
• Program analysis written in Soot[2].
• Supported Loop Identifier -

• Identify bounds, update statement and iteration variable.
• Reject loops with multiple update statements or exits.
• Not trivial because loops in Jimple (Soot’s IR) composed of ifs and gotos.

• Dependence Analysis -
• Identify scalar variables not local to the loop (nonLocalVars).
• Object references treated as nonLocalVars.
• Loops having function calls or writes to nonLocalVars rejected.
• Array references handled separately -

• Array elements written to in one iteration should not be read from or written to in
any other iteration.

• Z3 Solver[3]: Identify array dependence by solving the Satisfiability Problem.
• Encode relevant portions of the program into logic.

• Annotation Generator -
• Extract start_pc, slot and length attributes of iteration variable from the class file.
• Write to AnnotationMap object file.

PARALLELIZATION

CAN WE RUN IN PARALLEL?

AUTOMATING LOOP PARALLELIZATION FOR TORNADOVM

SHREYANSH KULSHRESHTHA†, RISHI SHARMA† AND MANAS THAKUR†

Processor

Processor

Processor

Processor

Problem Instructions

t1t2t3tN

TORNADOVM

LIMITATIONS OF TORNADOVM

OUR SOLUTION : AUTOTORNADO

• TornadoVM[1]: A Java accelerator plugin for Java
Virtual Machines.

• Parallelizes manually annotated loops.

@Parallel
Annotated

Java
Bytecode

TornadoVM

Multi-
core
CPU

GPU

FPGA

1 for (@Parallel int i = 0; i < n; ++i) {
2 // Do something
3 }

An annotated for loop

1 public void swap(int[] ar) {
2 int n = ar.length;
3 for (@Parallel int i = 0; i < n; i++) {
4 int temp = ar[i];
5 ar[i] = ar[i-1];
6 ar[i-1] = temp;
7 }
8 }

1 public void scale(int[] ar) {
2 int n = ar.length;
3 int alpha = 2;
4 for (int i = 0; i < n; i++) {
5 ar[i] = ar[i]*alpha;
6 }
7 }

javac
Java Source Code

(Without @Parallel)
Java

ByteCode

AnnotationMap
Object File

(Modified)
TornadoVM

Run and
Parallelize

Supported
for Loop
Identifier

Dependence
Analysis

Z3 Solver

Annotation
Generator

AutoTornado
(Soot + Z3)

(k3u == f3(iu,k2u)) ∧ (k2u == f2(iu,k1u)) ∧ (k1u == f1(iu)) ∧
(k3v == f3(iv,k2v)) ∧ (k2v == f2(iv,k1v)) ∧ (k1v == f1(iv)) ∧
(iu ≥ 0) ∧ (iu < 10000) ∧ (iv ≥ 0) ∧ (iv < 10000) ∧
(iu ≠ iv) ∧ (k3u == k3v) u and v are different iterations (u ≠ v)

1 public void foo(int ar[]) {
2 for(int i=0; i<10000; i++) {
3 int k1 = f1(i);
4 int k2 = f2(i, k1);
5 int k3 = f3(i, k2);
6 ar[k3] = k2;
7 }
8 }

RESULTS

CONCLUSION & FUTURE WORK REFERENCES

30th INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS (ISSTA 2021)

• Does not automatically insert annotation at
potential locations.

• Users have to identify parallelizable loops.

• Does not verify if the annotated loop is parallelizable.
• Wrongly annotated loops can lead to unsound

results.

• Speedup execution utilizing Parallelism.
• Parallelize hot portions – Loops.
• Must not contain loop carried dependence.

Problem Statement – “Is there a satisfying assignment
for variables under the given constraints, such that the
index can be the same for two different iterations?”

56%
44%

Analysis over
Parallelizable Cases

Sound and Precise

Sound but Imprecise

Evaluating Precision and Soundness of
AutoTornado over Test Cases

• Conclusion:
• AutoTornado identifies loop-carried

dependences and marks appropriate loops
as parallelizable.

• Most of the loops that are marked not
parallelizable conservatively come from
the scalar analysis.

• Future work:
• Plans to improve scalar analysis and

handle function calls inside loops.

Test Program

Running Time (seconds) Analysis
Time

(seconds)
Before

AutoTornado
After

AutoTornado

Saxpy 22.205 2.224 2

HilbertMatrix 9.981 3.842 2

MatrixTranspose 96.334 7.33 1

Convolution2D 27.982 5.152 1

VectorAddInt 10.322 1.742 1

Table - Running times of different programs in serial and
parallel execution.

[1] Juan Fumero. 2020. TornadoVM: Accelerating
Java with GPUs and FPGAs (2020).
https://www.infoq.com/articles/tornadovm-
java-gpu-fpga/

[2] Raja Vallée-Rai, Phong Co, Etienne Gagnon,
Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. 1999. Soot - a Java Bytecode
Optimization Framework. CASCON ’99. IBM
Press.

[3] Leonardo De Moura and Nikolaj Bjørner. 2008.
Z3: An Efficient SMT Solver. TACAS’08/
ETAPS’08. Springer-Verlag, Berlin, Heidelberg,
337–340.

• Tests include examples provided by TornadoVM
as well as self-written cases.

14

7

25

7
0

10

20

30

Parallelizable Non Parallelizable

Analysis Results

Precise and Correct Sound

Total = 25

Total = 7

• † Authors’ address: {shreyanshkuls,rishi-sharma}@outlook.com manas@iitmandi.ac.in, Indian Institute of Technology Mandi, Himachal Pradesh, India

https://www.infoq.com/articles/tornadovm-java-gpu-fpga/

