CAN WE RUN IN PARALLEL?
AUTOMATING LOOP PARALLELIZATION FOR TORNADOVM C

SHREYANSH KULSHRESHTHAT, RISHI SHARMAT AND MANAS THAKUR'

PARALLELIZATION
Problem Instructions
— — Processor
— —_ Processor
— —> Processor
— —> Processor
tN t3 t2 tl1

_

e Speedup execution utilizing Parallelism.
e Parallelize hot portions — Loops.
e Must not contain loop carried dependence.

_

LIMITATIONS OF TORNADOVM

_

1 public void scale(int[] ar) {
2 int n = ar.length;

3 int alpha = 2;

4 for (int i = 0; i < n; i++) {
5 ar[i] = ar[i]*alpha;

6 }

7}

e Does not automatically insert annotation at
potential locations.
e Users have to identify parallelizable loops.

1 public void swap(int[] ar) {

2 int n = ar.length;

3 for (@Parallel int i = 0; i < n; i++) {
4 int temp = ar[i];

5 ar[i] = ar[i-1];

6 ar[i-1] = temp;

7 %

8 }

e Does not verify if the annotated loop is parallelizable.

e Wrongly annotated loops can lead to unsound
results.

RESULTS

Evaluating Precision and Soundness of
AutoTornado over Test Cases

Analysis over
Parallelizable Cases

Analysis Results

30
Total = 25

20 25

10 Total =7
7

Parallelizable Non Parallelizable

Sound and Precise

Precise and Correct M Sound B Sound but Imprecise

Running Time (seconds) Analysis
Test Program Before Aftor Time

AutoTornado | AutoTornado (seconds)
Saxpy 22.205 2.224 2
HilbertMatrix 9.981 3.842 2
MatrixTranspose 96.334 7.33 1
Convolution2D 27.982 5.152 1
VectorAddInt 10.322 1.742 1

_

Table - Running times of different programs in serial and
parallel execution.

e Tests include examples provided by TornadoVM
as well as self-written cases.

\ handle function calls inside loops. \

ARAS

— Indian
= Institute of
Technology

Mandi

TORNADOVM

1 for (@Parallel int i = 0; i < n; ++i) {
2 // Do something
3}

@Parallel
Annotated
Java
Bytecode

An annotated for loop TornadoVM
ornado

e TornadoVM][1]: A Java accelerator plugin for Java
Virtual Machines.
e Parallelizes manually annotated loops.

OUR SOLUTION : AUTOTORNADO

Java Source Code) Java | (Modified)
(Without @Parallel) Javac ByteCode "I TornadoVM

__

Run and
Parallelize

A

Dependence

for Loop v Generator Object File

i Identifier
i 73 Solver

Analysis |
Supported 7} Annotation } : AnnotationMap

AutoTornado
(Soot + Z3)

e Program analysis written in Soot|[2].
e Supported Loop Identifier -
e Identify bounds, update statement and iteration variable.
e Reject loops with multiple update statements or exits.
e Not trivial because loops in Jimple (Soot’s IR) composed of ifs and gotos.
e Dependence Analysis -
Identify scalar variables not local to the loop (nonLocalVars).
Object references treated as nonLocalVars.
Loops having function calls or writes to nonLocalVars rejected.
Array references handled separately -
e Array elements written to in one iteration should not be read from or written to in
any other iteration.
e 73 Solver|3|: Identify array dependence by solving the Satisfiability Problem.
e Encode relevant portions of the program into logic.

1 public void foo(int ar[]) { (k3" == £3(i",k2")) 2 (k2" == f2(i",k1")) /4 (k1" == f1(i")) 4

2 for(int i=0; i<10000; i++) { (k3" ==13(i",k2%)) 4 (k2" == f2(i",k1")) 4 (k1V == f1(i)) 4

3 int k1 = £1(i); (i" > 0) / (i < 10000) / (i > 0) A (i¥ < 10000) 4

4 int k2 = £2 (1 5 kl) s (Iu ;ﬁ IV) /A (k3u == k3v) u and v are different iterations (U # V)
5 int k3 = £3(i, k2);

6 ar [k3] = k2; Problem Statement — “Is there a satisfying assignment
7} for variables under the given constraints, such that the
8 } index can be the same for two different iterations?”

e Annotation Generator -
e Extract start pc, slot and length attributes of iteration variable from the class file.
e Write to AnnotationMap object file.

REFERENCES

CONCLUSION & FUTURE WORK

[1] Juan Fumero. 2020. TornadoVM: Accelerating
Java with GPUs and FPGAs (2020).
https://www.infoq.com /articles/tornadovm-
java-gpu-fpga

Raja Vallée-Rai, Phong Co, Etienne Gagnon,
Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. 1999. Soot - a Java Bytecode
Optimization Framework. CASCON ’99. IBM
Press.

[3] Leonardo De Moura and Nikolaj Bjgrner. 2008.
Z3: An Efficient SMT Solver. TACAS’08/
ETAPS’08. Springer-Verlag, Berlin, Heidelberg,
337-340.

e Conclusion:
e AutoTornado identifies loop-carried
dependences and marks appropriate loops
as parallelizable. 2]
e Most of the loops that are marked not
parallelizable conservatively come from
the scalar analysis.

e Future work:
e Plans to improve scalar analysis and

30th INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS (ISSTA 2021)

e T Authors’ address: {shreyanshkuls,rishi-sharma}@outlook.com manas@iitmandi.ac.in, Indian Institute of Technology Mandi, Himachal Pradesh, India

https://www.infoq.com/articles/tornadovm-java-gpu-fpga/

