
Refactoring Scala Programs to Promote

Functional Design Patterns

Namrata Malkani; Manas Thakur

Indian Institute of Technology Mandi

KEY POINTS

AUTHORS’ CONTACT

• Functional Design Patterns -

Immutability, declarative style.

• Scala - Hybrid language with

excellent functional features.

• Idiomatic Programming -

Concise, less error-prone, easy to

implement & understand – like the

functional features of Scala.

• Loops -> Common Sequence

Methods.

• Single line solution, no mutation,

less errors, more readable.

• Conditionals -> Pattern Match.

• Better readability, enforces

common return value, efficient

byte-code.

• ScalaRT: Scala Refactoring Tool.

• Suggest improvements on code to

implement idiomatic style.

• Easily extendable, can be

imported in packages in Scala

projects based on need.

• Stands at 1300+ lines of code.

Namrata Malkani

Indian Institute of Technology Mandi

Email: nmalkani13@gmail.com

Manas Thakur

Indian Institute of Technology Mandi

Email: manas@iitmandi.ac.in

FUTURE RESEARCH

REFERENCES

• More refactoring,

implementing currying, tackling

larger OO patterns.

• Evaluating the original and

refactored program with

respect to a code-evaluation

metric, thus coming up with a

code-quality check system.

[1] Michael Bevilacqua-Linn.

Functional Programming

Patterns. The Pragmatic

Programmers, LLC.

[2] ScalaMeta.Org.

Scalameta- Library to read,

analyse, transform and

generate Scala programs,

2016.

SCALA CODE ANALYSIS & REFACTORING LOOPS TO COMMON SEQUENCE METHODS

ScalaRT: TOOL DESIGN

• Refactoring: Transforming program to improve

its design, structure, and implementation, while

preserving its functionality.

• It requires a framework that lets the user work

on the underlying syntax tree of the source

code. We use the metaprogramming library

Scalameta.

Analysis by Tree

Traversal &

Pattern Matching

(re)Construct Tree

& generate new

Source Code

Scala

Program

Transform

Syntax Tree

Nodes

Parse Code

into Syntax

Tree

CONDITIONALS TO PATTERN MATCH EXPRESSIONS

Figure 1. Loop Categorization. Further, assigning a sequence method to the loop is based on tree-node analysis of the

key assignment or conditional statement.

Parse Syntax

Tree

Is nested

node

Source

Code

end

Output

Plug relevant stmt into

case clause, construct

pattern match body

Construct

pred-stmt

map

Parse

loop body

Output

Is for_node

Check functional

conditions

Is if_node

end

Modify each

predicate intro

case clause

Match

predicate

against T/F

Get tuple

set for

match_exp

Output

T

F

Table 1. Loop refactoring examples. Exact refactored code or likely sequence method replacement can be given from

among 20 sequence methods in Scala 2.

Figure 3. Conditional refactoring examples. A special case of conditional enclosed

within loop- refactored to pattern matching function within ‘map’ is shown in the bottom.

Figure 2. Algorithm for refactoring conditional statements. All sorts of if-else, nested else-if statements can be

converted to pattern matching, if tuple size remains upto 3. Otherwise refactoring would likely reduce readability.

T

T

F

F

F

T

