
6 d.bar(b);
7 } /*foo*/
8 void bar(A p){
9 A x = new A();

10 p.f1.f2 = x;
11 p.fb();
12 p.fb();
13 } /*bar*/
14 void fb(){
15 /*Doesn’t read
16 or affect the
17 caller’s heap*/
18 } /*fb*/
19 }
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Figure 1.2: (a) A Java code snippet. (b) The assumed points-to graph at line 5. (c) The
points-to graph at line 6. (d) The value-context for bar at line 5. (e) The
value-context for bar at line 6. (f) The relevant value-context for bar at
line 5. (g) The relevant value-context for bar at line 6. (h) The LSRV-
context for bar at lines 5 and 6 (for escape analysis), assuming Oa, Ob,
Oi, Oj , Ok and Ol do not escape; OD represents a universal non-escaping
object.

and (ii) memory overheads due to a large number of contexts. For example, for the

call to bar at line 6, the whole points-to graphs shown in Figures 1.2d and 1.2e are

compared; in practice, depending on the size of the graphs and the number of existing

contexts, this could be expensive.

This thesis proposes several novel techniques that together help perform complex

top-down whole-program value-contexts based heap analyses for large programs in less

than 40 minutes. The proposed scheme comprises of three analysis stages: pre, main,

and post. The pre-analysis is a lightweight stage that gains insights about the context-

dependency of all the methods of a program. It computes the portion of the caller con-

texts that is actually needed in the callee and stores this information as parameter-wise

access-depth. The main-analysis uses the access-depths to not only reduce the com-

parison performed (compares “relevant” parts of contexts) in identifying whether two

value-contexts are equal, but also in deferring the analysis of caller-ignorable meth-

ods that do not impact the callers’ heap. Deferring reduces the overheads of analyzing
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those methods multiple times and in merging the results with the callers’ heap, during

the costly main-analysis. The main-analysis also uses a novel analysis-specific abstrac-

tion called level-summarization to improve the precision of identifying two contexts as

equivalent. Finally, the post-analysis analyzes the deferred methods without losing pre-

cision. For the code in Figure 1.2a, an escape analysis based on the proposed approach

identifies that both bar and fb are invoked only in a single level-summarized relevant

value-context each. Consequently, bar is analyzed only once in the main-analysis, and

fb (deferred in the main-analysis) is analyzed only once in the post-analysis.

The thesis demonstrates the effects of the proposed techniques by using them to

perform fully context- and flow-sensitive thread-escape analysis and interprocedural

control-flow analysis of Java programs (along with the JDK). The thesis evaluates the

analyses against their corresponding traditional value-context versions on a multitude

of benchmarks. The results show that the proposed techniques not only reduce the

analysis time and memory consumption of the presented analyses significantly, but also

help analyze previously unanalyzable large programs in a reasonable time. To the best

of the author’s knowledge, this is the first work that scales these heap analyses while

realizing the precision of unbounded call-strings, especially using the practical value-

contexts approach. Further, the proposed techniques are general enough to scale other

context-sensitive heap analyses, even for programs written in other OO languages.

Motivated by the scalability of LSRV-contexts, the thesis next improves their preci-

sion by adding heap cloning (Nystrom et al., 2004), to lead to the idea of LSRVH, which

has an enhanced precision and comparable scalability with respect to plain LSRV con-

texts. Further, the thesis identifies cases where LSRVH may miss out on some precision-

enhancement opportunities compared to k-object-sensitive analyses with heap cloning.

In order to additionally capture the opportunities enabled by object-sensitivity, the the-

sis next adds k-object-sensitivity (Milanova et al., 2005; Smaragdakis et al., 2011) to

LSRVH and proposes a new context abstraction termed LSRVkobjH. This proposal

also gives rise to a novel way of connecting the lattices of object-sensitive analyses

and LSRV-contexts (and hence call-string based analyses). The thesis compares the

precision and scalability of the proposed techniques with k-object-sensitive analyses

by implementing them for performing control-flow analysis, and instantiating them for
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k = 1. The results show that LSRV1objH not only generates a higher number of opti-

mization opportunities, but also scales well to all the benchmarks under consideration.

1.3 Contributions of the Thesis

The main contributions of this thesis are listed below.

(i) Towards improving just-in-time analyses:

• The thesis proposes a new and efficient strategy to obtain precise analysis-results

during just-in-time (JIT) compilation, and formalizes it as the PYE framework.

• The thesis introduces the novel notion of conditional values as a way to store

the dependencies between an application and the libraries. These conditional values

help in maintaining partial summaries for the application being analyzed statically, and

generating final results during JIT compilation, without losing precision.

• The thesis instantiates PYE for performing two context-, flow-, and field-sensitive

heap-based analyses (PACE and EASE), coupled with optimizations to store the gen-

erated partial summaries in a succinct manner, and to efficiently process the partial

summaries at runtime.

• The thesis demonstrates the efficacy of PYE by performing an extensive evaluation

of PACE and EASE in a production Java Virtual Machine (OpenJDK HotSpot JVM),

and comparing the results with those generated by the existing implementations in the

JVM. The evaluation shows that PYE fulfills both the promises it makes – enhanced

precision of analysis results while maintaining the efficiency of the JIT compiler.

(ii) Towards improving static analyses:

• The thesis presents the novel idea of level-summarized relevant value-contexts

(LSRV-contexts), which take into account an important observation that we do not need

to compare the complete value-contexts while performing top-down context-sensitive

heap analyses. This also helps classify more value-contexts as equivalent.
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• The thesis devises a lightweight pre-analysis stage that gathers insights about the

impact of a method on the callers’ heap. The results of the pre-analysis are used to (i)

further reduce the comparison of contexts in the “main-analysis” stage, and (ii) defer

the analysis of “caller-ignorable” methods.

• The caller-ignorable methods are analyzed in a “post-analysis” stage, again in a

context-sensitive manner (that is, without loss of precision). The proposed three-staged

approach thus achieves the precision of a fully context-sensitive analysis for the whole

program (including the JDK).

• The thesis also extends LSRV-contexts with heap cloning (to form LSRVH), and

with object-sensitivity (to form LSRVkobjH). The resultant ideas lead to a new connec-

tion between the LSRV and object-sensitivity lattices.

• The thesis presents an elaborate evaluation of LSRV-contexts on two nontrivial

heap analyses (escape analysis and control-flow analysis), for DaCapo and JGF bench-

marks. The results show that LSRV-contexts (i) succeed in analyzing previously unan-

alyzable benchmarks in less than 40 minutes; and (ii) significantly reduce the memory

requirements. Further, the thesis evaluates the LSRVH and LSRVkobjH approaches and

compares them with k-object-sensitive control-flow analysis (for k = 1). The results

show that LSRV1objH is a new sweet-spot that improves the precision of both LSRV-

contexts based and object-sensitive analyses, while also scaling to large benchmarks.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives an overview (along with references

for further reading) of various preliminary concepts for understanding the concepts pre-

sented in the rest of the thesis. It begins with a discussion of points-to analysis, which

is the basis of all the applications of the approaches proposed in this thesis. The chap-

ter later highlights various precision and scalability related issues and opportunities in

various points-to analyses. The chapter concludes with an overview of the analysis

frameworks used in this thesis – for static as well as JIT analyses.

Chapter 3 describes the PYE framework, which is the main contribution of this the-
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sis towards improving the precision and efficiency of JIT analyses. The chapter first

describes PYE as a conceptual model compared to existing practices, then formalizes

the various static and JIT components of PYE, followed by the description of two anal-

ysis instantiations: points-to analysis for null-check elimination, and escape analysis

for synchronization elimination. This is followed by an extensive evaluation of PYE

and its instantiations over a series of application programs from different benchmark

suites, which establishes the proposed approach as a practical alternative to the cur-

rently adopted approach for Java program analysis.

Chapter 4 describes one of this thesis’s contributions towards improving the scala-

bility of precise context-sensitive static heap analyses. The chapter first highlights the

challenges in call-string based and value-contexts based context-sensitive analyses, fol-

lowed by insights based on a study to alleviate those challenges. This is followed by

the description of the proposed three-staged approach that computes and uses a novel

context abstraction called LSRV-contexts, which rely on the newly introduced notions

of relevance and level-summarization. The chapter finally evaluates LSRV-contexts

by comparing them with the standard value-contexts based implementations of escape

and control-flow-analyses, asserting that LSRV-contexts significantly scale the analyses

under consideration, while being able to analyze previously unanalyzable large bench-

marks in a reasonable time.

Chapter 5 describes the contribution of this thesis towards improving the precision

of LSRV-contexts, using heap cloning. The chapter also studies some differences be-

tween the optimization opportunities generated when heap cloning is added to LSRV-

contexts versus to object-sensitivity. The chapter then describes a novel connection

between the lattices of LSRV-contexts and k-object-sensitive analyses by combining

the benefits of both into LSRVkobjH contexts. Based on a comparison among the

heap-cloning based approaches for k = 1, the chapter finally asserts LSRV1objH as a

scalable-yet-precise context abstraction for static heap analyses.

Chapter 6 discusses some of the prior works related to the approaches presented in

this thesis, for both just-in-time and static analyses. Finally, Chapter 7 concludes the

work done as part of this thesis and highlights some possible future directions.
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CHAPTER 2

BACKGROUND

This chapter describes various program-analysis concepts that are used in the rest of

this thesis. The chapter first introduces points-to analysis, which is a fundamental pro-

gram analysis that enables several other analyses and optimizations, for object-oriented

languages like Java. It then describes points-to graphs, which are arguably the most

common data structure used to compute points-to information for Java programs. This

is followed with a discussion of three important applications of points-to analysis in

Java: thread-escape analysis, null-check elimination, and control-flow analysis. The

chapter next discusses the various dimensions along which the precision of a program

analysis may vary, along with the challenges associated with scaling the same; a special

focus is given to context-sensitivity, scaling which is an important goal of the techniques

proposed in this thesis. The chapter finishes with an overview of the analysis frame-

works used in this thesis for analyzing Java programs: Soot (Vallée-Rai et al., 1999) for

static analyses, and the HotSpot JVM (Paleczny et al., 2001) for just-in-time analyses.

2.1 Points-to Analysis

Points-to analysis is a static program-analysis technique that establishes which pointers,

or reference variables, may point to which objects or storage locations, at runtime. The

results obtained by points-to analysis are key to several other heap analyses and related

optimizations; for example, alias analysis, shape analysis, escape analysis, null-check

elimination, call-graph construction, method inlining, and so on.

We represent objects with the line number at which they are allocated. We say a

variable var may point-to a set S, if the elements of the set S represent the objects that

may be pointed-to by the variable during program execution. For example, in the code

shown in Figure 2.1a, the may-points-to sets of the reference variables r1 and r2 are

{O5} and {O6}, respectively.



1 class B {B f;}
2 class C {
3 static B global;
4 void foo() {
5 B r1 = new B();
6 B r2 = new B();
7 synchronized(r2) {...}
8 global = r2;
9 r1.f = new B();

10 List lst = new AList();
11 lst.add(r1);
12 B x = r1.f;
13 synchronized(x) {...}
14 }
15 }

(a)

O3 O4

O7

f

r1 r2

global

(b)

Figure 2.1: (a) The method foo of class B shown in Figure 1.1. (b) The corresponding
points-to graph after line 9.

There is often a cyclic dependence between the precision of points-to analysis and

other optimizations. For example, points-to analysis helps resolve the set of meth-

ods that could be called at a method-call statement (resulting in a call-graph, which is

imperative for interprocedural analyses). On the other hand, call-graph information is

necessary to compute points-to facts across method calls. Thus, a precise points-to anal-

ysis allows the construction of a precise call graph, and a precise call graph is needed

for computing precise interprocedural points-to information. Such cyclic dependencies

are usually resolved by iterating the analysis being performed up to a fixed point.

2.2 Points-to Graphs

Points-to graphs and their variations are widely used (Whaley and Rinard, 1999; Di-

etrich et al., 2015; Sălcianu and Rinard, 2005; Tan et al., 2017) for representing the

points-to relations in Java programs. A points-to graph G(N,E) comprises of (i) a

set N of nodes that represent variables and abstract objects in the program; and (ii) a

set E of edges that represent points-to relationships among the nodes in the program.

An edge can optionally have a label representing the field in the corresponding points-to

relationship. For example, an edge (a,Ox) from a reference variable a to a node Ox in

a points-to graph implies that the variable a may point to the object Ox. Similarly, an

14



edge (Ox,f, Oy) from node Ox to Oy with a label f implies that Ox.f may point to Oy.

In this thesis, while analyzing a method m, the current points-to graph Gm for m

returns the points-to information as follows: (i) Gm(a) returns the points-to set of the

variable a; and (ii) Gm(Ox, f) returns the points-to set of Ox.f. Figure 2.1b shows the

points-to graph after line 9 for the code shown in Figure 2.1a. The points-to sets repre-

sented by the graph are: Gfoo(r1) = {O5}, Gfoo(r2) = {O6}, Gfoo(global) =

{O6}, and Gfoo(O5, f) = {O9}.

2.3 Applications of Points-to Analysis

We now discuss three important applications that use points-to information, namely,

thread-escape analysis, null-check elimination, and control-flow analysis.

2.3.1 Thread-escape Analysis

Thread-escape analysis (Blanchet, 2003), hereafter called escape analysis, partitions

the objects allocated in a thread t into two categories: (i) those that are local to t (that

is, do-not-escape); and (ii) those that can be accessed by threads other than t (that

is, escape). An object may escape to other threads if it is reachable (possibly via a

sequence of field dereferences) from a static (global) variable, or from a thread object.

Escape analysis has many applications: synchronization elimination (Blanchet, 2003;

Ruf, 2000; Choi et al., 1999), data-race detection (Choi et al., 2002), efficient garbage-

collection (Domani et al., 2002), and so on. For example, the synchronization operation

in the Java synchronization statement ‘L: synchronized(v) S’ can be elided if the

escape analysis finds that the object(s) pointed to by v do not escape before L.

Consider the Java code snippet shown in Figure 2.1a. Assume that the code shown

by ‘. . .’ does not affect the heap. In Figure 2.1a, the objects O5, O9 and O10 do not

escape (assuming that the method AList.add does not make the objects reachable

from its parameters escape). Further, O6 does not escape until line 8. Thus, the syn-

chronization operations at lines 7 and 13 can be safely elided.
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Escape analysis can be performed using points-to graphs by checking whether a

node in the points-to graph is reachable from static variables or nodes representing

thread objects. Given a points-to graphGm, we use a functionGm.reachables(a) to get

the nodes reachable from a in Gm. In Figure 2.1b, O6 ∈ Gfoo.reachables(global),

and hence, the object O6 in method foo escapes its allocating thread.

2.3.2 Null-check Elimination

In Java, before executing each statement that dereferences an object, the JVM needs

to check whether the object being dereferenced is null; and if so, a NullPointerExcep-

tion must be thrown. Consider the Java code snippet shown in Figure 2.1a. In the

method foo, the statements 7, 9, 11, 12 and 13 dereference objects. As variables r1,

r2 and lst point-to concrete objects allocated at lines 5, 6 and 9, respectively, the

null-dereference checks at lines 7, 9 and 12 can be safely skipped. Further, the null-

dereference checks at lines 12 and 13 can be skipped if the method AList.add does

not set the object pointed-to via the field f of its first parameter to null. Thus, the num-

ber of null-dereference checks that can be skipped (or eliminated) depends directly on

the precision of the underlying points-to analysis used.

2.3.3 Control-flow Analysis

Interprocedural control-flow analysis (Palsberg and Schwartzbach, 1991; Shivers, 1991),

is used to determine the targets of a method call in dynamically-dispatched languages.

This analysis is also a prerequisite to, and controls the precision of, several interpro-

cedural analyses (for example, call-graph construction (Grove and Chambers, 2001),

points-to analysis, escape analysis, and so on). A common way to perform control-

flow analysis is by maintaining a points-to graph and using a dataflow lattice whose

elements (indicating the possible type of each object) are the set of all the classes in the

input program; the meet operation for the lattice is simply the set-union operation.
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2.4 Analysis Dimensions

There are several dimensions along which one can vary the precision of a program anal-

ysis. In this section, we give an overview of some of the important analysis dimensions,

with small examples wherever required, and discuss their effects on the precision of the

points-to analyses discussed in the previous section.

2.4.1 Flow-sensitivity

An analysis is considered flow-sensitive, if it respects the control flow in the program,

that is, it maintains information specific to each program point. On the other hand, a

flow-insensitive analysis computes a single information independent of the order of the

program statements. For the code shown in Figure 2.1a, a flow-insensitive escape anal-

ysis would simply conclude that the object O6 escapes, and hence the synchronization

operation at line 7 would not be elided. A flow-sensitive analysis, on the other hand,

will be able to identify that O6 does not escape at line 7, and hence will be able to elide

the synchronization operation at line 7 successfully.

The standard way to perform a flow-sensitive analysis is to maintain IN and OUT

dataflow sets with each statement, and then use a worklist-based algorithm until a fixed-

point is reached: if the OUT set (IN set in a backward analysis) of any statement st

changes, then the successors (predecessors in a backward analysis) of st are added to

the worklist.

2.4.2 Field-sensitivity

A program analysis is field-sensitive, if it maintains the information for each field of an

object separately. On the other hand, a field-insensitive analysis aggregates the informa-

tion of all the fields of an object into the information for that object. For example, after

line 9, a field-sensitive analysis would maintain separate points-to sets {O5} and {O6}

for r1 and r1.f, respectively. A field-insensitive analysis, on the other hand, will

maintain a single (conservative) points-to set {O5, O6} for r1 as well as r1.f.
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In general, it is difficult to perform field-sensitive analyses on data structures whose

size is not known at compile time (for example, arrays). Even if the upper bound on

the number of elements is known, it may not be feasible to store information for all

the elements of a list or an array, because of huge memory requirements. It is common

practice to maintain a summary of such data structures (say with a single field “[]”),

whose (conservative) information represents all the constituent elements.

2.4.3 Analysis Scope

The scope of an analysis is said to be intraprocedural, if it computes the information

for a method independent of the effects of the call sites within that method. Such an

analysis assumes some unknown conservative value for the arguments passed to, and

the return value of, a callee method at a call statement. An interprocedural analysis

tries to accommodate the effects of the callees at the call sites within the method being

analyzed. Such an analysis needs the call graph of the program, and the results are

heavily dependent on the precision of the call graph. Interprocedural analyses can be

performed either: (i) top-down, where at each call site, the potential callees are ana-

lyzed to get their potential effects; or (ii) bottom-up, where the effects of a method are

computed in prior, and used at the call sites.

In case of an interprocedural analysis for the code snippet shown in Figure 2.1a, if

the analysis for the method AList.add tells that the objects pointed-to by its param-

eters do not escape AList.add, then the synchronization operation at line 13 can be

removed. An intraprocedural analysis, on the other hand, must (conservatively) assume

that all the objects passed to AList.add might escape, and hence will not be able to

elide the synchronization operation at line 13.

2.4.4 Context-sensitivity

An interprocedural analysis is context-insensitive, if it stores a single information for

a method, and the same information is used at each call-site where that method may

be called. On the other hand, a context-sensitive analysis may store different informa-

tion for the different contexts in which a method may be called. A context-sensitive
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1 class A {A f;}
2 class C {
3 static A tee;
4 public void foo() {
5 A a1 = new A();
6 tee = a1;
7 A r1 = a1.bar();
8 a1 = new A();
9 A r2 = a1.bar();

10 synchronized(r2) {...}
11 }
12 public A bar() {
13 A obj = new A();
14 obj.f = this;
15 return obj.f;
16 }
17 }

Figure 2.2: Example to motivate context-sensitivity.

analysis lets the caller use the behavior of a method specific to the calling context, and

is likely to provide more precise results for various pointer analyses. One of the old-

est and widely-used approaches of defining what constitutes a context is the classical

call-strings approach (Sharir and Pnueli, 1978; Shivers, 1991), which identifies contexts

based on the call-string formed by a method’s callers.

Consider the Java code snippet shown in Figure 2.2. A context-insensitive analysis

maintains a single (conservative) summary for the method bar. Consequently, it would

conclude that the object O13, and hence the object pointed-to by r2, escapes, and thus

would not be able to elide the synchronization operation at line 10. A call-string based

context-sensitive analysis, on the other hand, analyzes bar separately for the calls at

lines 7 and 9. Consequently, it would be able to identify that in the second call to bar,

the object O13, and hence the object pointed-to by r2, does not escape, and thus would

be able to elide the synchronization operation at line 10.

A major drawback of the call-strings approach is that in the presence of recursion

and deep nesting of multiple calls, the length of the call-strings, and hence the number

of contexts, may grow combinatorially. This makes the analysis unscalable to large

real-world programs. Consequently, call-string based analyses usually impose a limit

on the call-string length, and treat the contexts of greater lengths conservatively. While

such an approach improves the scalability, it compromises on the resulting precision.
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Value-contexts. The idea of value-contexts, proposed by Khedker and Karkare

(2008), was used by Padhye and Khedker (2013) to perform top-down context-, flow-,

and field-sensitive points-to analysis for constructing a call-graph. The analysis starts

from the main method, and maintains a points-to graph at each statement. On reaching a

call-statement for a method m, the method is (re-)analyzed, if the current value-context

is different from the prior value-contexts (if any) in which m was analyzed. Here, the

value-context at a call to m is the points-to (sub) graph passed to m – referred to as the

parameter-reachable graph of m.

Object-sensitivity. An object-sensitive analysis (Milanova et al., 2005) distin-

guishes the contexts of a method based on the allocation site of the receiver object

(the object pointed-to by the this pointer). Similar to call-string based analyses, for

scalability, object-sensitive analyses also use a limit k on the length of the chain formed

by the receivers. For example, a one-level object-sensitive analysis would analyze the

method bar (see Figure 2.2) in two contexts – at lines 8 and 10 – as the receiver objects

at both the sites are different (O6 and O9).

Observe that the contexts created in the call-string based and object-sensitive ap-

proaches are quite different: in the former, the contexts created for a method can be

directly mapped to the runtime call-stack; whereas in the latter, the contexts created

depend on the possible receiver objects. Consequently, the per-context precision of

object-sensitive analyses cannot be compared with those of call-string (and hence value-

contexts) based analyses.

2.5 Analysis Frameworks

Java follows a two-stage program translation mechanism. In order to guarantee plat-

form independence, the static Java compiler first translates Java programs to platform-

independent Bytecodes in the form of class files. These class files are then transferred

to the target machine, where based on certain heuristics such as the number of times a

method is executed, the Bytecodes are either interpreted, or compiled just-in-time (JIT),

or interpreted as well as compiled, by a Java Virtual Machine (JVM). As a consequence

of this two-stage translation, a Java program can be analyzed at two levels: during
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static compilation, and during JIT compilation. We now give an overview of the Soot

optimization framework (which we use for writing static analyses), and the OpenJDK

HotSpot JVM (which we use for writing JIT analyses).

2.5.1 The Soot Framework

Soot (Vallée-Rai et al., 1999) is a Java optimization framework. Soot can either be used

to analyze as well as to develop optimizations and transformations on Java Bytecode.

It is freely available and is licensed under the GNU Lesser General Public License, and

has been extensively used in various works on program analysis for Java programs.

Soot provides four intermediate representations for analyzing and transforming Java

Bytecode: Baf, Jimple, Shimple, and Grimp. Jimple, our choice for implementing the

static analyses proposed in this thesis, has a small set of typed three-address instruc-

tions, and Soot provides various inbuilt methods to extract and manipulate Jimple state-

ments. Each Jimple instruction has at most three operands, wherein temporary variables

are used to break down complex instructions. For simplicity, all declarations are done

at the beginning of a method, and the control flow is modeled using goto instructions

and labels.

2.5.2 The HotSpot JVM

The HotSpot JVM (Paleczny et al., 2001; Kotzmann et al., 2008), shipped by Oracle, is

a popular production JVM for executing Java Bytecode. In this thesis, we use the Open-

JDK HotSpot JVM, which is the open-source version of Oracle’s production version.

The HotSpot JVM ships with an interpreter and two JIT compilers: (i) client or C1; and

(ii) server or C2. The C1 compiler aims at fast compilation and performs simpler opti-

mizations. The C2 compiler, on the other hand, performs sophisticated optimizations,

with a corresponding effect on the compilation time.

In order to execute a program, the HotSpot JVM starts with interpreting the Byte-

code, while performing extensive profiling in parallel. Based on the profiled informa-

tion, when the number of times a method is called or a loop is executed exceeds a
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particular threshold (that is, becomes “hot”), it is deemed to be fit for compilation. De-

pending on several different heuristics, it is either compiled by C1 or by C2, in one of

total four modes of compilation. During JIT compilation, the compiler makes several

assumptions about the code (for example, the target of a call-statement), and if the as-

sumptions fail (say due to dynamic classloading or branch misprediction), the compiled

unit is discarded and the control for that unit is given back to the interpreter (in a process

called deoptimization).

Apart from various other analyses and optimizations, the C2 compiler of the HotSpot

JVM performs aggressive analyses and optimizations based on points-to information,

including null-check elimination, escape analysis for synchronization elimination, control-

flow analysis for call-graph construction, and so on. Improving the precision and ef-

ficiency of many of these analyses is the aim of our techniques in this thesis, and we

would keep discussing them in the later chapters.
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CHAPTER 3

PRECISE AND EFFICIENT

JUST-IN-TIME ANALYSES

This chapter describes our contributions towards performing precise and efficient JIT

analyses for Java programs. First, Section 3.1 describes our proposed framework PYE

along with a novel notion of conditional values. Sections 3.2 and 3.3 discuss the design

of the two instantiations of PYE, that is, PACE and EASE, respectively. Section 3.4

highlights some subtle aspects in the design of PYE and proves its correctness. Finally,

Section 3.5 presents a detailed evaluation of PACE and EASE.

3.1 The PYE Framework

In this section, we first discuss some of the challenges in typical modular dataflow anal-

ysis techniques, and then describe PYE in the context of analyzing Java applications.

3.1.1 Typical Modular Analyses

To maintain scalability, typical modular analyses (Whaley and Rinard, 1999; Choi et al.,

1999) process one method at a time and maintain its summary. For a given dataflow

analysis Ψ, the summary of a method m can be seen as a map fm from the domain D

of Ψ to the set of dataflow values Val of Ψ. That is:

fm : D → Val (3.1)

We assume that Val forms a lattice with a meet operation u, a supremum > (the

most precise element), and an infimum⊥ (the most conservative element). For example,

in typical escape analysis algorithms (Bogda and Hölzle, 1999; Ruf, 2000; Blanchet,
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Figure 3.1: Java program analysis: (a) Two traditional approaches. (b) Approach
adopted by PYE.

2003), (i)D includes object-allocation sites, function parameters and return values; and

(ii) the lattice Val has elements from the set {>,⊥}, organized as a chain, indicating

the escape-status (> = DoesNotEscape, and ⊥ = Escapes).

For a method m, its summary fm may depend on the summaries of a set of other

methods. Thus to compute fm precisely, all the dependent summaries must be avail-

able. In the context of JIT compilation (for example, in the HotSpot JVM (Paleczny

et al., 2001)), the summaries dependent on the runtime-libraries can only be computed

at runtime. This can usually be achieved using one of the two approaches shown in

Figure 3.1a. A JIT compiler can perform either very precise analyses and incur the

large overheads caused by the compilation time, or it can target fast compilation time,

and perform imprecise analyses. Note that there could be several other configurations

that explore the trade-offs between these two approaches, such as k-limited context-
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sensitivity (Sharir and Pnueli, 1978), flow-insensitivity (Hardekopf and Lin, 2007),

cutoff-based approaches (Vivien and Rinard, 2001), and so on. However, for simplic-

ity and efficiency, typical JIT compilers (such as the ones in the HotSpot (Paleczny

et al., 2001) and Jikes (Alpern et al., 2005) virtual machines) limit themselves to

mostly intraprocedural analyses. Even though many JIT compilers may perform early-

inlining, its impact on the precision of the analysis is limited, due to the standard re-

strictions (Paleczny et al., 2001) on inlining (such as the iCache size, deep nesting of

methods, recursion, profiling, and so on).

An alternative to costly analyses during JIT compilation is to perform the anal-

ysis statically at compile time and export the results to the JVM. However, as the

JDK installation on the source machine (where the analysis is performed) may be

different from the target machine (on which the analysis results will be used), us-

ing such results may lead to unsound optimizations. Examples of such changes in-

clude the removal or addition of methods (for example, compared to Java 8, LogMan-

ager.addPropertyChangeListener was removed in Java 9), changes in method signa-

tures, newer implementations overriding parent-class methods, and so on. As a result,

all the referred library methods are considered unavailable at compile time, and the

summary of each library method is conservatively approximated to the special “bot-

tom” function λx.⊥. Such a scheme can lead to overly imprecise results.

3.1.2 PYE: A Practical Alternative

To overcome the issues of both (i) fully static analysis (too imprecise), and (ii) whole-

program analysis at runtime (prohibitively expensive), we propose PYE: a framework

for precise-yet-efficient just-in-time analyses for Java programs. Figure 3.1b shows

the block diagram of PYE. Compared to the traditional scheme of analysis in the JIT

compiler, PYE analyzes an application using two inter-related components: the partial-

analyzer (added to the static Java compiler), and the fast-precise-analyzer (added to the

JIT compiler of the JVM).

For each method in the application being analyzed, the partial-analyzer skips the

calls to the unavailable library methods, and generates partial summaries. Compared
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to a traditional method-summary fm (a map from the domain D to one of the dataflow

values in Val), a partial summary maps each element in the domain of the analysis to

a set of conditional values. We propose the novel notion of conditional values as a way

to encode the dependence of the analysis results for the associated program element

on other unavailable program element(s). For each application, the partial summaries

generated by the partial-analyzer are stored as a “.res file". Similarly, another instance

of the partial-analyzer analyzes the library methods of the target machine offline, inde-

pendent of the application, and generates a partial summary for each library method.

As the static-compilation time does not get added to the execution time of the program,

an analysis-writer using PYE is free to pick highly precise variants of analyses to be

performed by the partial-analyzer.

As shown in Figure 3.1b, when a program is executed, along with the .class files (of

the application and the libraries), the corresponding partial summaries in the form of .res

files are made available to the JVM on the target machine. In the JIT compiler, the fast-

precise-analyzer reads the required partial summaries (partial-results-accumulator), re-

solves the dependencies between the application and the library summaries to generate

final results (summary-simplifier), and then populates the appropriate JVM data struc-

tures to perform the related optimizations (results-adapter).

We first describe the notion of conditional values as a way to encode the dependen-

cies between various parts of a program, and define partial summaries (Section 3.1.3).

Later, we describe how these partial summaries are simplified to obtain precise results

during JIT compilation (Section 3.1.4).

3.1.3 Partial Summaries

For a given dataflow analysis Ψ, to compute the summary fm for each method m, the

partial-analyzer of PYE first computes the partial summary gm, which is a map from

the domain D of Ψ to the power set of conditional values (CVal):

gm : D → P (CVal) (3.2)
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1 class C {
2 void foo(D p) {
3 A q = p.bar();
4 }
5 }

1 interface D { A bar(); }
2 class D1 implements D {
3 A bar() {
4 return new A1();
5 }
6 }
7 class D2 implements D {
8 A bar() {
9 return new A2();
10 }
11 }

Figure 3.2: Example to illustrate the generation of conditional values.

Definition 1. A conditional value is a three-tuple of the form

T = 〈Θ, val, val′〉

where:

- Θ is a pair of the form 〈u, x〉, in which:
- u is a method

- x is a program element in u

- val and val′ are elements from the set Val of Ψ

A conditional value T = 〈〈u, x〉, val, val′〉 in gm(e) encodes a condition on the final

analysis-result fu(x) for the element x in method u. That is, if fu(x) = val, then T

evaluates to val′. If u is a library method, then fu(x) is not available statically while

analyzing the application, and hence it is not possible to resolve the dependence (and

evaluate T ) till runtime.

Example. Consider the code snippet in Figure 3.2. Suppose the goal is to perform

a flow-analysis that maps each reference variable (such as p and q in the example) to

the set of classes whose objects could be pointed-to by the variable. The parameter

p could either point to an object of class D1 or of class D2. Considering the flow-

analysis starting from the method foo, the set of conditional values generated by the

partial-analyzer for q would be:

gfoo(q) = {〈〈foo, p〉, {D1}, {A1}〉, 〈〈foo, p〉, {D2}, {A2}〉}

Here, the conditional values indicate that the flow-set of q would include A1 if the flow-

set of p is {D1}, and the flow-set of q would include A2 if the flow-set of p is {D2}.
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In Section 3.1.4, we explain how such conditional values are simplified in a systematic

manner.

Notation. If the analysis-result of an element e does not depend on any other el-

ement, then gm(e) is a singleton with a lone conditional value, whose condition is a

tautology. We denote the set of such simple (“vacuously true") conditional values as

SCVal, which can be seen as the conditional representation of the set Val. We repre-

sent each v ∈ Val as a conditional value 〈Θv, v, v〉 ∈ SCVal, where Θv can be seen as

a special global element for which fm(Θv) is set to v for all methods m. We refer to the

rest of the conditional values, that is the ones in the set CVal − SCVal, as dependent

conditional values, DCVal.

Say x and y are program elements in methods u andm, respectively. In analyses like

PACE (Section 3.2) and EASE (Section 3.3), in each conditional value, the respective

third and the fourth components match, and if ∃ v ∈ Val, such that 〈〈u, x〉, v, v〉 ∈

gm(y) ⇒

Λ-

v′ ∈ Val, 〈〈u, x〉, v′, v′〉 ∈ gm(y). For such analyses, for brevity, we

abbreviate the set of all the conditional values dependent on 〈u, x〉, by only 〈u, x〉.

For uniformity, a simple conditional value 〈Θv, v, v〉 ∈ SCVal in those analyses is

abbreviated to Θv.

Example. We now illustrate the above-discussed concepts using another analysis

that performs a points-to analysis to elide the null-dereference-checks for which the

dereference is guaranteed to be performed on a concrete object. Say the set Val for

this analysis is {C (for Concrete), N (for Null)}. The simple conditional values corre-

sponding toC andN are ΘC and ΘN , respectively. We use the code shown in Figure 1.1

as the input for this analysis. The conditional values generated by the partial-analyzer

for each dereference Ol (denoting the dereference at line l) in the method bar are:

gbar(O13) = gbar(O14) = {ΘC}

gbar(O15) = {〈AList.add, Op1 .f〉}

gbar(O16) = {〈AList.add, Op1 .f.g〉}

Here, as the variables r1 and r2 point to concrete objects allocated at lines 11

and 12 respectively, the set of conditional values for the dereferences at lines 13 and

14 is the singleton ΘC . The conditional value for the dereference at line 15 indicates
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that the dereferenced object would be null if the object pointed-to by Op1 .f, where Op1

is the object pointed-to by the first parameter of AList.add, is null, and concrete

otherwise. Similarly, the conditional value for the dereference at line 16 indicates that

the dereferenced object would be null (or concrete) if the object pointed-to by Op1 .f.g

is null (or concrete).

3.1.4 Simplifying Partial Summaries

The partial-analyzer generates a partial summary gm for each methodm statically avail-

able for analysis. Say, the set of all such summaries for an application A is FA. On the

target machine, another instance of the partial-analyzer computes a similar summary

for each library method offline; say the combined set for a library installation L is FL.

At runtime, the summaries generated by the partial-analyzer for all the methods (the

application as well as the library) are available. When the application is executed by

the JVM on the target machine, the fast-precise-analyzer of PYE takes FA and FL, and

computes the final analysis-results (in the summary-simplifier; see Figure 3.1b) for all

the elements of a method m that is compiled just-in-time by the JVM.

For each element e in the analysis-domain for the method m being compiled by

the JIT compiler, the summary-simplifier of the fast-precise-analyzer evaluates each

conditional value T = 〈〈u, x〉, val, val′〉 ∈ gm(e), by looking up the value of fu(x),

and returns the evaluated value JT K ∈ Val. If the condition specified in T evaluates

to true (that is, fu(x) = val), then JT K is val′; else JT K is > (the top value of the

lattice Val):

J〈〈u, x〉, val, val′〉K = (fu(x) == val) ? val′ : > (3.3)

For analyses where val is always equal to val′, we use the shorthand notation introduced

in Section 3.1.3, and simplify equation 3.3 as:

J〈u, x〉K = fu(x) (3.4)

Finally, given the set of evaluated conditional values S = {JT K | T ∈ gm(e)}, the
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analysis-result fm(e) is computed as the meet over all the elements in S. The semantics

of the meet operation is specific to the individual analysis under consideration. Thus, if

the meet operation of an analysis is denoted by u, then:

fm(e) = u Λ-

T ∈gm(e)
JT K (3.5)

Given a set of program elements and their conditional values, evaluating all the

conditional values may require repeated solving of equations 3.3 (or 3.4) and 3.5 till a

fixed-point. Such a fixed-point computation is necessary to take into consideration the

dependence of the conditional values of one program element on those of other program

elements. We do so by using a standard worklist-based algorithm in the summary-

simplifier of the fast-precise-analyzer. As Val is a finite-height lattice, the evaluation is

guaranteed to terminate and give us the most precise solution for the conditional values

generated by the partial-analyzer. The presence of un-evaluated conditional values even

after attaining a fixed-point indicates mutually cyclic dependencies. In such cases, we

use fm(e) = > for each element involved in the cycle (as we have already achieved a

fixed-point, it is safe to do so). The cost of performing this fixed-point computation

mostly depends on the number of dependent conditional values (theoretically bound

by the product of the number of abstract objects in a program and the size of the lattice

Val, but usually a small percentage compared to the total number of program elements)

generated for a particular analysis. Further, the amortized cost required to resolve a

dependence (one lookup per dependence) is O(1). As we show in Section 3.5, for the

analyses under consideration, the time spent in summary-simplification is very small

(order of milliseconds).

Example. For the code shown in Figure 1.1, the partial summary generated by

the partial-analyzer for the method AList.add, after analyzing the library offline,

would be: gAList.add(O9) = {ΘC}, which indicates that the dereference performed

at line 9 in AList.add is done on a concrete object, and the absence of any infor-

mation about its parameters implies that none of them are modified in the method.

Note: The meet (u) operation for this analysis is defined as: u(C,C) = C and

u(C,N) = u(N,C) = u(N,N) = N . While compiling the method bar, the fast-

precise-analyzer looks up the partial summary of the method AList.add to resolve
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the conditions for the elements of bar, and generates the following final analysis-

results for the dereferences in bar (after solving the equations 3.4 and 3.5):

fbar(O13) = fbar(O14) = u{JΘCK} = u{C} = C

fbar(O15) = u{J〈AList.add, Op1 .f〉K} = u{C} = C

fbar(O16) = u{J〈AList.add, Op1 .f.g〉K} = u{C} = C

// 〈AList.add, Op1 .f〉 and 〈AList.add, Op1 .f.g〉 cannot be simplified further,

// and hence evaluate to > = C.

The results indicate that all the dereferences in the method bar are done on concrete

objects, and hence, the corresponding null-pointer-dereference checks can be safely

elided. Compared to the results generated by the analysis alternatives A1 and A2 in

Section 1.1, it is evident that PYE is able to achieve a higher precision by combining the

partial summaries for the application and the library at runtime. We show in Section 3.5

that this precision comes at a very low cost; that is, with negligible associated overheads.

3.1.5 Efficient Storage of Partial Summaries for PYE

The partial summaries generated by the partial-analyzer of PYE for each application

are stored in a .res file on the machine where the analysis is performed. This .res file

needs to be transferred to the target machine, along with the .class files for the appli-

cation. On the target machine, the .res files for the application and the libraries are

read by the JVM during execution. The speed of performing all the above operations

depends a lot on the size of these .res files. Thus, smaller the .res files, fewer will be the

storage, transfer, and file-reading overheads. For each analysis implemented in PYE, in

order to efficiently maintain and store the partial summaries, we perform an optimiza-

tion to pre-apply the meet operation in the partial-analyzer: For each method m, for

each gm(x), we pre-apply the meet operation on the conditional values and store either

only a single simple conditional value, or one or more dependent conditional values

along with at most one simple conditional value. For example, consider the null-check

removal analysis discussed in Section 3.1.3. Say for an object O in the method m, a

dependent conditional value 〈u, x〉 gets added to gm(O). If gm(O) previously consisted
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of a simple conditional value ΘC , we remove ΘC from gm(O) and only keep 〈u, x〉.

This optimization reduces the number of conditional values we carry while performing

the static analysis.

3.1.6 Writing an Analysis in PYE

PYE can, in general, be used to perform any whole-program modular dataflow analysis

(for languages like Java/C#) having: (i) a finite-height lattice of dataflow values, (ii)

inter-dependent application and library analysis-results, and (iii) dynamically-refinable

static-analysis results. Examples include the inclusion-based points-to analysis (An-

dersen, 1994), unification-based analysis (Steensgaard, 1996), partial escape analy-

sis (Stadler et al., 2014), MHP analysis (Naumovich et al., 1999), and so on. In this

section, we give an overview of how to implement an existing analysis Ψ in PYE. First,

the analysis writer needs to specify the domain D of Ψ, and the lattice formed by the

dataflow values Val of Ψ. In the modified analysis, each value v ∈ Val is converted

to a special conditional value of the form Θv. As part of the partial-analyzer, the modi-

fied analysis then processes each statement similar to Ψ, except for the following three

scenarios, which need to take into consideration the generation of conditional values:

(i) Unavailable callee. Say while analyzing a method, we encounter a call to an

unavailable method (say from a library). Here, the analysis writer needs to encode the

dependence of the actual arguments on the method u, using conditional values.

(ii) Unavailable caller. Here, the analysis writer needs to encode the dependence

of the formal parameters on the actual arguments that may be passed to the method u,

using conditional values.

(iii) Unavailable object-dereference. Say we encounter a load statement of the form

a = b.f , and b depends on another element from an unavailable method; for example, b

holds the return value of a library method u. Here, the analysis writer needs to encode

the dependence of b.f on the method u, using conditional values.

As an example of how the dependencies need to be encoded, consider the call to the

unavailable method AList.add at line 11 in Figure 2.1a. For the objectO5 pointed-to

by r1, at this call, a traditional static escape analysis would record the escape-status of
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O5 to be the value E (or Escapes). Whereas the same analysis implemented in PYE

would record the fact that the escape-status of O5 depends on the first parameter of

AList.add, using the conditional value 〈AList.add, Op1〉.

In addition to the above changes in the partial-analyzer, the analysis writer needs

to provide the implementation of the results-adapter in the fast-precise-analyzer. This

simply involves populating the appropriate data structures in the JVM from the results

generated by the summary-simplifier, such that they can be accessed directly by the

optimizers of the JIT compiler. Note that an otherwise fully just-in-time analysis, in

addition to writing the analysis, also needs to appropriately populate the data structures

for any dependent optimization passes, and hence the effort required to do the same in

PYE is arguably never more.

Overall, PYE achieves the precision of a whole-program analysis with very low

analysis overheads at runtime. As can be seen, PYE replaces complex program-analysis

phases of the JIT compiler with basic operations like reading the pre-computed sum-

maries and simplifying the summaries based on the summaries of other methods. This

strategy pays off quite well by improving the precision of analysis results without sig-

nificantly affecting the time required for JIT compilation (see Section 3.5).

3.2 Points-to Analysis for null-Check Elimination

In this section, we illustrate the usage and effectiveness of PYE, by using it to effi-

ciently perform a top-down context-, flow-, and field-sensitive points-to analysis for

null-pointer-dereference check elimination (or PACE, in short) in Java programs. The

analysis is based on points-to graphs (see Section 2.2 for an overview), and is used to

remove the implicit null-dereference checks in translated Java programs for the derefer-

ences that are guaranteed to be made on concrete objects (as discussed in Section 1.1).

As mentioned in Section 3.1.6, in order to perform an analysis using PYE, we need

to specify the setD, the lattice formed by Val, the processing of each relevant statement

by the partial-analyzer, and the results-adapter. We now describe the same for PACE.
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Set Description
ALCm = {Ol | l is an allocation statement in method m}
PARm = {Opi | pi is the ith parameter of method m}
RETm = {Ox | Ox is returned by m}
OUTm = {Od@l | Od@l represents an unavailable object dereference at line l in m}
UCSm = {Ou@l | l is a call-statement in method m and the callee u is unavailable}
DRFm = {Ol | l is an object-dereferencing statement in method m} // specific to PACE
SYNm = {Ol | l is a synchronization statement in method m} // specific to EASE

Domain of program elements
Dpace =

Λ-

m ALCm ∪ PARm ∪ RETm ∪ OUTm ∪ UCSm ∪ DRFm
Dease =

Λ-

m ALCm ∪ PARm ∪ RETm ∪ OUTm ∪ UCSm ∪ SYNm
Lattice of dataflow values

Valpace = {Concrete (C or >), Null (N or ⊥)}
Valease = {DoesNotEscape (D or >), Escapes (E or ⊥)}
Meetpace : C u C = C; C uN = N u C = N uN = N

Meetease : D uD = D; D u E = E uD = E u E = E

Table 3.1: The definitions of D and Val for the analyses PACE and EASE.

3.2.1 Partial-analyzer for PACE

Table 3.1 shows the domain Dpace of relevant program elements and the lattice of

dataflow values Valpace for PACE. For each method m,Dpace consists of six sets of ab-

stract objects: (i) ALCm: one objectOl per allocation statement labeled l; (ii) PARm: one

object Opi representing the objects pointed-to by the parameter pi; (iii) RETm: all the

objects returned by m; (iv) OUTm: one object Od@l for an unavailable dereference at

a statement labeled l; (v) UCSm: one object Ou@l per unavailable method u at a call-

statement labeled l, indicating the return-value of u at l; and (vi) DRFm: one object Ol

per object-dereferencing statement labeled l.

The set Valpace forms a lattice with two elements: Concrete (C or >) and Null

(N or ⊥). The corresponding conditional values are ΘC and ΘN , respectively. The

definition of the meet (u) operation is standard (see Table 3.1). Note that the lattice

for the underlying points-to analysis for PACE (and for EASE) is standard (Whaley and

Rinard, 1999), with the corresponding meet operation defined as the union of the points-

to sets; the dataflow values for PACE (and EASE) rely on the information computed

by this points-to analysis. On the other hand, while performing PACE and EASE, it
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is possible to query the underlying points-to analysis to obtain the points-to sets of

different variables and field references.

Our static analysis is a standard top-down, forward, context-, flow-, and field-

sensitive iterative dataflow analysis. The analysis of an application begins at the entry

of the main method of the application. For analyzing the libraries (on the target ma-

chine), we start the analysis afresh at the entry of each public method of the library.

For simplicity, we assume that each intraprocedural Java statement is in a “three ad-

dress" representation, and that a field-dereference occurs to the right-hand side of an

assignment only in a load statement of the form a = b.f. Further, we skip a detailed

discussion of statements involving array references, and briefly highlight the changes

required to process them, if any, while discussing the statements of a similar form. For

the ease of analysis, we assume that each method has two special statements entry

and exit, denoting the single point of entry and exit, respectively. We also assume

that each statement has a unique label associated with it.

For each method m, we maintain two data structures before and after each state-

ment: (i) a points-to graph Gm (see Section 2.2 for an overview); and (ii) the partial

summary gm, which is a map from abstract objects to a set of conditional values. We

use a worklist-based algorithm and analyze the statements of a method repeatedly till

a fixed-point. After analyzing a method m, instead of storing the analysis informa-

tion at each program point, we store the points-to graph (standard rules) and the partial

summary as observed at the exit of m – which reduces the size of the partial sum-

mary. Even then, we still realize flow-sensitivity for performing null-dereference check

elimination as we separately track each of the object dereferences (the set DRFm); see

Section 3.4 for a detailed discussion. While this may theoretically increase the num-

ber of objects in the points-to graph by O(N), where N is the program size, overall

this scheme reduces the amount of stored information, as it avoids storing the points-to

graph at each instruction.

We now describe the processing of each statement that could affect either the points-

to graph or the set of conditional values for any element. Figure 3.3 shows the inference

rules for updating the points-to graph Gm and the partial summary gm while analyzing

the statements of a method m.
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[allocation] l : a = new B();

{
gm[Ol ← {ΘC}]
Gm[a← {Ol}]

[null-assignment] a = null;
{

Gm[a← {Onull}]
[copy] a = b;

{
Gm[a← Gm(b)]

[store] l : a.f = b;



Λ-

Oa ∈ Gm(a)
Gm[(Oa, f) ∪← Gm(b)]

updateDeref(Ol, a)

[load] l : a = b.f ;



Gm[a← ∪ Λ-

Ob∈Gm(b)Gm(Ob, f)]

updateDeref(Ol, b)
if (∃Ob ∈ Gm(b), s.t. Gm(Ob, f) = ∅) then

Λ-〈u, x〉 ∈ gm(Ob) ∩ DCVal
gm[Od@l ∪← 〈u, x.f〉]
Gm[(Ob, f) ∪← {Od@l}]
Gm[a ∪← Od@l]

[throw] l : throw a;
{
updateDeref(Ol, a)

[synch] l : synchronized(a)
{
updateDeref(Ol, a)

[array-length] l : k = a.length;
{
updateDeref(Ol, a)

[return] return a;
{
RETm ← RETm ∪Gm(a)

[unavailable-callee] l : b = a0.u(a1, ..., an);



Λ-

Oai ∈ Gm(ai),

Λ-

Ox ∈ Gm(Oai , f)
extendCVals(Ox, 〈u,Opi .f〉)

gm[Ou@l ← {〈u,Ou〉}]
Gm[b← {Ou@l}]
updateDeref(Ol, a0)

[unavailable-caller] m(B p1, ..., B pn)

{
gm[Opi ← {〈m,Oai〉]}
Gm[pi ← {Opi}]

Figure 3.3: Partial-analysis rules for PACE. Notation: (i) β[Ox ← Y ] means β is
extended with β(Ox) set to Y . (ii) X ∪← Y is an abbreviation for
X ← X ∪ Y .

• Allocation, l : a = new B(). We use the abstract object Ol ∈ ALCm to represent

the object(s) allocated at line l; the conditional value associated with Ol is set to ΘC ,

denoting that Ol is a concrete object. We then set the points-to set of a to {Ol}.

• Null-assignment, a = null. In case of an explicit assignment of null to a variable

a, we set the points-to set of a to a set containing the special object Onull (for which

gm(Onull) is set to {ΘN}), implying that a points to null.

• Copy, a = b. Here we set the points-to set of a to that of b.

• Store, l : a.f = b. First, for each object Oa in Gm(a), we add the objects in the

points-to set of b to the points-to set of Oa.f . Next, to denote the dereference done at l,

we call a macro updateDeref(Ol, a) (see Figure 3.4), where Ol ∈ DRFm represents
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1 Macro updateDeref(Ol, a)
2 gm(Ol)← ∅;
3 foreach Oa ∈ Gm(a) do
4 gm(Ol)← gm(Ol) ∪ gm(Oa);

Figure 3.4: The updateDeref macro. Gm is the current points-to graph and
gm is the current partial summary.

the object(s) being dereferenced at l. For each object Oa in the points-to set of a, the

macro updateDeref(Ol, a) adds all the conditional values in gm(Oa) to gm(Ol).

• Load, l : a = b.f . Here, for each object Ob pointed-to by b, we first add the ob-

jects in the points-to set ofOb.f to the points-to set of a, and then handle the dereference

done at l by calling the macro updateDeref(Ol, b). In case for a certain Ob ∈ Gm(b)

the set Gm(Ob.f) is empty (for example, when Ob is an object returned by an unavail-

able method), then each dependent conditional value 〈u, x〉 in gm(Ob) indicates that Ob

depends on the element x of an unavailable method u. In such a case, Ob.f might be

modified in u. To denote this dependence, we add the abstract object Od@l ∈ OUTm to

Gm(Ob, f), and add 〈u, x.f〉 to gm(Od@l). Finally, we add Od@l to the points-to set of a.

If a store or load is made to/from an array (that is, a[i] = b or a = b[i], respectively),

we repeat the same steps as done for a normal store or load statement, except that instead

of f , we use the special array field “[]". See Section 3.4 for a discussion on our choice

of heap abstraction.

• Other dereference statements. For Java statements that involve an implicit null-

dereference, such as l : throw a, l : k = a.length and l : synchronized(a) {...}, we

use the object Ol ∈ DRFm to denote the dereference, and we update gm(Ol) by calling

the macro updateDeref(Ol, a).

• Return, return a. For each method m, we maintain a set RETm containing the

objects that could be returned by m. At a return statement return a in method m, we

add all the objects in Gm(a) to the set RETm.

• Method call, l : b = a0.u(a1, ..., an). The processing of a method-call statement

depends on whether the callee (method u) is available for analysis or not. For example,

when analyzing a Java application, the methods from the JDK library are considered
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1 Macro extendCVals(Ox, 〈u, e〉)
2 gm(Ox)← gm(Ox) ∪ {〈u, e〉};
3 foreach edge (Ox, f, Oy) in Gm do
4 if ¬Oy.visited then
5 Oy.visited← true;
6 extendCVals(Oy, 〈u, e.f〉);

Figure 3.5: The macro extendCVals. Gm is the current points-to graph and
gm is the current partial summary.

unavailable for analysis. In case of multiple possible callees (due to virtual dispatch),

we take a union of the conditional values generated due to each callee.

(i) Available-callee (standard, rule not shown). In this case, we first merge the

points-to graph Gu at the exit of the called method u into the points-to graph Gm for the

caller, using the standard mapping algorithm presented by Whaley and Rinard (1999).

For each object Ok added from Gu to Gm while merging, we add the conditional values

in gu(Ok) to gm(Ok).

(ii) Unavailable-callee. In this case, for each object Oai pointed-to by the argu-

ment ai, the object(s) reachable from any field of Oai might change in the method u.

Say the object pointed-to by the formal parameter pi at the entry of u is represented by

Opi . For each field f ofOai , we denote the dependence of each objectOx ∈ Gm(Oai , f)

on u by adding a conditional value 〈u,Opi .f〉 to gm(Ox). Note that such conditional

values need to be added to all the nodes in the subgraph reachable from Ox as well. We

use a macro extendCVals(Ox, 〈u,Opi .f〉) that extends the set of conditional values

transitively for all the objects reachable from Ox; see Figure 3.5. Next, say the object

Ou represents the objects returned by the method u. After the assignment, to store the

dependence of the object pointed-to by b on Ou, we add the conditional value 〈u,Ou〉

to gm(Ou@l), where Ou@l ∈ UCSm. We also set the points-to set of b to a singleton

containing Ou@l.

Irrespective of whether the callee is available or not, we handle the dereference per-

formed by the receiver object a0 by calling the macro updateDeref(Ol, a0), where

Ol ∈ DRFm.

Note that at a call statement, we need not analyze the callee m if the context c at
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the call-site is the same as another context c′ in which m has already been analyzed.

We define a context by applying the idea of level-summarized value contexts (see Chap-

ter 4), which is an extension of the idea of value-contexts (Khedker and Karkare, 2008);

we consider the set {Gm, gm} as the context at the call-site. We terminate recursion in

the standard way, that is, by iterating over the strongly-connected components of the

call-graph till a fixed-point.

• Method entry, m(B p1, ..., B pn). The initialization of Gm and gm at the entry

of a method m depends on whether the points-to graph and the partial summary at the

call-site c are available or not. We discuss both the cases below.

(i) Available-caller (standard, rule not shown). To construct the points-to graph Gm

at the entry ofm, for each formal parameter pi, we add each objectOai pointed-to by the

corresponding actual argument ai in the points-to graph Gc of the caller c, to Gm(pi).

Next, we copy the subgraph reachable fromOai inGc, toGm. For each objectOx added

to Gm in the previous steps, we set gm(Ox) to gc(Ox).

(ii) Unavailable-caller. In PACE, the callers of the entry method(s) are not avail-

able. For each such method m, we use m to denote all its callers at runtime. For each

formal parameter pi of m, we associate an abstract object Opi ∈ PARm, with gm(Opi)

containing the conditional value 〈m,Oai〉, and add Opi to the points-to set of pi. This

conditional value indicates the dependence of Opi on the actual argument Oai passed

to m by its callers.

Example. Figure 3.6 shows the points-to graph Gbar and the partial summary

gbar at the exit of the method bar shown in Figure 1.1. O11 and O12 are objects allo-

cated at lines 11 and 12, respectively. The statement at line 14 is a load where the object

dereferenced via the field f is unavailable. We use the abstract objectOd@14 ∈ OUTbar
to denote the dereferenced object and add an edge from x to Od@14 to denote that x

points to Od@14. Similarly, the abstract objects Od@15 and Od@16 are added to Gbar

at lines 15 and 16, respectively. For each abstract object, Figure 3.6 also shows the

corresponding conditional values in the map gbar. The conditional values for O13

and O14 imply that the corresponding dereferences are guaranteed to be made on con-

crete objects. The conditional values for O15 and O16 imply that the objects derefer-

enced at lines 15 and 16 would be null (or concrete) if the objects pointed-to via Op1 .f
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O9 O10r1

r2

Od@12

g

{〈AList.add, Op1.f〉}

{〈AList.add, Op1.f.g〉}

{ΘC}

Od@13

{ΘC}

f

x

y

h

{〈AList.add, Op1.f.g.h〉}Od@14
z

ALCbar = {O11, O12}
OUTbar = {Od@14, Od@15, Od@16}
DRFbar = {O13, O14, O15, O16}

gbar(O13) = {ΘC}
gbar(O14) = {ΘC}
gbar(O15) = {〈AList.add, Op1 .f〉}
gbar(O16) = {〈AList.add, Op1 .f.g〉}

Figure 3.6: Gbar and gbar at the exit of the method bar shown in Figure 1.1. For
the nodes in ALCbar, UCSbar and OUTbar, the conditional values are
shown next to the node. Redundant conditional values are not shown.

and Op1 .f.g, where Op1 is the object pointed-to by the first parameter of AList.add,

are null (or concrete), respectively.

3.2.2 Efficient Storage of Partial Summaries for PACE

In addition to the pre-apply-meet optimization discussed in Section 3.1.5, we apply the

following three additional optimizations in PACE.

(i) Store only what is needed. As discussed in Section 3.2.1, the domain of program

elements for PACE consists of six sets of abstract objects. However, we do not need

the analysis information about all the abstract objects for performing null-dereference-

check elimination, and hence we store only a subset of these sets. For example, for an

application method m, it is sufficient to store the conditional values only for the objects

in the set DRFm. Similarly, for each library method u, apart from the objects in the

set DRFu, we store the conditional values for the elements reachable from the objects

in PARu and RETu, which may be needed for simplifying the partial summaries of the

application methods.

(ii) Do not store what can be interpreted. For an element e of a method m, if the

set of conditional values gm(e) is a singleton of the form {ΘC}, we avoid storing the

information about e in the .res file. During JIT compilation, if the information about a

dereference done at a statement labeled l is missing, we interpret that the dereference is

guaranteed to be done on a concrete object. This greatly reduces the number of program
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elements whose information needs to be printed in the .res files. We could have done

the same for elements whose set of conditional values consisted only of ΘN (in place

of ΘC); however, the space-saving we get would be much lower in practice, considering

the small number of dereferenced objects that are guaranteed to be null.

(iii) Implication. Say we have a sequence of statements x = p.f1; y = p.f2.

At runtime, p either points to null and an exception will be thrown at the first derefer-

ence (the second statement will not be executed), or p points to a concrete object. In

either case, we can elide the null-dereference check at the second statement. We use

this observation to further reduce the number of abstract objects created to denote the

dereferences in PACE. For example, in the sequence of statements shown above, we

do not generate any conditional values for the dereference in the statement y = p.f2.

This further reduces the size of the stored .res files.

3.2.3 Results-adapter for PACE

During the JIT compilation of a method m, the summary-simplifier of the fast-precise-

analyzer first simplifies the partial summary gm and generates fm. Then for each Byte-

code instruction at offset l in m, if the instruction makes a dereference, the results-

adapter for PACE checks the value of fm(Ol). If fm(Ol) is found to beC (for Concrete),

the corresponding null-dereference check is elided; else the existing JVM mechanism

is used to proceed with the insertion of the null-dereference check. In Section 3.5, we

show that for a multitude of benchmarks, PACE is able to elide a substantial number of

null-dereference checks during JIT compilation, without impacting the JIT compilation

time negatively.

3.3 Escape Analysis for Synchronization Elimination

We now give an overview of the second analysis that we have implemented in PYE: a

top-down context-, flow-, and field-sensitive thread-escape analysis for Java programs

(a variation of the approach of Whaley and Rinard (1999); its brief summary can be

found in Section 2.3.1). We use the results of this analysis to elide the acquire/release
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[allocation] l : a = new B();


if (isMultiThreaded(B)) then

gm[Ol ← {ΘE}]
else

gm[Ol ← {ΘD}]

[store] a.f = b;



if (isStatic(f)) then

Λ-

Ox ∈ Gm.reachables(b)
gm[Ox ← {ΘE}]

else

Λ-

Ox ∈ Gm.reachables(b)
gm[Ox ∪← gm(Oa)]

[load] l : a = b.f ;


if (∃Ob ∈ Gm(b), s.t. Gm(Ob, f) = ∅) then

Λ-〈u, x〉 ∈ gm(Ob) ∩ DCVal
gm[Od@l ∪← {〈u, x〉, 〈u, x.f〉}]

[synchronization] l : synchronized(a)
{

gm[Ol ← ∪ Λ-

Oa∈Gm(a)gm(Oa)]

[unavailable-callee] l : b = a0.u(a1, ..., an);



Λ-

Oai ∈ Gm(ai)
extendCVals(Oai , 〈u,Opi〉)

gm[Ou@l ← {〈u,Ou〉}]

Figure 3.7: Partial-analysis rules for EASE. The updates to the points-to graphGm, and
the rules [unavailable-caller] and [return], are similar to those for PACE (see
Figure 3.3), and hence skipped. Notation: X ∪← Y is an abbreviation for
X ← X ∪ Y .

synchronization operations associated with objects that do not escape their allocating

thread. We call this instantiation the Escape Analysis for Synchronization Elimination

(or EASE, in short).

As discussed in Section 3.1.6, in order to perform an analysis using PYE, we need

to specify the domain D, the lattice formed by Val, the processing of each relevant

statement by the partial-analyzer, and the results-adapter. We now describe the same

for EASE.

3.3.1 Partial-analyzer for EASE

Figure 3.1 shows the domain Dease and the lattice Valease for EASE. For each method

m, Dease consists of six sets of abstract objects: (i) ALCm: one object Ol per allocation

statement labeled l; (ii) PARm: one object Opi representing the objects pointed-to by

the parameter pi; (iii) RETm: all the objects returned by m; (iv) OUTm: one object Od@l

for an unavailable dereference at a statement labeled l; (v) UCSm: one object Ou@l per

unavailable method u at a call-statement labeled l; and (vi) SYNm: one object Ol per
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synchronization statement labeled l. The set Valease forms a lattice with two elements:

DoesNotEscape (D or >) and Escapes (E or ⊥). The corresponding conditional values

are ΘD and ΘE , respectively. The definition of the meet (u) operation is standard. At

runtime, for each method m, the goal of EASE is to compute the escape-status (D or

E) of each object in SYNm.

Figure 3.7 shows how the proposed partial-analyzer of EASE processes each state-

ment that may affect the partial summary gm for the method m being analyzed. As

the rules for maintaining the points-to graph Gm and the processing of method entry

and return statements are similar to those for PACE (see Section 3.2.1), we skip show-

ing/discussing the same. Similar to PACE, we assume that each statement has a unique

label associated with it.

• Allocation, l : a = new B(). At an allocation statement a = new B() at line l, we

use the abstract object Ol ∈ ALCm to represent the object(s) allocated at l. The condi-

tional value associated with Ol is either ΘE or ΘD, depending on whether B is a multi-

threaded class or not. We term a class as multi-threaded, if it is a subclass (immediate

or otherwise) of java.lang.Thread or implements java.lang.Runnable.

• Store, a.f = b. At a statement of the form a.f = b, if f is a static field, for each

object Ox reachable from b, we set gm(Ox) to the singleton ΘE , indicating that Ox now

escapes; else we indicate the dependence of the escape-status of Ox on that of Oa by

adding the conditional values in gm(Oa) to gm(Ox).

• Load, l : a = b.f . Similar to PACE, for an object Ob ∈ Gm(b), if gm(Ob) consists

of a dependent conditional value 〈u, x〉, it implies that the escape-status of Ob depends

on the program element x in method u. In such a case, the object(s) pointed-to by Ob.f

might change/escape in u. To denote this dependence, we add the abstract objectOd@l ∈

OUTm to Gm(Ob, f), and add the conditional values 〈u, x〉 and 〈u, x.f〉 to gm(Od@l).

These conditional values indicate that Od@l escapes if either of the program elements x

or x.f , in the method u, escape.

• Synchronization, l : synchronized(a). Here we use the abstract object Ol ∈

SYNm to represent the synchronization statement labeled l. For each object Oa in the

points-to set of a, we add the conditional values in gm(Oa) to gm(Ol). This indicates
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gfoo(O5) = {〈AList.add, Op1〉}
gfoo(O6) = {ΘE}
gfoo(O9) = {〈AList.add, Op1〉, 〈AList.add, Op1 .f〉}
gfoo(O10) = {〈AList.add, Op0〉}
gfoo(O7) = {ΘD}
gfoo(Od@12) = gfoo(O13) = {〈AList.add, Op1〉, 〈AList.add, Op1 .f〉}

ALCfoo = {O5, O6, O9, O10}
SYNfoo = {O7, O13}
OUTfoo = {Od@12}

Figure 3.8: The conditional values in gfoo for the method foo in Figure 2.1a. Redun-
dant conditional values are not shown.

that the synchronization operation at l can be elided if none of the objects in the points-

to set of a at l escape.

• Unavailable-callee, l : b = a0.u(a1, ..., an). The handling of a method call where

the callee u is unavailable is similar to that for PACE except for a minor difference.

Here, for each argument ai, even the top-level object Oai ∈ Gm(ai) may escape in u (if

it is assigned to a static field in u, for example). We indicate the dependence by adding

the conditional value 〈u,Opi〉 to gm(Oai), indicating that Oai might escape if the object

Opi , representing the object pointed-to by the formal parameter pi at the entry of u,

escapes. Similarly, all the objects reachable from Oai in Gm also depend on u. We call

the macro extendCVals(Oai , 〈u,Opi〉) to add the corresponding conditional values

(see Figure 3.5).

Example. Figure 3.8 shows the conditional values generated by the partial-analyzer

of EASE as seen at the exit of the method foo shown in Figure 2.1a. As the object O5

pointed-to by the variable r1 is passed to the unavailable method AList.add, the

conditional value in gfoo(O5) indicates that the escape-status of O5 depends on the

escape-status of the object Op1 pointed-to by the first formal parameter at the entry of

AList.add. Similar is the case for the object O10. As the object O6 becomes reach-

able from the static variable global at line 8, gfoo(O6) consists of the conditional

value ΘE , implying that O6 escapes. However, as we separately keep track of abstract

objects in the set SYNfoo, we are able to capture the fact that O6 does not escape at

line 7, and hence gfoo(O7) consists of the conditional value ΘD. This enables the

elision of the synchronization at line 7 (at runtime). The conditional values for the

synchronization statement at line 13 indicate that the corresponding synchronization
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operation can be elided if the object Op1 pointed-to by the formal parameter p1 and the

object pointed-to by Op1 .f do not escape in AList.add.

Synchronized methods. In Java, apart from synchronized statements, methods can

also be declared as synchronized to indicate that any code in those methods cannot be

executed by concurrent threads. If an instance method is declared as synchronized, it

is equivalent to a synchronized statement on the receiver object, enclosing the body of

the method. If the synchronized method is static, the synchronization operation is per-

formed on the global object associated with its declaring class. Similar to the approach

used by Lee and Midkiff (2006), we elide the synchronization operation associated with

such a method, if the method is never called in a sequence of calls originating from a

run method of a multithreaded class. For both these cases, we store the conditional

values in a special abstract object associated with the corresponding method.

3.3.2 Efficient Storage of Partial Summaries for EASE

In addition to the pre-apply-meet optimization discussed in Section 3.1.5, we apply the

following two additional optimizations in EASE.

(i) Store only what is needed. For an application methodm, we store the conditional

values only for the objects in the set SYNm. For each library method u, apart from the

objects in the set SYNu, we also store the conditional values for the elements reachable

from the objects in PARu and RETu.

(ii) Do not store what can be interpreted. For an element e of a method m, if the

set gm(e) of conditional values is a singleton of the form {ΘD}, we avoid storing the

information about e in the .res file. During JIT compilation, if the information about an

abstract object (∈ SYNm) is missing, we interpret that the associated synchronization

operation can be safely elided.

3.3.3 Results-adapter for EASE

To perform synchronization elimination in the HotSpot JVM, the optimizer needs to

know whether the object associated with a synchronization statement does-not-escape
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and consequently if the synchronization operation can be eliminated. Our results-

adapter reads the escape-status of the abstract object corresponding to each of the

synchronization statement and sets a field isEliminatable in the synchronization

statement accordingly.

Example. The conditional values generated by the partial-analyzer for the method

AList.add (see Figure 1.1) include the dependencies listed below; recall that for

each method m with unavailable-caller, we use m to denote its callers at runtime.

gAList.add(Op0) = {〈AList.add, Oa0〉}

gAList.add(Op1) = {〈AList.add, Oa0〉, 〈AList.add, Oa1〉}

The conditional values 〈AList.add, Oa0〉 and 〈AList.add, Oa1〉 are added to

the map gAList.add forOp0 andOp1 respectively, at the entry of the method AList.add.

When the object Op1 is stored into the array pointed-to by Op0 .f (at line 9), the condi-

tional values in gAList.add(Op0) are added to gAList.add(Op1).

During JIT compilation of the application method foo, the summary-simplifier

evaluates the conditional values (see Figure 3.8) for the synchronization objects of

lines 7 and 13 (O7 and O13, respectively). For O7, the conditional value ΘD sim-

ply evaluates to the value simple conditional value D ∈ Valease. To simplify the

conditional values for O13, our algorithm starts with a list L of conditional values

{〈AList.add, Op1〉, 〈AList.add, Op1 .f〉} (given by gfoo(O13) shown in Figure 3.8).

Simplifying these conditional values adds the elements of the set gAList.add(Op1) to L.

As O10 and O5 are the actual arguments Oa0 and Oa1 respectively, our algorithm adds

the elements of gfoo(O10) and gfoo(O5) to L to obtain: L = {〈AList.add, Op1〉,

〈AList.add, Op1 .f〉, 〈AList.add, Oa0〉, 〈AList.add, Oa1〉, 〈AList.add, Op0〉}.

At this stage, no further simplification is possible and we reach a fixed-point. As

mentioned in Section 3.1.4, after attaining the fixed-point, for each conditional value Ti
in the worklist, we set JTiK to D (the top of the lattice). Thus, the summary-simplifier

generates the escape-status: ffoo(O7) = ffoo(O13) = D. Thereby the results-adapter

sets the isEliminatable field for the synchronization statements at lines 7 and 13

to true. This field is used by the following pass of synchronization elimination to

perform the necessary optimization.
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Note that a fully static (flow-sensitive) analysis would be able to elide the synchro-

nization operation only at line 7. On the other hand, the C2 compiler of the HotSpot

JVM performs a connection-graph (Choi et al., 1999) based partially-interprocedural

escape analysis during JIT compilation, which can elide the synchronization operation

at line 13, but not at line 7. Using PYE, and by maintaining abstract objects separately

in SYNfoo, EASE is able to elide the synchronization operations both at lines 7 and 13.

We show in Section 3.5 that the overheads involved for achieving this precision during

JIT compilation are quite small; in fact, less than the existing analysis performed by C2.

3.4 PYE: A Discussion

In this section, we first discuss some subtle aspects in the current design of PYE, fol-

lowed by its correctness argument.

1. Deoptimization. PYE handles deoptimization scenarios (for example, because of

dynamic classloading, failed speculative type-checks, and so on) in a natural manner:

the set of new and old methods to be re-compiled are obtained by analyzing the call

graph and optimized using their partial summaries (new or existing). This set can be

made further precise using a scheme similar to that of Cooper et al. (1986).

2. Callbacks. PYE analyzes each library installation independent of the applica-

tion. Consequently, if a library method m has a callback to a method in the application

program, the called method cannot be analyzed in this context. In such a scenario, we

compile m (and the dependent methods) with the existing analyses built in the JVM,

and not with the analysis results generated by PYE. Since callbacks are used infre-

quently in practice (during our evaluation over real-world benchmarks, we have not

found any case where we lose precision because of this design choice), we believe it to

be an acceptable limitation of PYE. There could be multiple ways to handle callbacks

more precisely. For example, we could perform a fast (perhaps imprecise) analysis to

find out whether the called-back method may indeed affect the results for the given

analysis and fall-back only if it does. Another way to handle callbacks is to statically

create gaps (Arzt and Bodden, 2016) at call-sites that may be involved in a callback,

and fill these gaps with more precise information during JIT compilation. We leave the
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1 class B { ... // from Figure 1.1
2 void baz() {
3 B r1 = new B();
4 List l = new AList();
5 l.add(r1);
6 l.add(null);
7 X x = l.first();
8 Y y = x.g;
9 }

10 }

1 class AList<E> { ... // from Figure 1.1
2 E first() {
3 return arr[0];
4 }
5 }

(a)

1 class C {
2 void foo() {
3 X r1 = new X();
4 bar(null);
5 X r2 = bar(r1);
6 ... = r2.g;
7 }
8 void bar(X rx) {
9 Y y1 = new Y();

10 y1.f = rx;
11 return y1.f;
12 }
13 }

(b)

Figure 3.9: Example to illustrate some limitations of the heap abstraction used for
PACE and EASE.

integration of the techniques of Arzt and Bodden into PYE as future work.

3. Verification. The summaries (generated by the partial-analyzer) transferred along

with the class files to the target machine may get corrupted (intentionally, or otherwise).

Consequently, the fast-precise-analyzer may derive wrong analysis-results. Currently,

we resolve this issue by using public-key cryptography (Stinson, 1995). However, keep-

ing in mind its limitations (for example, trusting the partial-analyzer), we are working

on a fast verifier (similar to Java Bytecode type-checking) to validate the results in the

JVM itself.

4. Heap abstraction. We abstract all the elements of an array in a field-insensitive

manner, which leads to well-understood imprecision. Consider the methods baz of

class B and first of class AList, as shown in Figure 3.9, in the context of PACE. For

the dereference at line 8, the set of conditional values generated by the partial-analyzer

would be: {〈AList.add, OAList.add〉}. However, as the array arr does not dis-

tinguish among its various elements (it is standard to treat arrays field-insensitively

for scalability), the method first would conservatively generate the value {ΘN}

for its return-value, and hence the dereference during JIT compilation would not be

elided. Similarly, the abstraction of objects by their allocation site (that is, no heap-

cloning (Nystrom et al., 2004)) leads to understandable imprecision. For example, in
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Figure 3.9b, the partial-analyzer finds that at line 6, r2 may point to null and hence

cannot elide the null-check. We believe it would be an interesting future work to extend

PYE to support more precise forms of heap abstractions.

5. Conditional values. The conditions used in the conditional values depend on the

specific analysis being performed. For example, for EASE the conditions are based on

the escape-information, leading to conditional values such as x escapes if y escapes. In

contrast, for implementing the taint analysis by Arzt and Bodden (2016), each ‘source’

of the taint may be treated as a tainted object, and the conditions may be based on

points-to/alias relationships, leading to conditional values such as x points to a tainted

object z′, if y points to z. These points-to conditions can be on the argument-objects

passed, and the return values of the unavailable methods. Importantly, note that such

variations (naturally, analysis-dependent) still fit into the general two-pronged approach

presented as part of PYE.

6. Levels of granularity. Though we discuss PYE at method-level granularity, these

ideas can also be extended to other levels of granularity (for example, storing/simpli-

fying summaries per class, package, and so on) without impacting the precision. The

choice of the appropriate granularity levels can lead to interesting trade-offs: while

storing/reading/simplifying summaries at higher levels of granularity can amortize (and

speedup) the overall disk reads, it could also lead to increased overheads from read-

ing/simplifying summaries of even those methods that may not be compiled.

7. Flow-sensitivity. It is worthy to highlight the novel way in which we maintain

flow-sensitive results in an efficient manner. As an instance, traditional connection-

graph based escape analyses (Choi et al., 1999) first construct a connection graph, then

perform a reachability test to determine the objects that escape, and then, based on

the escape-status of the corresponding objects, a second pass then elides unnecessary

synchronization operations. As discussed in Section 3.3, such an approach might not be

able to elide the synchronization operations for which the associated object(s) escape

after the synchronization statement. On the other hand, in this thesis, we use a special

abstract object (∈ ALCm) with each synchronization statement, which allows us to elide

more synchronization operations (by taking advantage of flow-sensitivity) without the

need to later store the results of all the objects in the .res files.
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3.4.1 PYE: Correctness

It may be noted that the precision of an analysis implemented in PYE depends upon the

algorithm used in the partial-analyzer to generate the partial summaries. Thus, PYE can

be thought to be parametric on the analysis algorithm. If we represent the analysis being

performed as Ψ, then the PYE variation of Ψ can be denoted as PYE(Ψ). We now state

the correctness theorem for our proposed approach for programs that may call library

methods which in turn invoke no callbacks. Later, we extend the argument to library

methods that may invoke callbacks.

Definition 2. The set {〈y1, v11, v12〉, 〈y2, v21, v22〉, · · · } of conditional values generated by

PYE(Ψ) for a variable x, for any program P at a program point L, is considered to be

“correct”, if during the whole-program analysis, the following conditions hold: (i) ∃ a

set S of integers, such that

Λ-

i ∈ S, Ψ computes the value of yi to be vi1 at L; and (ii)

Ψ computes the dataflow value of x to be u Λ-

i∈Sv
i
2. That is, a correct set of conditional

values includes all the dependencies and nothing more.

Theorem 3.4.1. Given a whole-program analysis algorithm Ψ, for any program P ,

the analysis results obtained using PYE(Ψ) for the program elements of P will match

those obtained using Ψ. That is, if D is the set of program elements of P , then after

simplification of partial summaries,

Λ-

x ∈ D, PYE(Ψ)(x) = Ψ(x).

Proof. (Proof Sketch) We prove the theorem by contradiction. Say there exist a whole-

program analysis Ψ and a program element x in method m, such that at some program

point L, PYE(Ψ)(x) = s1 and Ψ(x) = s2, and s1 6= s2.

This implies that while Ψ has found the dataflow value of x at L (the most precise

solution) to be s2, the summary-simplifier has found the dataflow value of x at L to be

s1. There can be two cases under which the summary-simplifier can find the dataflow

value of x at L to be s1 (6= s2):

(i) In the set of summaries provided by the partial-results-accumulator, at program

point L, gm(x) was a singleton containing s1 (a simple conditional value). This implies

that the partial-results-accumulator has incorrectly obtained the dataflow value as s1,

from the partial-analyzer. But as the partial-analyzer implements Ψ for performing the
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static analysis and gives a singleton with a simple conditional value only for objects

that do not depend on any library calls, Ψ would also find the dataflow value of x as s1

(and hence s1 = s2). A contradiction.

(ii) In the set of summaries provided by the partial-results-accumulator, at program

point L, gm(x) consists of a set of dependent conditional values, and gm(x) was simpli-

fied as s1 by the summary-simplifier. There are two sub-cases:

(a) the partial-analyzer generated a correct set of conditional values for x, but the

summary-simplifier generated an imprecise solution. As discussed in Section 3.1.4, the

summary-simplifier iteratively solves the dependent conditional values until no more of

them can be simplified further, which generates the most precise solution for the given

set of conditional values. A contradiction.

(b) the partial-analyzer generated an incorrect set of conditional values for x. Note

that the partial-analyzer is an implementation of Ψ with the only difference being in the

output for the ones related to the conditional values, such that

Λ-

x ∈ D, at each program

point L, if PYE(Ψ)(x) is a not a simple conditional value, then the partial-analyzer

adds all the required dependent conditional values that denote a dependence of Ψ(x) on

the unavailable parts of P . Further, we can see that the partial-analyzer adds only the

required dependent conditional values – as it adds a dependent value only as a result

of some unavailable code (at method calls, method entries, and at load statements).

That is, PYE marks all the required dependencies and nothing more. That is, as per

Definition 2, the summary generated by the partial-analyzer (PYE(Ψ(x)) is correct. A

contradiction.

Theorem 3.4.1 guarantees that during JIT compilation, a whole program analysis

Ψ can be equivalently replaced by PYE(Ψ), when the called library methods do not

in turn invoke callbacks. Even in cases where the library methods may invoke call-

backs, extending PYE with techniques proposed by Arzt and Bodden (2016) can lead

to similar precision. However, when using our above discussed conservative scheme

to handle callbacks, the Theorem 3.4.1 statement can be modified to state that after the

simplification of partial summaries,

Λ-

x ∈ D, PYE(Ψ)(x) v Ψ(x), where the relation

x v y ⇒ x u y = x.
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Corollary 3.4.2. In a JIT compiler, a semantics-preserving optimization based on a

whole program analysis Ψ can use PYE(Ψ) instead and still remain semantics-preserving.

Proof. Proof follows directly from Theorem 3.4.1 and the above discussion thereof.

3.5 Implementation and Evaluation of PYE

We implemented the PYE framework (see Figure 3.1b) in two parts: (i) interfacing of

the partial-analyzer in the Soot optimization framework (Vallée-Rai et al., 1999) version

2.5.0 – approximately 2000 lines of code; (ii) different components of the fast-precise-

analyzer in the HotSpot Server Compiler (C2) of the OpenJDK HotSpot JVM (Paleczny

et al., 2001) version 7 – approximately 1000 lines of code. To understand the usability

of PYE, we used PYE to instantiate PACE (Section 3.2) and EASE (Section 3.3). The

associated respective partial-analyzers consist of about 4100 and 4000 lines of Java code

(in Soot), and the respective results-adapters consist of about 550 and 250 lines of C++

code (in C2). In addition, we use the extremely helpful tool TamiFlex (Bodden et al.,

2011) version 2.0.3 to eliminate the reflection-based code from the original benchmarks,

so that they can be analyzed by Soot.

3.5.1 Evaluation Setup for PYE

We evaluated PYE and its two instantiations on twenty-two benchmarks from four

benchmark suites: (i) AES, COMPILER, COMPRESS, FFT, LU, MONTECARLO, RSA,

SIGNVERIFY, SOR, SPARSE and SUNFLOW from SPECjvm (2008) – using the ‘de-

fault’ input; (ii) AVRORA, ECLIPSE, FOP, H2, LUINDEX, LUSEARCH, PMD and XALAN

from the DaCapo suite (Blackburn et al., 2006) version 9.12 – using the ‘default’ input;

(iii) MOLDYN and RAYTRACER from Section C of the JGF suite (Daly et al., 2001) –

using ‘SizeB’ inputs; and (iv) SPECjbb (2005) – using the default 30 seconds ramp-up

time and 240 seconds measurement window. In the case of BATIK (from DaCapo), we

could not run the original program on our system for the ‘default’ input (threw Trun-

catedFileException). The rest of the benchmarks excluded from the original DaCapo

and SPECjvm suites could not be analyzed – either by Soot or by TamiFlex. Our exper-
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S.No. Bench #class .class size .res size (MB) Overhead (%) DCVal (%)
-mark files (MB) PACE EASE PACE EASE PACE EASE

1. aes 297 2.1 0.24 0.16 11.33 7.38 42.97 10.0
2. compiler 306 2.1 0.24 0.15 11.29 7.33 42.96 10.0
3. compress 308 2.1 0.24 0.16 11.19 7.48 42.59 10.0
4. fft 301 2.1 0.24 0.16 11.29 7.38 43.72 9.09
5. lu 300 2.1 0.24 0.16 11.33 7.38 43.38 9.09
6. montecarlo 300 2.1 0.23 0.16 11.14 7.38 43.50 9.09
7. rsa 297 2.1 0.30 0.16 11.05 7.38 43.30 10.0
8. signverify 297 2.1 0.24 0.16 11.29 7.38 43.39 10.0
9. sor 301 2.1 0.24 0.16 11.19 7.38 42.51 9.09

10. sparse 300 2.1 0.24 0.16 11.19 7.38 42.68 9.09
11. sunflow 406 2.7 0.32 0.22 11.85 8.26 35.55 4.76
12. avrora 527 2.6 0.04 0.02 1.54 0.85 62.55 0.0
13. eclipse 1344 10 1.50 0.84 15.0 8.42 18.17 5.05
14. fop 1027 5.8 0.36 0.20 6.21 3.38 35.51 11.11
15. h2 324 2.2 0.04 0.02 1.91 1.05 62.78 0.0
16. luindex 200 1.3 0.04 0.03 2.92 1.85 61.00 100.0
17. lusearch 198 1.2 0.04 0.03 3.33 2.08 59.54 100.0
18. pmd 688 3.7 0.04 0.03 1.19 0.68 56.16 0.0
19. xalan 638 3.7 0.04 0.03 1.19 0.78 49.74 100.0
20. moldyn 14 0.06 0.003 0.002 5.33 2.67 52.2 0.0
21. raytracer 22 0.09 0.005 0.004 5.76 3.91 88.8 0.0
22. specjbb 82 0.51 0.07 0.03 12.99 6.69 73.96 12.27

GeoMean 268 1.7 0.11 0.07 6.41 3.96 47.27 7.1

Table 3.2: Details of the benchmarks used for PACE and EASE, storage overhead for
.res files, and the percentage of elements with dependent conditional values
(DCVal) in the generated .res files.

iments have been performed on a 2.3 GHz AMD Abu Dhabi system (DVFS disabled)

with 64 cores and 512 GB of memory, running CentOS 6.4.

Table 3.2 lists some static characteristics of the benchmarks included in the study.

The sizes of the benchmarks listed in Table 3.2 varied from 60 KB (small programs)

to 10 MB (large applications), and the number of class files varied from 14 to 1344.

In the SPECjvm suite, it can be seen that the benchmarks from the same group have

similar sizes; for example, AES, RSA and SIGNVERIFY from the CRYPTO group, and

FFT, LU, MONTECARLO, SOR and SPARSE from the SCIMARK group. This similarity

occurs because most of the code among the benchmarks in the same group is shared

(for example, the harness and the utilities).

We now present an evaluation to study the impact of our proposed framework PYE.

We divide the evaluation into two parts: (i) evaluation related to the static-compilation
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time analysis (involves the partial-analyzer of PYE); and (ii) evaluation related to the

JIT-compilation time analysis (involves the fast-precise-analyzer of PYE).

3.5.2 Evaluation of the Partial-analyzer

In this section, we evaluate the partial-analyzers for PACE and EASE by focusing on

the time taken to compute the partial summaries, the storage overhead of the generated

.res files, and the precision of the conditional values in the .res files.

Time taken by the partial-analyzer. Figure 3.10 shows the time taken by the

partial-analyzer for all the benchmarks. On average, the partial-analyzer for PACE took

4.13 seconds across all the benchmarks, and that for EASE took 3.92 seconds across all

the benchmarks.

We observe that the time required is mainly dependent on the size of the individual

benchmark: less time for smaller benchmarks (for example, JGF), and more time for

larger DaCapo benchmarks (for example, ECLIPSE and FOP). Considering that the anal-

yses performed by PACE and EASE are very precise (context, flow, and field-sensitive),

we argue that the analysis time is quite reasonable. Further, this analysis time (once per

static-compilation) does not get added to the time for final execution (may happen many

times).

Storage overhead. The summaries generated by the partial-analyzer for each bench-

mark are stored in plain text as a file <benchName>.<analysis>.res. These sum-

maries are piggybacked with the class-files of the benchmark and transferred to the

JVM in which the benchmark is executed. Table 3.2 lists the sizes of the .res files (in

MB) for each benchmark, for both PACE and EASE. It is evident that these files are

very small (110 KB and 70 KB on average, respectively, for PACE and EASE). As

compared to the sizes of the corresponding benchmarks, the average storage overheads

for PACE and EASE are 6.41% and 3.96% respectively – arguably quite low.

Lee and Midkiff (2006) had proposed a two-phase escape analysis for the Jikes

RVM. They compute connection graphs (a representation similar to points-to graphs)

for different methods offline, and merge the connection graphs to complete an interpro-

cedural analysis during JIT compilation. Compared to the overhead reported by Lee
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Figure 3.10: Time taken (in seconds) by the partial analyzers of (a) PACE and (b)
EASE.

and Midkiff for storing the connection graphs – 68% over the class files, the storage

overhead for partial summaries in EASE is quite low – only 3.96% over the class files.

We also evaluated the effects of our proposed techniques for efficient storage of

partial summaries and found that the improvements were significant. For example, for

PACE, without the optimizations proposed in Section 3.2.2, we found an additional

overhead of 35.6% for the .res files. We expect a similar trend for escape analysis,

where, in general, the number of objects that do not escape is much higher than the

ones that escape.
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Precision of conditional values. For a program element e in method m, the con-

ditional values in gm(e) may be either simple or dependent (see Section 3.1.3). If all

the conditional values in gm(e) are simple, it implies that the analysis-result fm(e) for

e does not depend on any other element. For the rest of the elements, the dependent

conditional values need to be evaluated in the fast-precise-analyzer (at runtime). The

last column of Table 3.2 shows the percentage of stored elements for which the par-

tial summary consists of at least one dependent value. On average, the analysis-results

for 47.27% and 7.1% of the elements for PACE and EASE, respectively, consist of de-

pendent conditional values, and hence cannot be computed precisely using any static

whole-program analysis that handles library calls conservatively (alternative A1 in Sec-

tion 1.1). These numbers show that the potentially achievable precision for PACE and

EASE over a static whole-program analysis is significant.

3.5.3 Evaluation of the Fast-precise-analyzer

In this section, we evaluate the fast-precise-analyzers for PACE and EASE by focusing

on the precision of the generated analysis-results and the time taken during JIT com-

pilation, compared to the existing state-of-the-art analyses in the C2 compiler of the

HotSpot JVM version 7. The goal of this comparison is to demonstrate that PYE leads

to the generation of more precise analysis-results, while spending time similar to (and

in some cases lower than) the existing imprecise analyzers of C2. For each of the anal-

yses, we evaluate the fast-precise-analyzer in the default setting of the HotSpot JVM

(called the mixed mode) that uses an interpreter, the client C1 compiler, and the server

C2 compiler. In this mode, the C2 compiler is invoked only for those methods/loops

that are invoked/iterated more than a threshold number of times (usually 10000-15000).

Precision of generated results. For statements that dereference an object, the JVM

needs to perform a null-dereference check – if the dereferenced object is null, then the

check fails and a NullPointerException is thrown. The C2 compiler applies the implica-

tion optimization discussed in Section 3.2.2 to avoid inserting several checks; however,

the rest of the checks remain explicit and need to be performed during program execu-

tion. Figure 3.11 compares the number of explicit null-dereference checks inserted by

PACE, with that by the existing analyzer of C2. As evident, the number of checks in-
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Figure 3.11: Number of explicit null-checks inserted by the existing analyzer of the C2
compiler and PACE; smaller the better.

serted by PACE is significantly lower than that by the existing analyzer of C2: 17.36%

on average. This clearly demonstrates the enhanced precision achieved by PACE. Later

in this section, we show that the cost to achieve this precision is negligibly low.

In Java programs, the synchronization statement synchronized(a){S} is

used to execute the statement S in a mutually exclusive manner. The JVM imple-

ments mutual exclusion by acquiring the lock associated with the object pointed-to by

the variable a. Based on the work of Choi et al. (1999), the C2 compiler performs

a partially interprocedural escape analysis: the connection-graphs are intraprocedural,

but a Bytecode-level flow-insensitive analysis is performed at method call-sites. This

analysis is used to identify and elide the synchronization operations for which the asso-

ciated object is guaranteed to be accessed by a single thread. Figure 3.12a compares the

number of synchronization operations elided by EASE with that by the existing escape

analyzer of C2. We can see that while the existing analyzer of C2 does not elide any

synchronization operation across most of the benchmarks (except MONTECARLO), the

precise nature of EASE leads to the elision of a significant number of synchronization

operations in many benchmarks (up to 28 elisions, in case of SPECJBB). Later in this

section, we show that the time to obtain this precision is much less compared to the

time spent in performing escape analysis in the existing C2 compiler.

Note that the low number of elisions is due to two reasons: (i) In most of the pro-

grams, the synchronization constructs are indeed necessary. (ii) The methods containing
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Figure 3.12: Number of synchronization operations elided by the existing analyzer of
the C2 compiler and that by EASE: (a) in mixed mode, and (b) in only-C2
mode; larger the better.

the synchronization statements are not compiled by C2, because of the high threshold

limit. As a side study, to get an estimate on the upper limit on the number of syn-

chronization operations that could be elided for long-running programs, where more

methods may get compiled by C2, we evaluated EASE and the existing analyzer of C2

in an only-C2 mode. Here, we disabled the interpreter and the C1 compiler, and com-

piled every method using C2. Figure 3.12b compares the number of synchronization

operations elided by EASE with that by the existing analyzer in the only-C2 mode. It
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Figure 3.13: (a) Time taken (in milliseconds) to insert explicit null-dereference checks
by the existing analyzer of C2 and by PACE during JIT compilation.
(b) Time taken (in milliseconds) to perform synchronization elimination
by the existing analyzer of C2 and by EASE during JIT compilation.

can be seen that compared to Figure 3.12a, the existing analyzer of C2 finds oppor-

tunities (albeit small in number) for synchronization elimination in more benchmarks.

In contrast, EASE is able to find many more opportunities (up to 107). This shows

that for long-running programs, EASE may lead to the elision of more synchronization

operations than the existing analyzer of C2.
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Time taken during JIT compilation. We now evaluate the time taken by the fast-

precise-analyzers of PACE and EASE during JIT compilation. For reading the .res files,

we spawn a separate thread for the partial-results-accumulator during the initialization

of the JVM, and wait for the thread to terminate before using the results in the C2

compiler. The time to read the .res files varies with the size of the .res files, and on

average, it is 13 and 8 milliseconds for PACE and EASE, respectively. However, we

found that the spawned thread finished long before the results were needed for all the

benchmarks in both the modes, for both the analyses. Thus, the effective time required

by the partial-results-accumulator for both PACE and EASE is zero.

Figure 3.13a compares the time taken by PACE with that by the existing analyzer of

C2 to insert explicit null-dereference checks during JIT compilation, in milliseconds.

As evident, the execution times of both the analyzers are very small (less than a mil-

lisecond, on average) and comparable. The time spent by the existing analyzer is quite

small because the corresponding analysis is only intraprocedural. The important point

to observe is that the time spent by PACE to obtain significantly more precise results is

also very small and does not cause any noticeable overhead.

Figure 3.13b compares the time taken by EASE with that by the existing analyzer of

C2 to perform synchronization elimination during JIT compilation, in milliseconds. As

evident, the escape-analysis time in EASE is clearly lower (on average, 99.91% less)

compared to the existing analyzer. This is because EASE completely alleviates the need

to construct connection graphs and propagate escape-analysis information therein, as is

done by the existing analyzer of C2 during JIT compilation. Note that these savings

also imply a drop in the overall JIT compilation time. For the benchmarks under con-

sideration, we found the mean saving in the JIT compilation time due to EASE was

about 1.9% (see Figure 3.14). Note that these improvements may also include the ef-

fects on the JIT compilation time, by any additional optimizations enabled by EASE

(for example, in the IR simplification passes).

Impact of null-check elimination and synchronization elimination. Figure 3.15

shows the performance improvements obtained using PACE and EASE over the respec-

tive existing analyzers of C2, in the presence of all other optimizations of the HotSpot

JVM. It is well known (Georges et al., 2007) that the performance of Java programs
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Figure 3.14: Improvement in JIT compilation time for EASE.

varies significantly across multiple iterations and even across JVM invocations, due to

several non-deterministic factors. To measure the steady-state performance, we ran each

benchmark as follows. For the SPECjvm and the DaCapo benchmarks, we executed K

(=11) warmup iterations and used the following iteration to measure the performance

metric: operations-per-second for SPECjvm and time taken for DaCapo. For SPECjbb,

we used the score (in operations-per-second) reported by the benchmark harness (after

warming up) in each run. For the JGF benchmarks, we use the time for each run as

calculated using the time command. Finally, in order to account for systemic bias and

the variations across JVM invocations, we ran the three analyses in alternating order

twenty times, and show the variations as box plots (in Figure 3.15), normalized over

the mean of the twenty runs of the corresponding base version (labeled Existing in the

plots). We report only those benchmarks where the mean performance difference was

more than 0.5% (thereby accounting for possible noise).

For PACE, we find that the geomean performance improvements for most bench-

marks are modest: about 1%, except for SPARSE (3.5%), LUINDEX (3.4%), and SPECJBB

(3.6%). Note that though the improvements for XALAN (geomean 5.7%) look compar-

atively high, we also observe a high variance in its execution times across both the

versions (Existing and PACE in Figure 3.15a); this makes it difficult to conclude much

about this benchmark. As most null-checks in the HotSpot JVM are actually handled

using hardware traps (whose cost is not very high), the improvements obtained by PACE

are along the expected lines.
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Figure 3.15: Performance improvement of (a) PACE and (b) EASE, over the respective
existing analyzers of C2.

For EASE (see Figure 3.15b), the mean performance improvements go up to 4.4%

(for FFT), the geomean being 1.79% (for the shown benchmarks). For the benchmarks

where EASE elided some synchronization operations but the improvements were neg-

ligible (e.g., SUNFLOW), we found that most elided synchronization operations were

associated with static synchronized methods that were called infrequently.

Considering that the above performance improvements are observed in the pres-

ence of a host of other optimizations performed by the HotSpot JVM, we believe that

these gains are important. Note that PACE and EASE may improve the performance
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of an application in two ways: (i) by saving time during JIT compilation; and (ii) by

enabling additional optimizations due to the enhanced precision. Note that the per-

formance gains depend on multiple runtime factors, such as the number of times the

statements containing the elided null-checks and synchronization operations are actu-

ally executed (post-compilation) at runtime, the overall execution time, and so on.

Comparison with whole-program analysis during JIT compilation. An alterna-

tive approach to performing precise analyses in JIT compilers could be to create sep-

arate “analysis-threads" that analyze the methods being compiled in the background.

However, such an approach is impractical as: (i) the time taken to perform precise anal-

yses can be prohibitively high, and (ii) the analysis-threads may reduce the amount of

parallelism available to the application. To establish this argument, we tried to perform

a whole-program context-, flow- and field-sensitive analysis including the libraries stati-

cally in Soot. We set the cutoff to perform such an analysis as twice the actual execution

time of the benchmarks under consideration. Let alone the larger SPECjvm and DaCapo

benchmarks, we found that the analysis for even our smallest benchmark MOLDYN did

not terminate within the set cutoff. Thus, performing such expensive analyses during

JIT compilation would take more time than the actual program-execution time itself,

and is fundamentally impractical.

Overall, we see that PYE can be used to perform highly precise program analyses

without incurring any significant overheads during JIT compilation. The evaluation of

PACE and EASE establishes them as practical alternatives for the existing analyzers of

C2. We also note that as the overheads involved are quite small, the partial summaries

generated using PYE can be used to enable sophisticated optimizations, which are cur-

rently performed only by complex JIT compilers such as C2, in faster compilers such

as C1 and possibly in the interpreter as well. Even though we have implemented PYE

and its instantiations in Soot and the HotSpot JVM, the proposed techniques can as well

be implemented in other static analyzers such as WALA (2019), and other Java runtime

environments such as the Jikes RVM (Alpern et al., 2005).
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CHAPTER 4

SCALABLE CONTEXT-SENSITIVE

STATIC ANALYSES

This chapter describes our contributions to scale value-contexts based whole-program

heap analyses, leading to the novel notion of LSRV-contexts. First, Section 4.1 de-

scribes the challenges in scaling traditional value-contexts based heap analyses, along

with insights to resolve the same. Section 4.2 describes LSRV-contexts and our three-

staged approach to compute and use the same. Section 4.3 discusses how we use LSRV-

contexts to perform two non-trivial heap analyses: thread-escape analysis and control-

flow analysis. Section 4.4 highlights some subtle aspects in the proposed approach and

presents its correctness arguments. Finally, Section 3.5 presents a detailed evaluation

of the proposed approaches by comparing LSRV-contexts based analyses against their

corresponding versions based on traditional value-contexts.

4.1 Challenges in Scaling Context-Sensitive Analyses

Traditional value-contexts use dataflow values to restrict the combinatorial explosion of

contexts in classical call-string based context-sensitive analysis. However, they do not

scale well, both in terms of analysis time and memory usage, for performing common

top-down context-sensitive heap-based analyses (such as escape analysis, control-flow

analysis, and so on). In this section, we first illustrate the underlying problems and then

describe our scalable precise solutions.

Problem 1: Too much comparison. In value-contexts based analyses, when a previ-

ously analyzed method is called from a new site, the value-context at the new call-site

is compared with the ones at the previous call-site(s). For heap analyses, this involves

comparing the whole parameter-reachable points-to graphs. Comparing such poten-

tially large graphs for exact equality may lead to significant overheads.



Insight 1. The whole of the points-to graph reachable from the parameters is usually

not relevant for the callee. For example, for the method bar in Figure 1.2a, the relevant

part of the points-to graph (value-context) at its entry, for escape analysis, consists only

of the objects pointed-to by p and p.f1. Hence, the relevant value-contexts for bar for

the calls at lines 5 and 6 (shown in Figures 1.2f and 1.2g, respectively) are much smaller

than the complete value-contexts (shown in Figures 1.2d and 1.2e, respectively).

Proposal: Identify/use relevant value-contexts for comparison.

Problem 2: Too many contexts. An important challenge that any context-sensitive

analysis throws up for scalability is the number of contexts created during the analysis.

As the number of contexts keeps increasing during the analysis, the associated method

needs to be analyzed again and again in each new context. Each re-analysis consumes

time (more so, if the analysis is flow-sensitive), and the generated summary increases

the memory usage of the analysis, thus leading to scalability problems while performing

precise analyses for large programs. Analyzing a method in a large number of contexts

also implies more context-comparisons to be performed at subsequent call-sites for the

method, thus aggravating the scalability issues further. This problem is pertinent even

in case of the value-contexts based approaches (Khedker and Karkare, 2008; Padhye

and Khedker, 2013), where the number of contexts is bound by the size of the lattice of

the points-to graph, though they improve the scalability compared to the traditional call-

string based approaches (Sharir and Pnueli, 1978; Shivers, 1991) (where the number of

contexts can be unbounded).

Insight 2a. A major reason leading to a blow-up in the number of contexts is the

failure to detect the equality of two contexts. For example, for performing escape anal-

ysis, consider the two relevant value-contexts (at lines 5 and 6) for the method bar

in Figures 1.2f and 1.2g. Even though the relevant value-contexts are different, if the

objects Oi, Oj , Ok and Ol do not escape, the escape-status of the object O9 remains the

same (DoesNotEscape) in both the contexts. Hence, once bar has been analyzed for

the value-context at line 5, it need not be analyzed again at line 6, as the “level-wise”

summary for the objects pointed to by p and p.f1 match (see Figure 1.2h).

Proposal: Use level-summarized relevant value-contexts.
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Figure 4.1: Block diagram of the proposed approach for scaling value-contexts.

Insight 2b. Not all the methods of a program modify the heap of its callers (for ex-

ample, the method fb in Figure 1.2a). The analysis of such methods does not affect the

heap of their callers. When we encounter a call to such methods (caller-ignorable), we

can defer the analysis of that method and simply proceed to the next statement. These

deferred methods can be analyzed in a post-analysis pass after the main-analysis is over,

without losing any precision. The advantage of such deferring is that we can save the

time and memory spent in analyzing them (in multiple contexts), and merging their

points-to graphs with those of the callers, while performing the costly main-analysis.

Proposal: Identify/defer caller-ignorable methods.

4.2 LSRV-contexts

We now use the insights discussed above and describe our proposed three-stage ap-

proach (Figure 4.1 shows the block diagram) to scale value-contexts based top-down

context-sensitive heap analyses. The three proposed stages are:

1. A fast flow-insensitive interprocedural pre-analysis that estimates, for each method

m, the maximum depth of the parameter-reachable points-to graph till which the effects

of m may be visible in its caller.

2. A flow- and context-sensitive main-analysis that takes advantage of the infor-

mation gathered by the pre-analysis to (i) reduce the amount of comparison performed

while checking value-contexts for equality (using the notion of relevant value-contexts),

and (ii) identify and defer the analysis of caller-ignorable methods (methods with zero

parameter-depth for all the parameters). Further, for comparing the relevant value-

contexts for equality, we propose a novel abstraction called level-summarization that

leads to fewer and more compact relevant value-contexts.

3. A flow- and context-sensitive post-analysis that analyzes the deferred methods,

without compromising on precision.
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Name Meaning
Gm Points-to map for method m.
retm Set of objects returned by method m.
mInfom Pre-analysis summary of method m.
deferredMethods Map from deferred methods to context.
Ox.accDpth Access-depth of object Ox.
Ox.callerNode Indicates if Ox is passed from the caller.

Table 4.1: Some names used to describe the pre-analysis.

4.2.1 Pre-analysis

For each parameter pi of a methodm, the goal of the pre-analysis is to conservatively ap-

proximate its access-depth, which is the maximum depth of the caller-allocated portion

of the points-to graph reachable from pi that is accessed in m. We use mInfom(i) to

give the access-depth of pi in m. Intuitively, mInfom(i) is k, if there exists a maximal

list of k fields such that either a caller-allocated object Ox pointed-to by pi.f1.f2...fk is

read in m, or pi.f1.f2...fk−1 points-to a caller-allocated object and m stores an object to

pi.f1.f2...fk. We obtain this information by performing a lightweight bottom-up analy-

sis on the call-graph. We assume the program to be in three-address code (Muchnick,

1997). For ease of presentation, we list the names of data structures and fields used in

this section in Table 4.1.

The pre-analysis maintains a flow-insensitive points-to graph for each method m.

The analysis begins by making each of the non-primitive parameters of m point to a

dummy object. The fact that these dummy objects are created in one of the callers of

m is noted by setting a special boolean field callerNode that is associated with the

corresponding object node. We also maintain a field accDpth with each object, whose

initial value is set to zero. For brevity, we skip the standard rules to update the points-

to graphs, and show the extra processing required to obtain the depth information on

processing load, return, method-exit and method-call statements, using the proc*Pre

methods (Figure 4.2) described below. Note that copy (of the form a=b), store (of the

form a.f=b) and other statements do not impact the access-depth.

procLoadPre: At a load statement L: a=b.f , if b is a parameter, and say the object

pointed-to by b is Ob, then the points-to set of Ob.f would be empty (as we started with

dummy nodes for the parameters). To handle such loads, we add to the points-to graph
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1 Function procLoadPre(st:load-stmt) // st is "L: a=b.f"
2 foreach Ob ∈ Gm(b) do
3 if Gm(Ob.f) 6= ∅ then continue;
4 Gm(Ob.f) = OL;
5 OL.callerNode = true;
6 Ob.accDpth = max(Ob.accDpth, 1);
7 if L is inside a loop then OL.accDpth =∞;
8 else OL.accDpth = max(OL.accDpth, Ob.accDpth);

9 Function procRetPre(st:return-stmt) // st is "return r"
10 retm.add(Gm(r));

11 Function procCallPre(st:call-stmt) //st is "L: r=m′(b1, ..., bk)"
12 foreach bi ∈ b1, ..., bk do
13 foreach Oi ∈ Gm(bi) do
14 if mInfom′ has been populated then
15 Oi.accDpth = max(Oi.accDpth, mInfom′(i));
16 else Oi.accDpth =∞; // possible due to recursion.

17 Gm(r) = OL;
18 if mInfom′ has been populated then
19 OL.accDpth = max(∀Or ∈ retm′ Or.accDpth);
20 else OL.accDpth =∞; // possible due to recursion.

21 Function procExitPre()
22 foreach parameter pi (at index i) of m do
23 mInfom(i) = max(∀Ox ∈ Gm(pi) findLvl(Ox));

24 Function findLvl(Ox)
25 if Ox.visited then return Ox.accDpth;
26 Ox.visited = true;
27 if ¬Ox.callerNode then return 0;
28 if Ox is a leaf in Gm then return Ox.accDpth;
29 let lvlDn = max(∀Oy ∈ Gm(Ox) findLvl(Oy));
30 Ox.accDpth= max(Ox.accDpth, 1+lvlDn);
31 return Ox.accDpth;

Figure 4.2: Obtaining access-depths in the pre-analysis.

Gm a node OL representing the object(s) obtained from the dereference at statement L,

and add OL to the points-to set of Ob.f . As the object OL actually flows from the caller

of the current method, we set the field OL.callerNode to true. If the accDpth of

Ob is zero, we set it to one to indicate a dereference. Next, we update the value of

OL.accDpth based on whether or not L is inside a loop: if not, we set OL.accDpth

using Ob.accDpth; else, we update OL.accDpth to∞ (to conservatively imply that

we do not know how much access-depth does OL.accDpth represent).
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procRetPre: At a return statement return r, if r is a non-primitive variable, we add

the pointees of r to a set retm that contains the objects returned by the method m.

procCallPre: At a call statement L: r=m′(b1, ..., bk), for each object Oi pointed-to

by each bi, we update its accDpth using the access-depth information of the corre-

sponding parameter of the method m′ (using the summary mInfom′(i); line 15). Next,

we add a new object OL representing the objects returned by m′, and set OL.accDpth

(line 19) to the maximum accDpth of the objects returned by m′. If the information

about m′ is not available (possible in the context of recursion), we conservatively set

the accDpth fields of Oi and OL to∞ (to keep the analysis light; lines 16 and 20).

procExitPre: Once all the statements of a methodm have been processed, we invoke

the function procExitPre, which stores in mInfom(i) the access-depth of the parameter

pi. For each object pointed-to by each parameter pi, procExitPre invokes the recursive

function findLvl (line 23), which returns the maximum access-depth of the argument

object, by performing a depth-first search. For any object Ox that may be obtained

from the caller (identified usingOx.callerNode), its access-depth is computed as the

maximum of Ox.accDpth and 1 + the maximum access-depth of its children nodes.

If an object in the points-to graph is reachable from a static (global) field, then

that object might be accessed by a parallel thread. We handle this case (not shown in

Figure 4.2) by setting the value of the accDpth field of all such objects to∞, before

performing the depth-first search.

Example. For Figure 1.2a, as the method bar does not access parameter# 0 (this)

and stores to p.f1.f2 (p is parameter# 1), mInfobar would be {〈0, 0〉, 〈1, 2〉}. Sim-

ilarly, as the method fb takes no explicit arguments and does not affect the heap of its

callers, mInfofb would be {〈0, 0〉}.

After pre-analyzing all the methods of the input program, the computed mInfo is

made available to the main-analysis. We next describe how we scale the main value-

contexts based analysis using the information in mInfo.
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4.2.2 Main-analysis

We now describe our changes to existing points-to graph based context-, flow-, and

field-sensitive analyses that use value-contexts (in terms of the points-to graphs reach-

able from actual arguments at call-sites). We assume that the underlying analyses main-

tain flow-sensitivity in the standard way, that is, as “in” and “out” points-to graphs,

before and after each statement, respectively. We now highlight how we scale such

context-sensitive analyses (using the results of the pre-analysis), by focusing on the

method-call statements. The handling of all other statements is standard (Whaley and

Rinard, 1999; Choi et al., 1999).

The function procCallMain in Figure 4.3 shows the handling of a call-statement st,

with Hin as the points-to graph, in the main-analysis stage. For a method m, the entry

points-to graphHe is a copy of the points-to graph reachable from the formal parameters

of m, obtained by invoking getEntryPTG (code not shown). If the access-depth for

every parameter of m is zero (based on mInfom computed in the pre-analysis), we

say that m is caller-ignorable, that is, m does not affect the heap of its caller(s). If so,

we defer the analysis of m at st, and use Hin as the points-to graph after st (stored in

Hout′; line 4). We use the map deferredMethods to store the fact that the analysis

of m was deferred in the value-context He.

If m is not caller-ignorable, we invoke the function getSummary. For each context c

in which m was previously analyzed, we compare He with the entry points-to graph Hc

at c. To avoid the overheads of comparing the whole of He and Hc, we use two impor-

tant optimizations: (i) For each considered parameter, we compare the value-contexts

only till the access-depth for that parameter (obtained from mInfom, populated in the

pre-analysis) – relevant value-contexts. (ii) We use an efficient analysis-specific tech-

nique, which we call level-summarization, to summarize the contexts level-wise, and

compare the level-summarized relevant value-contexts (LSRV-contexts) level by level.

We describe the details of level-summarization for two analyses, thread-escape anal-

ysis and control-flow analysis, in Section 4.3. These two optimizations compact the

points-to graphs representing the heaps being compared into smaller subgraphs, and

importantly the comparison of just those subgraphs is sufficient to conclude about the

equality of the heaps under consideration.
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1 Function procCallMain(st: call-stmt, m: method, Hin: ptg)
2 ptg He = getEntryPTG(Hin, st); ptg Hout′ ;
3 if m is caller-ignorable then
4 Hout′ = Hin;
5 deferredMethods.put(m, He);
6 else Hout′ = getSummary(m, He);
7 putSummary(m, He, Hout′);
8 // Hout = Hout′ combined with relevant parts of Hin.

9 Function getSummary(m: method, He: ptg)
10 let prevContext = null;
11 foreach context c in which m was analyzed do
12 prevContext = c;
13 let Hc be the entry points-to graph at c;
14 foreach non-primitive parameter pi of m do
15 maxLvl = mInfom(i);
16 if maxLvl == 0 then continue; // pi has no impact
17 curSumm = level-summary(He(pi), maxLvl);
18 oldSumm = level-summary(Hc(pi), maxLvl);
19 if curSumm 6= oldSumm OR ¬eqDown(He,Hc,He(pi),Hc(pi),1,maxLvl)

then return analyze(m, He); // no matching context found

20 return the exit points-to graph at prevContext;

21 Function eqDown(He: ptg, Hc: ptg, curPts: set, oldPts: set, curLvl: int,
maxLvl: int)

22 if maxLvl < curLvl then return true;
23 if curPts and oldPts have been visited then return true;
24 Mark curPts and oldPts as visited;
25 foreach field f do
26 curPts = ∪∀O∈curPtsHe(O.f);
27 oldPts = ∪∀O∈oldPtsHc(O.f);
28 curSumm = level-summary(curPts, maxLvl);
29 oldSumm = level-summary(oldPts, maxLvl);
30 if curSumm 6= oldSumm then return false;

31 return eqDown(He, Hc, curPts, oldPts, 1+curLvl, maxLvl);

Figure 4.3: Handling call-stmts in the main-analysis. Abbreviation: ptg: points-
to graph. The function putSummary stores the summary; details
skipped.

Say the LSRV-contexts for He and Hc are curSumm and oldSumm, respectively.

We conclude that the current context does not match Hc (line 19) and analyze m afresh

in the context He, if either curSumm and oldSumm (which are the parameter-wise

level-summaries) do not match, or if the recursive comparison of the next levels of the

LSRV-contexts (done by calling the function eqDown) fails; see line 19.

The function eqDown performs a level-wise comparison for each field of the objects
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being compared. The function is recursive; it returns true (implying that the level-wise

comparison for both the graphs is equal) under one of the following conditions: (i) the

access-depth for the current parameter (as computed by the pre-analysis) is less than

the current level (line 22); or (ii) the objects at the current level for both the graphs have

already been compared (line 23) – a situation possible in points-to graphs with cycles.

The function eqDown returns false if at any level it finds that the level-summary for the

two points-to graphs does not match (line 30).

If the entry points-to graph He for the method m at statement st matches a previ-

ous value-context (say prevContext), then we need not analyze m at st. In such

a case, we can simply use the points-to graph at the exit of the analysis performed in

prevContext as the summary of m at st (line 20). Note that using the summary

computed in prevContext is sound as prevContext is equivalent to the current

context for the analysis under consideration. In all the cases, after obtaining the sum-

mary Hout′ , we merge Hout′ with the non-parameter reachable portions of Hin (line 8)

to obtain the points-to graph Hout after st (using standard merging rules (Whaley and

Rinard, 1999)).

Example. The method bar in Figure 1.2a does not affect any object(s) reachable

from the receiver (this). Further, the access-depth of the parameter p of bar is 2.

Thus, the relevant value-contexts for bar, for the calls made at lines 5 and 6, are shown

in Figures 1.2f and 1.2g, respectively. Similarly, the method fb does not affect any

object(s) reachable from the receiver, and hence, the relevant value-context for fb is

empty. Thus, fb is a caller-ignorable method and need not be analyzed at any of its

call-sites during the main-analysis.

4.2.3 Post-analysis

The main-analysis generates a summary for each method in the program in each LSRV-

context in which it was called, except for the deferred methods. The deferred methods

do not affect the heap reachable from the parameters of their callers. However, their

own summary may depend on the heap of the caller. For example, say we are perform-

ing an analysis to determine which of the dereferences in a program are guaranteed
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to be made on concrete (non-null) objects. Say the method m being analyzed has a

statement L: p.foobar(), where p is a parameter of m and foobar() is a caller-ignorable

method. The pre-analysis (Section 4.2.1) would infer that m is caller-ignorable as it

does not affect the heap reachable from the parameter p, and hence for each value-

context, the main-analysis would defer the analysis of m. However, whether the deref-

erence performed at statement L is done on a concrete object or not, depends on the

points-to information of the actual argument in the points-to graph of m’s caller(s).

Thus, in each skipped value-context, we still need to analyze m. We perform this task

in the post-analysis stage by iterating over the entries in the deferredMethods map

and invoking getSummary(m, He) for each (m, He) in the map, to generate the corre-

sponding context-sensitive summary. Thus, by the end of the post-analysis, we obtain

context-sensitive summaries for all the methods in the program.

There are two clear advantages of deferring the analysis of caller-ignorable methods

and performing the post-analysis stage as a separate pass. First, as the deferred methods

are guaranteed not to affect the caller’s heap, we need not spend time in merging the

heap of the callee with that of the caller, after each call statement (a potentially costly

operation). Second, top-down context-sensitive heap analyses may, in general, consume

a large amount of memory, as the points-to graphs reachable from the callers keep

flowing towards the leaves of the call-graph till the points-to graphs of the callees are

merged back. Deferring the analysis of certain methods may avoid the traversal of

certain long branches of the call-graphs and thus save the memory required to propagate

the points-to graphs therein, during the costly main-analysis.

4.3 Instantiations of LSRV-contexts

In this section, using the techniques proposed in Section 4.2, we present two popu-

lar context, flow-, and field-sensitive points-to graph based analyses: (i) thread-escape

analysis; and (ii) control-flow analysis. Though both these analyses are based on points-

to information, the corresponding lattices of dataflow values are quite different (see

Section 2 for an overview), and hence they offer a wide illustration of our proposed

techniques. For both the analyses, we mainly highlight the computation of the level-
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summary functions (see Figure 4.3). Note that apart from the definition of the function

level-summary, the rest of the handling of a method-call statement remains the same as

in Figure 4.3.

4.3.1 Thread-escape Analysis using LSRV-contexts

Consider a method m that is being analyzed. Say p is one of the parameters of m,

and He is the value-context (points-to graph at the entry of m). Say the graph-front in-

duced by the edge sequence f1, f2, ..., fk inHe is given by the set S = {O1, O2, ..., On}.

For escape analysis, we claim that the relevant information represented by the objects

in S is the set of escape-statuses of the objects O1, O2, ..., On. For example, if a vari-

able q is set to the object obtained by dereferencing p using an expression of the form

p.f1.f2...fk−1, then for a sound escape-analysis technique, the following two observa-

tions hold: (i) If none of the objects in S escapes, then any object stored into any field fi

of q will not escape due to the assignment involving this dereference. (ii) If any of the

objects in S escapes, then any object stored into q.fi will also be marked as escaping.

Hence for escape analysis, we define the level-summary of a set S of objects as the meet

of the escape-statuses of the objects in S.

The level-summary function for escape analysis takes two arguments: H and k,

whereH is a points-to graph (value-context) and k is the access-depth (see Section 4.2.2).

It computes the level-summaries for each possible edge-sequence of size at most k and

then returns a graph, which includes a unique node for each unique edge sequence

and if s1 and s2 are the nodes (level-summaries) corresponding to the edge sequences

f1, f2, · · · fk1 and f1, f2, · · · fk1 , fk, respectively, then there is an edge between s1 and

s2, labeled k.

Example. Consider the calls to the method bar in Figure 1.2a, with the respective

relevant value-contexts as shown in Figures 1.2f and 1.2g. As none of the objects Oi,

Oj , Ok and Ol escape (implying that Oa and Ob also must not escape), Figure 1.2h

represents the LSRV-context for both Figures 1.2f and 1.2g. As a result, with LSRV-

contexts, we need not analyze bar for the call made at line 6, and can use the analysis

results obtained for the call at line 5 itself.
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4.3.2 Control-flow Analysis using LSRV-contexts

Consider a method m that is being analyzed. Say p is one of the parameters of m, and

He is the value-context (points-to graph at the entry of m). Say the graph-front induced

by the edge sequence f1, f2, ..., fk in He is given by the set S = {O1, O2, ..., On}. For

control-flow analysis, we claim that the relevant information represented by the objects

in S is the set of types represented by the objects O1, O2, ..., On. For example, if a

variable q is set to the object obtained using an expression of the form p.f1.f2...fk−1,

and if m consists of a statement L: q.foo(), then the set of possible callees at L depends

only on the types of the objects in S. Hence for control-flow analysis, we define the

level-summary of a set S of objects as the union of the types of the objects in S.

Example. Consider the calls to the method bar in Figure 1.2a, with the respective

relevant value-contexts as shown in Figures 1.2f and 1.2g. Here, if the types of Oa and

Ob are same, then the two LSRV-contexts at level 1 from the parameter p would be the

same. Similarly, if the set of types for {Oi, Oj} and {Ok, Ol} are same, then the LSRV-

contexts at level 2 would also be the same. In such a case, we need not analyze bar for

the call made at line 6.

In Section 4.5, we show that LSRV-contexts not only lead to a significant reduction

in the escape and control-flow analysis time and memory of several benchmarks, but

also facilitate the analysis of previously unanalyzable benchmarks.

4.4 LSRV-contexts: A Discussion

1. Scope. In this chapter, in order to scale context-sensitive heap analyses that

use value-contexts, we have presented three main ideas: relevant value-contexts, level-

summarization, and deferred methods. While the second idea is analysis-specific and

needs to be customized for each analysis, the other two are general in nature and can be

used directly for any heap analysis.

2. Cost. It can be argued that an approach using LSRV-contexts is likely to never

increase the cost compared to that using traditional value-contexts. The relevant value-

contexts, as discussed in Section 4.2, are always a subset of the points-to graphs, and
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level-summarization is analysis-specific but usually leads to a smaller lattice of dataflow

values (as shown in Section 4.3). For the analyses under consideration, we show in

Section 4.5 that LSRV-contexts are much cheaper (in terms of time as well as memory)

than traditional value-contexts.

3. Special treatment of methods. In the JDK library, the methods equals and

toString are overridden heavily, and often call other equals and toStringmeth-

ods. For these methods, we found that the Spark tool (Lhoták and Hendren, 2003),

which we used to build our base call-graph, led to huge strongly-connected components

(clique with up to 356 JDK methods), which blew up the analysis time and memory.

Hence, just for these equals and toStringmethods, we suggest using the approach

of Smaragdakis et al. (2014) and analyzing them conservatively (intra-procedural). We

believe it to be a reasonable design decision, as based on our analysis of the complete

JDK library (version 8), these methods do not explicitly modify their callers’ heap. To

be consistent, we handle these methods uniformly, in all the implementations evaluated

in Section 4.5. Note: we do analyze their implementations in the applications like any

other method.

4. Correctness. As described in Section 4.2, in order to determine whether two

value-contexts for a method are equivalent, we compare only the LSRV-contexts. Fur-

ther, we defer the analysis of caller-ignorable methods, and analyze them in a separate

pass. We now sketch the correctness argument of our design.

Conjecture 4.4.1. The pre-analysis (see Figure 4.2) computes a conservative approxi-

mation of the relevance information for each parameter.

Conjecture 4.4.2. For a given analysis Ψ, level-summarizing a points-to graph based

on the lattice of Ψ does not lead to any loss of precision for Ψ.

Theorem 4.4.3. For a particular analysis under consideration, compared to value-

contexts, LSRV-contexts do not lose any relevant information.

Proof. (Proof Sketch) For a given value-contexts based analysis A, say the LSRV-

contexts variant be represented by A′. Assuming Conjectures 4.4.1 and 4.4.2 to be

true, during the main-analysis, at a certain call-site, if A re-analyzes a target method

m, then either A′ also re-analyzes m, or there exists a prior instance of A′ analyzing
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m such that: (i) the abstract heap obtained by A on re-analyzing m matches the one

obtained by A′ in the prior analysis-instance; and (ii) in A, during the re-analysis of m,

for each accessed abstract heap-location, the abstract value read/written matches that of

A′ in the prior analysis-instance.

Corollary 4.4.4. Instead of comparing complete value-contexts, it is sufficient to check

the equality of the level-summaries of the corresponding relevant value-contexts.

Proof. Follows from Theorem 4.4.3.

Theorem 4.4.5. Analyzing a deferred method m in the post-analysis does not affect the

precision of its callers, and of m.

Proof. (Proof Sketch) Assuming Conjecture 4.4.1 to be true, for each caller-ignorable

(and hence deferred) method m, if H is the reachable abstract heap present before

analyzing the call to m, and H′ is the reachable abstract heap after analyzing the call-

statement, thenH = H′. That is, the precision of the callers of m does not get affected.

Further, as the access-depths for all the parameters of m is zero, the results computed

for m do not depend on the callers’ heapH.

Theorems 4.4.3 and 4.4.5 ensure that the precision of an analysis using our proposed

approach is the same as that using traditional value-contexts.

4.5 Implementation and Evaluation of LSRV-contexts

We have implemented both of our proposed instantiations of thread-escape analysis and

control-flow analysis, in the Soot framework (Vallée-Rai et al., 1999). The implemen-

tation spans 3967 lines of Java code for the escape analysis, and 3899 lines of Java code

for the control-flow analysis. We have performed our experiments using the OpenJDK

HotSpot JVM (version 8), on a 2.3 GHz AMD Abu Dhabi system with 64 cores and

512 GB of memory.

We have evaluated our techniques on seven benchmarks from the DaCapo-9.12

suite (Blackburn et al., 2006), and the three multithreaded benchmarks from Section C
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1 2 3 4
Benchmark Application #Referred

#classes size (MB) JDK classes
avrora 527 2.7 1588
batik 1038 6.0 3700
eclipse 1608 14.0 2589
luindex 199 1.3 1485
lusearch 198 1.3 1481
pmd 697 4.1 1607
sunflow 225 1.7 3509
moldyn 13 0.15 1555
montecarlo 19 0.67 1555
raytracer 19 0.21 1555

Table 4.2: Details of the benchmarks used. The number of classes has been computed
using Spark’s (Lhoták and Hendren, 2003) call graph.

of the JGF suite (Daly et al., 2001), listed in Table 4.2. We used the extremely helpful

tool TamiFlex (Bodden et al., 2011) to resolve reflective calls in the original DaCapo

benchmarks, so that they could be analyzed by Soot. The benchmarks excluded from

the DaCapo suite are the ones which either could not be translated by TamiFlex, or

could not be analyzed by Soot (using OpenJDK8) after the TamiFlex pass.

Table 4.2 shows some static characteristics of the used benchmarks. The sizes of

the benchmarks (excluding the JDK library) varied from 150 KB (small programs)

to 14 MB (large applications), and the number of application classes varied from 13

to 1.6K. Table 4.2 also shows the number of JDK classes referred by each benchmark

(gives the total number of analyzed classes), computed using the call-graph generated

by the Spark (Lhoták and Hendren, 2003) tool (our default call-graph).

We now present an evaluation to study the impact of our proposed techniques on

the scalability of context-, flow- and field-sensitive escape and control-flow analyses.

For both the analyses, we compare four different versions: (i) Base: a standard value-

contexts based implementation, where the points-to graphs at method entries are con-

sidered as the contexts. (ii) OM: a version where only the main analysis (as proposed

in Sections 4.2 and 4.3) is performed. Thus, the level-wise summaries are used as con-

texts, but no pre-analysis (that is, trimming) and post-analysis (that is, deferring) are

performed. (iii) PM: both the pre and the main analyses are performed. Thus, the

level-wise summaries are trimmed based on the access-depths computed by the pre-
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1 2 3 4 5 6 7 8
Analysis time Average Memory

Benchmark (seconds) #contexts (GB)
Be Pre Post PM PMP PMP PMP

avrora - 1.0 0.4 603 225 1.4 21
batik - 2.2 1.8 3483 1722 1.4 45
eclipse - 2.7 6.0 - 2275 1.9 57
luindex - 1.1 0.4 204 70 1.3 6
lusearch - 1.0 0.5 343 87 1.3 10
pmd - 1.3 0.4 531 157 1.3 11
sunflow - 2.1 1.6 1477 486 1.3 21
moldyn - 0.9 0.4 178 55 1.3 6
montecarlo - 0.9 0.4 183 57 1.3 6
raytracer - 0.9 0.4 183 54 1.3 6
geomean - 1.3 0.7 444 192 1.4 13

Table 4.3: Evaluation results for escape analysis. Abbreviations: Be: Basee; PM: Pre
and Main; PMP: Pre, Main, and Post. A ‘-’ implies that the analysis did not
terminate in 3 hours.

1 2 3 4 5 6 7 8 9 10 11 12
Analysis time Average Memory

Benchmark (seconds) #contexts (GB)
Bc Pre Post OM PM PMP Bc OM PMP Bc PMP

avrora 1322 1.0 0.5 231 71 55 9.5 2.6 1.2 54 11
batik - 2.2 2.4 - 1033 946 - - 1.3 - 64
eclipse - 2.7 6.1 - 1312 988 - - 1.4 - 49
luindex 1175 1.1 0.7 507 60 46 10.6 2.9 1.2 58 11
lusearch 1215 1.0 0.9 561 58 57 10.5 3.6 1.2 54 11
pmd 5769 1.3 0.7 1243 130 108 11.9 4.5 1.2 127 13
sunflow - 2.1 2.2 - 692 684 - - 1.2 - 53
moldyn 929 0.9 0.6 222 54 53 9.5 2.5 1.3 29 11
montecarlo 925 0.9 0.3 238 60 53 9.4 2.6 1.2 29 9
raytracer 940 0.9 0.3 211 61 53 9.4 2.6 1.2 29 10
geomean 1364 1.3 0.9 351 151 130 10.1 3.0 1.2 47 18

Table 4.4: Evaluation results for control-flow analysis. Abbreviations: Bc: Basec; OM:
Only Main; PM: Pre and Main; PMP: Pre, Main and Post. A ‘-’ implies
that the analysis did not terminate in 3 hours; the geomean was computed by
excluding non-terminating benchmarks.

analysis. (iv) PMP: the full proposed version where all the three analyses (pre, main,

and post) are performed. We compare these versions on three parameters: (i) analy-

sis time, (ii) average number of created contexts, and (iii) peak memory consumption.

As prior works (Khedker and Karkare, 2008; Padhye and Khedker, 2013) have already

shown that the classical call-string based approach does not scale well compared to the

value-contexts based approach, we omit a comparison against the same.
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4.5.1 LSRV-contexts: Analysis Time

Tables 4.3 and 4.4 show the time taken for performing the escape analysis and the

control-flow analysis, respectively, by the different versions. Basee implements the

(Base) thread-escape analysis of Whaley and Rinard (1999), and Basec implements the

(Base) control-flow analysis of Padhye and Khedker (2013); both Basee and Basec use

value-contexts based context-sensitivity. We found that Basec did not terminate within

3 hours (our set cutoff) for three large DaCapo benchmarks, and Basee did not terminate

in 3 hours for any of the benchmarks. It clearly shows the scalability issues with the

Base variations, which simply use the parameter-reachable points-to graph at the entry

of a method as the value-context.

Columns 3-4 in Tables 4.3 and 4.4 show the times taken by the pre and the post

analyses while performing the escape and the control-flow analyses, respectively. As

the proposed pre-analysis is agnostic to the heap analysis being performed, it takes the

same time (on average, 1.3 seconds) for both the analyses. We observe that together the

pre and the post analyses take very less time – just 2.0 seconds for escape analysis, and

2.2 seconds for control-flow analysis, on average.

Column 6 in Table 4.3 and column 7 in Table 4.4 (labeled PMP) show the full

analysis time of our proposed technique, which includes the pre, the main, and the post-

analysis times. Not only is our proposed technique able to analyze all the benchmarks

within the set cutoff, the average required time is just 192 seconds for escape analysis,

and 130 seconds for control-flow analysis (the largest value being less than 40 minutes,

for ECLIPSE). It can be seen that the time required depends mostly on the size of the

benchmark. Note that though SUNFLOW appears to be a relatively small benchmark (see

column 3, Table 4.2), the corresponding analysis time is high, as SUNFLOW references

a large number of the JDK library classes (see column 4, Table 4.2).

In order to individually estimate the effects of the pre and the post analyses (that

is, the insights presented in Section 4.1) on the scalability, we studied the analysis

times of the OM and the PM versions (see column 5 in Table 4.3 and columns 5-6

in Table 4.4). For escape analysis, the OM version did not terminate in 3 hours for

any benchmark (hence not shown), while for control-flow analysis, it did not terminate
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for three large DaCapo benchmarks (BATIK, ECLIPSE, and SUNFLOW). This indicates

that only level-wise summarization (done in OM version, Insight 2a) is not sufficient

to scale all the analyses under consideration. We can see that though the time savings

due to the pre-analysis alone (PM version, Insights 1+2a) are significant (except for

the escape analysis of ECLIPSE, where it did not terminate), the post-analysis improves

it further. The PMP version (Insights 1+2a+2b) runs faster than the PM version by

about 56% and 14% for the escape and the control-flow analyses, respectively. Thus,

by spending just ∼2 seconds for the pre and the post analyses over the OM version, the

PMP version successfully scales both the analyses.

Overall, we see that the combination of the pre, the main, and the post analyses

helps us perform previously non-terminating analyses in less than 40 minutes, for all

the benchmarks under consideration.

4.5.2 LSRV-contexts: Number of Contexts

Columns 7 in Table 4.3 and 9-11 in Table 4.4 show the average number of contexts cre-

ated during escape analysis and control-flow analysis, respectively, over all the methods.

The numbers for the PM version are not shown separately; they match the ones for the

PMP version, as the deferred methods in PMP are later analyzed in all the deferred

contexts. For escape analysis, on average, PMP creates 1.4 contexts per method (Basee

and OM did not terminate, and hence average contexts not reported). For control-flow

analysis, for the cases where Basec terminated, we can see that the average number of

contexts created per method is about 10.1. On the other hand, the number is around 3.0

for the OM version (for control-flow analysis), and just 1.2 for the PMP version. This

implies that our proposed techniques significantly reduce the number of times a method

is analyzed (∼8×, on average).

To further visualize the difference in the number of contexts created, we have plot-

ted two histograms for the benchmark PMD for control-flow analysis; see Figure 4.4.

The charts show the number of contexts created per method in Basec (Figure 4.4a) and

PMP (Figure 4.4b) versions, respectively. The methods (in the x-axis) are arranged in

alphabetical order, and the number of contexts (y-axis) is shown growing logarithmi-
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(b) PMP version of LSRV-contexts.

Figure 4.4: Number of contexts created per method during the control-flow analysis of
the benchmark PMD.

cally. The high density of the bars for Basec clearly shows the large number of contexts

created for a large number of methods. For instance, the maximum number of contexts

created in the Basec version was 7324 for the method java.lang.Object: void <init>, for

which there was only one context created in the PMP version. We observed a similar

trend for all the benchmarks.

Overall, we see that our proposed techniques were able to significantly reduce the

number of contexts created per method, which in turn led to a significant reduction in

the resources spent in analyzing those methods, thus making the analyses scalable.

4.5.3 LSRV-contexts: Peak Memory Usage

Tables 4.3 and 4.4 also show the peak memory consumption (computed using the time

-v command) of the Base and the PMP versions for the escape and the control-flow

analyses, respectively. As Basee did not terminate within the cutoff of 3 hours, the

corresponding statistic is not shown. However, as a point of indication, the usage at
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the end of 3 hours for the smallest benchmark MOLDYN was about 373 GB, which

indicates that for larger benchmarks the analysis may run out of memory, if run for a

longer time. The high memory usage is due to the large number of contexts created

during the analysis and the resultant flow-sensitive points-to graphs maintained therein.

In comparison, the memory usage in the PMP version was several magnitudes lesser,

and was just 13 GB and 18 GB respectively, on average, for the two analyses. We

argue that given the range and size of the benchmarks under consideration, this is quite

reasonable. We also observe that the memory usage varied mostly with the size of the

benchmark: lower for the JGF benchmarks (smaller) and higher for BATIK, ECLIPSE,

and SUNFLOW (larger), for both escape and control-flow analysis.

Overall, we note that our proposed techniques allow performing precise whole-

program heap analyses, which earlier did not scale even with a large amount of memory

(∼512 GB), now on systems with much less memory (∼32-64 GB).
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CHAPTER 5

HEAP CLONING AND OBJECT-SENSITIVITY

The idea behind performing context-sensitive analyses is to be able to partition the

dataflow facts (points-to information for heap analyses) across different contexts in

which a method is analyzed. The partitioning happens by specializing the elements

in a method to the current context. In the scheme of analysis presented so far (that is,

in Chapter 4), while analyzing a method m in a context c (irrespective of the context

abstraction), we specialized the stack variables in m with c. Another technique to en-

hance the partitioning efficacy is to also specialize the heap objects with the context in

which they are created, a process termed as heap cloning (Nystrom et al., 2004).

In this chapter, we first enhance the precision of LSRV-contexts by adding heap

cloning to the same. We then study some common patterns where heap cloning im-

proves the precision of existing context-sensitive analyses. Here we perform a deeper

comparison with recent object-sensitive analyses that include heap cloning as a part of

the definition of object-sensitivity (Smaragdakis et al., 2011). In particular, we note the

cases where LSRV-contexts may lead to more precise results than object-sensitive anal-

yses, and cases where compared to object-sensitive analyses, LSRV-contexts may miss

out on potential precision-enhancement opportunity offered by heap cloning. Motivated

by the scalability of LSRV-contexts, we next extend the definition of LSRV-contexts to

also consider the k-level object context as the context abstraction. We find that this leads

to a very novel experiment of performing a very precise context-sensitive analysis, and

uniquely connects the lattices of call-site-sensitive and object-sensitive analyses.

We implement our two ideas, the first of LSRV-contexts extended with heap cloning

(say LSRVH), and the second one of LSRVH extended with the precision of k-object-

sensitivity (say LSRVkobjH), for performing control-flow analysis of Java programs,

in the Soot framework. In order to deal with the potential overheads, we apply the

final extended definition selectively for a subset of methods, which are identified using

little additional computation over the pre-analysis of the LSRV approach. We evaluate



the implementations by comparing them with standard k-object-sensitive analyses with

heap cloning. The results show that not only do the newer proposals scale well to large

benchmarks, they also enhance the precision of LSRV-contexts and object-sensitive

analyses significantly.

5.1 LSRV-contexts with Heap Cloning

Heap cloning (Nystrom et al., 2004) is a technique that distinguishes different instances

of objects allocated on heap, based on the context in which they are created. This may

lead to the removal of some spurious points-to facts, and hence may improve the pre-

cision of the analysis being performed. For example, consider the Java code fragment

shown in Figure 5.1. Say we are performing a call-string based context-sensitive points-

to analysis. Without heap cloning, though there are two contexts (foo:4 and foo:5,

created at lines 4 and 5, respectively) in which the method getB is analyzed, it returns

the same object O10 in both the contexts. As a result, in the points-to graph for the

method foo, the variables b1 and b2 (conservatively) point to the same object, and

hence are potential aliases (though they will point to different B objects at runtime).

With heap cloning, the object created at line 10 is qualified by the context in which

created. Say, the object returned by the first call to getB is denoted by Ofoo:4_10, and

the one returned by the second call to getB is denoted by Ofoo:5_10. As a result, in

the points-to graph for foo, the variables b1 and b2 would point to different B objects

(Ofoo:4_10 and Ofoo:5_10, respectively), and would (correctly) not be identified as aliases,

hence possibly triggering other optimizations.

In Chapter 4, we represented abstract objects with the (unique) label of their al-

location site; thus, all the abstract objects allocated at a statement with label l were

represented as Ol. We now extend this definition to also include the context in which

a corresponding abstract object was created. First, we assume that each new context is

associated with a unique integer label. Next, we denote an abstract object allocated in a

context c and statement l as Oc_l. In addition to the extended object abstraction, we also

use a map contextMap, which associates each LSRV-context with a unique integer.

Note that without heap cloning, the number of objects while performing a heap
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1 class B {}
2 class D {
3 void foo() {
4 B b1 = getB();
5 B b2 = getB();
6 // b1 and b2 are aliases without heap cloning,
7 // but not with heap cloning
8 }
9 static B getB() {

10 return new B();
11 }
12 }

Figure 5.1: Example to show the effect of heap cloning.

analysis is bound by the number of allocation statements in the program, which is finite.

However, with heap cloning, the finiteness (and hence the termination of a given heap

analysis) also depends on the number of contexts that could be created. Thus, for LSRV-

contexts, if the lattice of the analysis under consideration is finite (which bounds the

number of possible contexts), the number of objects that could get created with heap

cloning is also finite, and the analysis would still be guaranteed to terminate.

Apart from the above-extended definition, in order to add heap cloning, the rest

of the implementation of LSRV-contexts remains unchanged from what was proposed

in Chapter 4. We call the resultant version as LSRVH (for LSRV-contexts with Heap

cloning). Note that the precision of LSRVH can be more but never less than LSRV-

contexts, with a possible tradeoff in the analysis time. In Section 5.5, we evaluate

LSRVH by comparing its precision with plain LSRV-contexts.

5.2 Comparing LSRV-contexts and Object-sensitivity

Milanova et al. (2005) proposed another context abstraction called object-sensitivity,

which distinguishes contexts based on the allocation site of the receiver object (the

object pointed-to by the this pointer). Similar to call-string based analyses, for scal-

ability, object-sensitive analyses also use a limit k on the length of the chain formed by

the receiver objects.

It is well understood (Milanova et al., 2005; Lhoták and Hendren, 2008) that as

the contexts created in the call-site-sensitive and object-sensitive approaches are dif-
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1 class B {
2 void foo{...}
3 }
4 class C extends B {
5 void foo{...}
6 }
7 class D {
8 void bar() {
9 B b1 = new B();

10 B b2 = b1.parid(new B());
11 B b3 = b1.parid(new C());
12 b2.foo();
13 }
14 B parid(B parm) {
15 return parm;
16 }
17 }

Figure 5.2: An example where a control-flow analysis using LSRV-contexts is more
precise than one using object-sensitivity.

ferent, these approaches are in-principle incomparable. As value-contexts, and hence

LSRV-contexts, are also based on call-site-sensitivity, they are also theoretically incom-

parable with object-sensitive analysis. Nevertheless, there may be cases where one of

the approaches, with or without heap cloning, may be able to enable an optimization

opportunity, and not the other.

Figure 5.2 shows an example of a case where a control-flow analysis based on

LSRV-contexts would fare better in terms of precision than another that is based on

object-sensitivity. Say both the classes B and C define a method foo. Here, the method

parid would be analyzed in two different LSRV-contexts, one each at lines 10 and 11.

As a result, b2 would point only to a B object, and hence would infer that only B’s foo

could be called at line 12. On the other hand, as the receiver object in both the calls

to parid is the same (that is, O9), an object-sensitive control-flow analysis would an-

alyze parid in only one context. As a result, b2 would point to two objects: one of

class B and another of class C (the two parameters to parid), and hence would (con-

servatively) infer that both B’s and C’s foo could be called at line 12; that is, both the

calls would be polymorphic (leading to imprecision).

Another interesting behaviour can be observed when heap cloning is added to both

LSRV-contexts (to obtain LSRVH) and object-sensitivity. Figure 5.3 shows an example

of a case where an LSRVH control-flow analysis may be less precise than a k-level
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1 class W {
2 X f;
3 W() { f = new X(); }
4 void setG(Y y) {
5 f.g = y;
6 }
7 Y getG() {
8 return f.g;
9 }

10 }
11 class X { Y g; }
12 class Y {
13 void m() {...}}
14 class Z extends Y {
15 void m() {...}}

16 class D {
17 void bar() {
18 W w1 = new W();
19 Y y1 = new Y();
20 w1.setG(y1);
21

22 W w2 = new W();
23 Z z1 = new Z();
24 w2.setG(z1);
25

26 Y p = w1.getG();
27 p.m();
28 Y q = w2.getG();
29 q.m();
30 }}

Figure 5.3: An example where an LSRVH control-flow analysis is less precise than one
based on kobj1h.

object-sensitivity based control-flow analysis with one-level of heap cloning (that is,

kobj1h). Here, the class W is like a container with a field f of class X (initialized in the

constructor of W). The field g of X objects may in turn store an object either of class Y

or class Z (as Z extends Y).

The method bar of class D creates two W instances at lines 18 and 22, pointed-to

by w1 and w2, respectively. However, as the LSRVH contexts for the W constructor at

both the allocation sites are the same (the level-summarized receiver), an LSRVH-based

control-flow analysis would not re-analyze the constructor at line 22. As a result, the

object pointed-to by w1.f and w2.f would be the same, that is, O3. Consequently,

though the method setG is analyzed in two LSRVH contexts (due to the types of the

parameter being different) at lines 20 and 24, both w1.f.g and w2.f.g would point

to both O19 and O23. Thus, the variables p and q would point to both Y and Z objects

(O19 and O23, respectively), leading to both the calls to the method m (that is, at lines 27

and 29) being deemed as polymorphic.

Contrary to LSRVH, a kobj1h control-flow analysis would forcefully re-analyze the

constructor of class W at line 22 (as the receiver object is different and a constructor

call is like a method call with the object being allocated as the receiver). As a result,

w1.f and w2.f would point to two different objects (O18_3 and O22_3, respectively),

w1.f.g and w2.f.g would respectively point to O19 and O23, and hence both the

calls to m would be monomorphic.
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5.3 Merging LSRV-contexts and Object-sensitivity

Motivated by the scalability of LSRV-contexts and the additional precision of object-

sensitivity (with heap cloning), we now present a novel mix of both the context ab-

stractions, called LSRVkobjH. Here, we extend the definition of our context abstraction

by defining it as a pair of the LSRV-context and the k-level object-sensitive context.

Thus, an approach using LSRV1objH as its context abstraction would in effect be us-

ing the LSRV-context as well as the one-level object-sensitive context with one level of

heap cloning (that is, 1obj1h) to distinguish between the contexts of a method. Hence

a method m would be re-analyzed in a new LSRVkobjH context if any of the LSRV-

context or the k-level object context has changed.

Recall (from Chapter 4) that in order to compute the relevant value-context for a

method m, we performed a pre-analysis pass that computed a conservative approxima-

tion of the depth till which m accessed its callers’ heap from each parameter p; this

was called the access-depth of p. In order to keep the LSRVkobjH approach efficient,

we conditionally check the kobj context for a method m, only if the access-depth of

the receiver (that is, parameter# 0) is non-zero. Thus, for methods for which the access-

depth of the receiver is zero, only the LSRV-context is considered, and for methods with

non-zero access-depth for the receiver, the complete LSRVkobjH context is considered.

Recall that if k is a finite positive integer, k-object-sensitive analyses are guaranteed

to terminate. Further, as discussed in Section 5.1, analyses using LSRVH contexts are

also guaranteed to terminate. As a result, analyses that use LSRVkobjH contexts, where

the maximum number of contexts that could be created is a product of the possible

number of LSRVH contexts and that of k-object-sensitive contexts, are also guaranteed

to terminate.

5.4 Precision Lattice for the LSRV Approaches

We now discuss the theoretical precision of the various context abstractions discussed

so far; see Figure 5.4. Without heap cloning, for a particular analysis, analysis-specific

LSRV-contexts are as precise as traditional value-contexts (Khedker and Karkare, 2008),
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Figure 5.4: Precision lattice for various control-flow analyses.

which in turn are similar to the unbounded call-string based analyses (not shown in the

figure). Among k-object-sensitive analyses, the precision increases with the value of k,

that is, 2obj is more precise than 1obj, and so on.

With heap cloning, 1obj1h is more precise than 1obj, but it does not compare with

2obj. The 2obj1h analysis is more precise than both 2obj and 1obj1h, and is currently

the most popular object-sensitive analysis (Tan et al., 2017; Li et al., 2018b,a). On

the other hand, with heap cloning, LSRVH is more precise than LSRV, but still does

not compare with object-sensitive analyses. However, once we merge LSRV-contexts

and object-sensitive analyses to obtain LSRVkobjH analyses, we get a connection be-

tween the two lattices. As an instance, LSRV1objH analyses are definitely more precise

than both LSRVH and 1obj1h analyses, LSRV2objH analyses are more precise than

LSRV1objH as well as 2obj2h (hence 2obj1h) analyses, and so on.

Note that Figure 5.4 is not complete. We can construct a few more relationships as

an extension of Figure 5.4. For example, we may have a variant LSRV1obj (without

heap cloning), which will be more precise than both LSRV and 1obj. In Section 5.5,

we show that in practice, a control-flow analysis based on LSRV1objH contexts, which

is more precise than both LSRVH and 1obj1h analyses, scales well for all the bench-

marks under consideration. It should be possible to further scale LSRVkobjH analyses

for higher values of k, for different heap analyses, perhaps based on analysis-specific

heuristics if required; we leave the same as future work.
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5.5 Implementation and Evaluation of LSRVkobjH

We have implemented our techniques for control-flow analysis of Java programs, in the

Soot framework (Vallée-Rai et al., 1999) version 2.5.0. This is a parameterized im-

plementation that takes a command-line argument to choose between LSRVH contexts

and LSRVkobjH versions. We have also implemented k-object-sensitive control-flow

analysis (based on full object-sensitivity as defined by Smaragdakis et al. (2011)) in

the Soot framework. For comparison, we have instantiated both the LSRVkobjH and

k-object-sensitive versions with k = 1. Thus, in this section, we compare three ver-

sions of control-flow analysis: LSRVH, 1obj1h, and LSRV1objH. We evaluate all the

versions on the same ten benchmarks from the DaCapo and the JGF suites that were

used in Chapter 4; see Figure 4.2 for some of their static characteristics.

5.5.1 Scalability of LSRVkobjH

We now evaluate the scalability of our proposed approaches in terms of the analysis

time, the average number of contexts, and the peak memory requirement; Table 5.1

shows the same for LSRVH (written as lsrvh), 1obj1h (written as 1o1h), and LSRV1objH

(written as lsrv1o1h).

Columns 2-4 of Table 5.1 show the analysis time (in seconds) of the three ap-

proaches. Compared to the time taken by plain LSRV-contexts (on average, 130 sec-

onds; see Section 4.5), we can see that the time taken by LSRVH (that is, LSRV-contexts

with heap cloning) is higher: 224 seconds on average. However, 1o1h takes a signifi-

cantly higher time than LSRVH and does not terminate in 3 hours for the large bench-

mark ECLIPSE. On the contrary, LSRV1objH, though more precise than both LSRVH

and 1obj, takes only 24.3% higher time than LSRVH, and terminates in less than an

hour for all the benchmarks under consideration.

The reason for the better scalability of the LSRV approaches can be attributed to

the difference in the average number of contexts created per method; see Table 5.1,

columns 5-7. We can observe that 1obj1h creates a large number of contexts compared

to LSRVH and LSRV1objH. The savings are a result of our pre-analysis, which leads to
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1 2 3 4 5 6 7 8 9 10
Analysis time Average Memory

Benchmark (seconds) contexts (GB)
lsrvh 1o1h lsrv1oh lsrvh 1o1h lsrv1oh lsrvh 1o1h lsrv1oh

avrora 69 410 70 1.2 8.3 1.3 13.5 15.2 13.7
batik 2529 7661 2168 1.4 10.2 1.6 163.6 98.3 117.2
eclipse 3201 - 3220 1.5 - 1.6 134.4 - -
luindex 64 347 57 1.2 9.2 1.3 13.0 15.2 12.1
lusearch 82 440 92 1.2 9.3 1.3 17.7 22.6 18.3
moldyn 98 291 97 1.3 8.2 1.4 15.9 15.2 16.1
montecarlo 84 304 89 1.2 8.3 1.4 13.5 22.4 13.5
pmd 156 742 2552 1.3 8.1 2.3 23.5 22.9 77.0
raytracer 86 293 89 1.2 8.2 1.4 13.4 15.0 13.4
sunflow 963 8188 1048 1.4 9.6 1.5 77.1 95.1 101.3
geomean 224 - 296 1.3 - 1.5 28.5 - -

Table 5.1: Evaluation results with heap cloning for control-flow analysis.

the identification of cases where methods need not be analyzed redundantly in multiple

contexts. Note that some of our techniques, such as not (re-)analyzing a method redun-

dantly if the access-depth for its receiver is zero, can be applied to scale object-sensitive

analyses as well; we leave it as a future exercise.

Columns 8-10 of Table 5.1 show the peak memory consumption (computed using

the time -v command) for the three analyses. For small benchmarks, we observe

that the memory requirements of all the approaches remain similar (about 16-32 GB).

For larger benchmarks (BATIK, ECLIPSE and SUNFLOW), the memory requirements

reach 100-200 GB. For ECLIPSE, though the LSRV1objH approach terminated (see

column 4), it timed out when we enabled the memory measurement.

Overall, we can see that LSRVH1objH remains a practical choice and scales well

within our cutoff. In the next section, we compare the precision of our approaches to

find out how does the scalable LSRV1objH approach fare compared to the rest.

5.5.2 Precision of LSRVkobjH

For measuring precision, similar to existing works (Lhoták and Hendren, 2008; Smarag-

dakis et al., 2011; Li et al., 2018b,a), we normalize over all contexts two popular

precision-indicating clients: (i) #polyCall: the number of call-sites that could not be

resolved to a single method (Figure 5.5a); and (ii) #callEdge: the number of edges in
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(a) Number of polymorphic calls (lower the better).
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(b) Number of edges in the call-graph.

Figure 5.5: Normalized precision of various context abstractions (lower the better).

the on-the-fly call-graph (Figure 5.5b). For both the metrics, a smaller value is better. To

study the impact of heap cloning on LSRV-contexts, apart from the three heap-cloning

enabled versions (that is, LSRVH, 1obj1h, and LSRV1objH), we also show the corre-

sponding numbers for plain LSRV-contexts.

In Figure 5.5a, we can see that the number of polymorphic calls reduces, albeit

marginally, from LSRV-contexts to LSRVH. The number of polymorphic calls in case

of 1obj1h is the highest among the four reported versions, which indicates that over-

all, the number of optimization opportunities enabled (over all contexts) by the LSRV

approaches is better than that by 1obj1h. For all the benchmarks, we can see that
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LSRV1objH leads to the smallest number of polymorphic calls (5.73% less compared to

LSRV-contexts, 5.65% less compared to LSRVH, and 12.23% less compared to 1obj1h

for cases where 1obj1h terminates), which establishes it as a superior alternative over

existing context-sensitive analyses.

In Figure 5.5b, we see that similar to the number of polymorphic calls, the nor-

malized number of call-graph edges reduces, though by a small amount, from LSRV-

contexts to LSRVH. The number of call-graph edges is the highest for 1obj1h, and the

reduction is the highest for LSRV1objH.

It is well-known (Li et al., 2018b,a) that the next more precise object-sensitive anal-

ysis used in practice, that is 2obj1h, does not directly scale for many large bench-

marks. Further, as indicative by the relatively high time taken by LSRV1objH for

the large benchmarks, we believe that with the current choice of efficiency heuristics,

the LSRV1objH approach presents the best tradeoff between scalability and precision,

among the approaches under consideration. It would be an interesting future direction

to explore ways to scale more intricate combinations of k-object-sensitivity and LSRV-

contexts, for higher values of k.

Overall, we observe that the precision of the LSRV1objH approach, as expected

from its theoretical model (see Section 5.4), generates more optimization opportunities

than both LSRV and object-sensitive approaches. Combining this fact with the scalabil-

ity noted in Section 5.5.1, the proposed LSRVkobjH context abstraction can be viewed

as a new sweet-spot that combines the benefits of LSRV-contexts (and hence classical

call-strings) and object-sensitivity.
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CHAPTER 6

RELATED WORK

Points-to analysis for Java is a very widely studied discipline and there have been a

plethora of works on improving its precision and/or efficiency. We divide the dis-

cussion on the related work into five parts: (i) staged analysis; (ii) modular analysis;

(iii) points-to analysis for null-check elimination; (iv) escape analysis for synchroniza-

tion elimination; and (v) context-sensitive analyses.

6.1 Staged Analysis

There have been prior works (Serrano et al., 2000; Ali, 2014) that help perform costly

whole-program analyses/optimizations statically for Java. Serrano et al. (2000) propose

an interesting compilation scheme, in which the application (considered along with the

statically available libraries) is statically compiled to a platform-specific optimized bi-

nary. This may involve dynamic compilation to support dynamic Java features (such as

different runtime libraries). Averroes (Ali, 2014) helps perform whole-program analy-

ses statically, by generating “placeholder" libraries that conservatively approximate the

behavior of the actual runtime libraries.

Many prior works have tried to reduce the overheads at runtime (but not during JIT

compilation) by taking advantage of the multi-stage nature of Java compilation/execu-

tion model. For example, Sreedhar et al. (2000) use code specialization to generate

multiple versions of code statically, where each version may be optimized differently

(not all may be “semantics preserving", or valid). Based on the runtime conditions,

one of the valid versions of the code is invoked during execution. Similarly, Guyer

et al. (2006) annotate the input code with explicit “free" instructions (executed at run-

time) based on the liveness information of the heap objects. In contrast, PYE performs

expensive analyses on applications statically to obtain results that are conditional on



the specific libraries on the target machine; these partial results are combined with the

partial results of the libraries, at runtime, to achieve precision and performance.

Chambers (2002) and Philipose et al. (2002) propose a staged compilation scheme

in which the generation of native code for different platforms is spread across the differ-

ent stages of compilation and linking, for C programs. In contrast, PYE is designed for

analyzing programs written in languages like Java/C# that follow a two-step process of

compilation (static + just-in-time), where the libraries can only be obtained at runtime.

Sharma et al. (1998) propose deferred data-flow analysis (DDFA) to address the

problem of the conservative nature of static analyses. DDFA performs most of the

analysis at compile-time and uses control-flow information at runtime to improve the

precision of the analysis. In PYE, our focus is on handling the dependence between the

application and the library methods. It would be interesting to perform DDFA analyses

in the PYE framework.

Our idea of conditional values is partially inspired by the idea of three-valued logic

analysis (Sagiv et al., 2002). In PYE, we associate conditions with the indeterminate

third values, which are resolved during JIT compilation. This helps us achieve precision

without much overhead at runtime.

6.2 Modular Analysis

Modular analysis, as proposed by Cousot and Cousot (2002), is a well-explored tech-

nique to scale interprocedural analyses by analyzing different modules (or methods, in

Java context) separately, and composing the modular results to obtain whole-program

analysis results (Whaley and Rinard, 1999; Vivien and Rinard, 2001; Choi et al., 1999;

Calcagno et al., 2011; Sălcianu and Rinard, 2005). In a recent survey, Madhavan et al.

(2015) evaluate several of these existing techniques in a well-formalized framework.

In the context of Java programs, Whaley and Rinard (1999) compute summaries for

methods in the form of points-to escape graphs, and compose them at interprocedu-

ral boundaries. Later, Vivien and Rinard (2001) incrementalize the analysis to analyze

only those parts of a program that may deliver useful results. The analysis performed by
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our proposed framework PYE is also modular, but we do not have the library methods

while analyzing the application, and vice-versa. Consequently, our generated sum-

maries contain conditional values. In PACE and EASE, we have borrowed the idea of

creating outside nodes from Whaley and Rinard (1999), and added conditional values

to the outside nodes to represent the dependence of unavailable object-dereferences on

the unanalyzed parts of a program. Further, we use the mapping algorithm presented

by Whaley and Rinard (1999) to merge the points-to graphs of analyzed methods at

interprocedural boundaries.

It is worth noting that the way PYE performs whole-program analyses is a bit differ-

ent from both standard call-string based analyses as well as functional analyses (Sharir

and Pnueli, 1978). Top-down analyses analyze the whole program without skipping

any method calls, whereas bottom-up analyses analyze each method only once and then

merge the obtained summary with its callers at each call site. In PYE, even though we

construct summaries for application and library methods in a top-down manner (Padhye

and Khedker, 2013), the effects (in the form of the final analysis-results obtained during

JIT compilation) of merging these summaries at the application and library boundaries

is similar to what is done in bottom-up analyses (Bodden, 2018; Gharat, 2018).

There have been works that analyze methods independent of the caller information

and generate multiple summaries along with the conditions under which a particular

summary may be used. For example, Wilson and Lam (1995) generate partial transfer

functions for each method m, and a given transfer function for m is selected based on

the alias relationship that exists among the actual arguments at a call-site of m. Sim-

ilarly, Yu et al. (2010) perform a whole-program analysis in two phases: a bottom-up

pass where conditions are generated for the points-to relations among the (unavailable)

actual arguments, and a subsequent top-down pass that completes the points-to results

by resolving the conditions and completing the points-to relations with actual argu-

ments. On the other hand, the partial-analyzer of PYE generates conditions at applica-

tion and library boundaries, propagates the conditions and extends them at subsequent

statements, and forms partial results for all the elements of a program (interprocedu-

rally). These conditions are resolved in the fast-precise-analyzer by looking up the

results of the statically unavailable methods.
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There have been prior works that model the dependencies between the available

and unavailable methods while performing static analyses. WALA (2019) models na-

tive methods flow-insensitively and merges their summaries with those of their callers.

StubDroid (Arzt and Bodden, 2016) summarizes Android libraries for taint analysis by

storing conditions on the “taint value” of actual arguments. In contrast, the conditional

values proposed in PYE are bidirectional (that is, from application to library methods

and vice-versa), and the statically generated partial summaries are resolved during JIT

compilation to obtain precise analysis-results in the JVM.

6.3 Points-to Analysis for Null-Check Elimination

There have been works that perform points-to analysis to statically identify unnecessary

null-dereference checks (Loginov et al., 2008; Nanda and Sinha, 2009). Loginov et al.

(2008) perform a static points-to analysis and annotate the statements that are guaran-

teed to dereference a concrete object. They handle those library calls precisely whose

specifications guarantee that the corresponding methods return a non-null object, and

treat others conservatively. Nanda and Sinha (2009) perform a path-sensitive points-to

analysis statically to mark the dereferences guaranteed to be made on a concrete ob-

ject. They treat the library methods as unavailable for analysis, and handle the library

calls conservatively. Contrary to both these works, PACE is a two-step analysis that

neither assumes the specification of library methods, nor handles library calls conser-

vatively. Instead, PACE analyzes the application and the library methods separately,

while encoding the dependence between them in the generated partial summaries as

conditional values. These dependencies are resolved during JIT compilation to obtain

precise analysis-results.

In order to balance the time spent in JIT compilation, the HotSpot Server Compiler

(C2) of the HotSpot JVM (Paleczny et al., 2001) performs an intraprocedural points-to

analysis to avoid inserting null-checks that are not required. As shown in Section 3.5,

PACE offers a much-enhanced precision (on average 23.67% fewer checks than the

existing analyzer) in almost the same amount of time (as C2) during JIT compilation.
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6.4 Escape Analysis for Synchronization Elimination

There have been many prior research works (Salcianu and Rinard, 2001; Choi et al.,

1999; Whaley and Rinard, 1999) that perform precise escape analysis for Java pro-

grams. However, they are completely performed either during static compilation (Choi

et al., 1999) (make conservative assumptions about libraries), or during JIT compila-

tion (Whaley and Rinard, 1999; Salcianu and Rinard, 2001) (not scalable). Kotzmann

and Mössenböck (2005) present an imprecise but fast escape analysis for the HotSpot

Client Compiler (C1). In contrast, our proposed analysis EASE generates precise

escape-analysis results during JIT compilation in the HotSpot Server Compiler (C2),

at speeds comparable to that of the baseline partially interprocedural and partially flow-

sensitive escape analysis.

Lee and Midkiff (2006) propose an insightful two-phase escape analysis for the

Jikes RVM (Alpern et al., 2005). They compute connection graphs (a representation

similar to points-to graphs) for different methods offline, and merge them to complete

an interprocedural analysis during JIT compilation. On the contrary, EASE generates

precise escape-analysis results at runtime, by resolving the statically generated partial

summaries, and has the following advantages: (i) By maintaining the set SYN sepa-

rately, EASE can preserve flow-sensitivity for synchronization elimination (Lee and

Midkiff store only per-method connection-graphs and lose flow-sensitivity). (ii) The

overhead of the fast-precise-analyzer of EASE at runtime is very less, as it does not

perform any actual escape analysis (Lee and Midkiff may have to revisit/modify the

connection-graph multiple times). (iii) The storage overheads of the result files for

EASE are quite less: average 3.96% over the size of the class files (Lee and Midkiff

report 68% overhead).

Stadler et al. (2014) proposed partial escape analysis, which elides locks only on

those branches in which the associated object does not escape, in the Graal (2019)

compiler. For instance, before entering a synchronization statement, a data-structure is

looked up to check if the associated object has not escaped; and if so, the lock operation

is not performed. This is a promising approach for doing escape analysis, and we

believe that its efficiency can be further improved by implementing it in PYE.

101



6.5 Context-sensitive Analysis

There have been several works that propose ways to perform context-sensitive analyses

in a scalable manner; we can broadly classify them into two categories: (i) efficiently

maintaining the identified contexts (Whaley and Lam, 2004; Xu and Rountev, 2008;

Thiessen and Lhoták, 2017); and (ii) defining new context abstractions (Khedker and

Karkare, 2008; Smaragdakis et al., 2011; Milanova et al., 2005; Tan et al., 2017).

Whaley and Lam (2004) proposed the use of binary decision diagrams (BDDs) to

represent equivalent contexts with lesser memory. Xu and Rountev (2008) explore

the non-scalability of BDDs for context-sensitive analyses involving heap-cloning, and

merge the calling contexts with similar points-to relationships. However, their presented

analysis is imprecise as it lacks flow-sensitivity. Thiessen and Lhoták (2017) present a

novel way to scale k-length call-string based analyses by representing points-to infor-

mation in terms of the input-output values of different contexts, which allows merging

of equivalent call-strings. In contrast, in this thesis, we have proposed ways to scale the

value-contexts based approach by compacting (level-summarizing) and improving the

precision of the process of finding equivalent contexts.

Milanova et al. (2005) propose a new context abstraction called k-object-sensitivity,

which distinguishes the contexts based on the allocation site of the receiver. Smarag-

dakis et al. (2011) clarify the definition of object-sensitivity for k > 1, and propose

type-sensitivity as another close sibling. In recent attempts to scale these abstractions,

Tan et al. (2017) merge type-consistent objects for type-dependent analyses, and Li

et al. (2018b) select among the different variants of object- and type-sensitivity for

each method (with a small dip in the precision). On the contrary, we proposed LSRV-

contexts: a way to scale call-site-sensitivity based analyses (while maintaining their

precision), which, though incomparable, generate similar (higher, with heap cloning)

number of optimization opportunities as object-sensitive analyses.

There have been works that scale the main-analysis using a pre-analysis. Oh et al.

(2014) perform a pre-analysis that estimates the impact of context-sensitivity on differ-

ent methods for a given set of queries (for C programs), and then reduce the precision of

the main-analysis on methods that might not benefit from the enhanced precision. Tan et
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al. (Tan et al., 2016) use a pre-analysis to identify and eliminate redundant objects from

object-sensitive analyses (for Java programs) to reduce the number of effective contexts.

Recently, Karkare (2018) first uses a fast analysis to mark variables whose shape cannot

be refined, and skips them in a following precise (slow) pass. Prior works (Smaragdakis

et al., 2013, 2014) use a pre-analysis to identify code portions that do not affect the anal-

ysis results or may degrade scalability, and analyze them conservatively. In contrast, our

proposed pre-analysis identifies the relevant portions of the caller’s heap, whose results

are then used to scale whole-program context-sensitive analyses for Java programs. We

also use the pre-analysis to identify caller-ignorable methods that are deferred by the

main-analysis and analyzed as a post-pass without any loss of precision.

The scalability and precision of points-to analyses, and context-sensitive analyses

in particular, depend significantly on the abstraction used to denote objects allocated on

the heap. In a recent survey, Kanvar and Khedker (2016) classify and formalize several

heap abstractions and discuss their relative advantages. In this thesis, we have used the

allocation-site abstraction (qualified with its context in Chapter 5) for all the analyses.

The techniques proposed could be applied even in presence of other heap abstractions,

with corresponding changes in the underlying data structures.

Whole-program escape analysis and control-flow analysis are two very important

heap analyses with wide applicability, and there have been works to improve their scal-

ability on large programs. Kotzmann and Mössenböck (2005) propose a fast but impre-

cise unification-based escape analysis for the HotSpot client compiler (Kotzmann et al.,

2008). Padhye and Khedker (2013) present a value-contexts based precise control-

flow analysis; however it does not scale well on large programs. Our proposed LSRV-

contexts help perform value-contexts based escape and control-flow analyses that are

not only precise, but also scale very well to large programs. To the best of our knowl-

edge, ours is the first work that scales these heap analyses while realizing the precision

of unbounded call-strings, especially using the practical value-contexts approach.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis proposed several ways to advance the state-of-the-art in Java program anal-

ysis in terms of precision as well as efficiency, for both the just-in-time (JIT) compiler

of the JVM, and the static Java compiler.

Towards improving the precision and efficiency aspects of the JIT compiler, the

thesis proposed a two-step analysis framework called PYE that helps generate highly

precise analysis-results during JIT compilation, at a low cost. PYE is based on the

idea of generating partial summaries at compile-time, which encode the dependence

on the missing libraries in a concise manner, in the form of conditional values. The

effectiveness of PYE was shown by using it to design two precise analyses – points-

to analysis for null-check elimination (PACE) and escape analysis for synchronization

elimination (EASE). Over a wide range of benchmarks, PACE and EASE generate more

precise results compared to the existing analyzers of the HotSpot Server Compiler (C2),

with negligible overhead (in fact, saving time in case of EASE) during JIT compilation.

The evaluation attests PYE to be an effective and practical framework for implementing

complicated whole-program analyses and their related optimizations.

Towards improving the scalability of precise static analyses, the thesis proposed a

three-stage analysis approach to scale complex whole-program value-contexts based

heap analyses for large programs. The approach is based on the novel idea of LSRV-

contexts, which take into account an important observation that one need not compare

the complete value-contexts at each call-site. LSRV-contexts helped reduce the com-

parison performed for determining context-equality and classify more value-contexts as

equivalent. The precision of LSRV-contexts was further improved by first cloning the

heap, and then imparting to them the benefits of object-sensitivity. These approaches

were evaluated on two nontrivial heap analyses. The results showed that the proposed

approaches not only reduced the analysis time and memory consumption significantly,

but also helped analyze previously unanalyzable large programs in a reasonable time. In



addition, the exercise of combining the benefits of LSRV-contexts and object-sensitivity

with heap cloning led to a novel connection between the corresponding analysis lattices.

We observe that the techniques proposed in this thesis to improve the scalability of

precise context-sensitive analyses can in turn be used as part of the PYE framework to

improve the precision of the performed analyses further (for example, we have already

used level-summarization in PACE and EASE). Also, even though this thesis presents

new techniques for analyzing Java programs, the techniques can be extended to other

similar object-oriented languages, such as C#, that support multi-staged analysis.

Future work

It would be quite interesting to implement precise versions of other popular analyses

(such as points-to analysis for call-graph construction, may-happen-in-parallel analy-

sis, and so on) in PYE, and study the impact on the precision of the results obtained,

possibly for other static+JIT-compiled languages (such as C#). Likewise, it would be an

interesting exercise to take the PYE model – of splitting the analysis across the different

compilers – as a built-in setting for some of the Java Virtual Machines.

Another interesting idea would be to use the advantages of PYE to improve the

precision of less-complicated compilers such as C1 of the HotSpot JVM (and perhaps

even the interpreter), without compromising their goal of fast translation. It is also

noteworthy that owing to the efficiency imparted by PYE to JIT compilation, more con-

temporary precise (but time-consuming) static analysis techniques can now be brought

to production JIT compilers.

On the static analysis front, it would be interesting to implement more analyses

using LSRV-contexts, and improve the efficiency of other context abstractions using

the ideas of relevance and summarization. Another promising direction would be to

discover more (analysis-specific or otherwise) ways to scale static analyses by doing

exactly that amount of work which is required. Motivated by the observations in this

thesis, staging the analyses looks like a promising way to go ahead.
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