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KEY POINTS

AUTHORS’ CONTACT

• Functional Design Patterns -

Immutability, declarative style.

• Scala - Hybrid language with 

excellent functional features.

• Idiomatic Programming -

Concise, less error-prone, easy to 

implement & understand – like the 

functional features of Scala.

• Loops -> Common Sequence 

Methods.

• Single line solution, no mutation, 

less errors, more readable.

• Conditionals -> Pattern Match.

• Better readability, enforces 

common return value, efficient 

byte-code.

• ScalaRT: Scala Refactoring Tool.

• Suggest improvements on code to 

implement idiomatic style.

• Easily extendable, can be 

imported in packages in Scala 

projects based on need.

• Stands at 1300+ lines of code.
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• More refactoring, 

implementing currying, tackling 

larger OO patterns.

• Evaluating the original and 

refactored program with 

respect to a code-evaluation 

metric, thus coming up with a 

code-quality check system.
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SCALA CODE ANALYSIS & REFACTORING LOOPS TO COMMON SEQUENCE METHODS

ScalaRT: TOOL DESIGN

• Refactoring: Transforming program to improve 

its design, structure, and implementation, while 

preserving its functionality.

• It requires a framework that lets the user work 

on the underlying syntax tree of the source 

code. We use the metaprogramming library 

Scalameta.
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CONDITIONALS TO PATTERN MATCH EXPRESSIONS

Figure 1. Loop Categorization. Further, assigning a sequence method to the loop is based on tree-node analysis of the 

key assignment or conditional statement.
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Table 1. Loop refactoring examples. Exact refactored code or likely sequence method replacement can be given from 

among 20 sequence methods in Scala 2. 

Figure 3. Conditional refactoring examples. A special case of conditional enclosed 

within loop- refactored to pattern matching function within ‘map’ is shown in the bottom. 

Figure 2.  Algorithm for refactoring conditional statements. All sorts of if-else, nested else-if statements can be 

converted to pattern matching, if tuple size remains upto 3. Otherwise refactoring would likely reduce readability.
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