
• Program analysis written in Soot[2].
• Supported Loop Identifier -

• Identify bounds, update statement and iteration variable.
• Reject loops with multiple update statements or exits.
• Not trivial because loops in Jimple (Soot’s IR) composed of ifs and gotos.

• Dependence Analysis -
• Identify scalar variables not local to the loop (nonLocalVars).
• Object references treated as nonLocalVars.
• Loops having function calls or writes to nonLocalVars rejected.
• Array references handled separately -

• Array elements written to in one iteration should not be read from or written to in 
any other iteration.

• Z3 Solver[3]: Identify array dependence by solving the Satisfiability Problem.
• Encode relevant portions of the program into logic.

• Annotation Generator -
• Extract start_pc, slot and length attributes of iteration variable from the class file.
• Write to AnnotationMap object file.
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• TornadoVM[1]: A Java accelerator plugin for Java 
Virtual Machines.

• Parallelizes manually annotated loops.
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1 for (@Parallel int i = 0; i < n; ++i) {
2 // Do something
3 }

An annotated for loop

1 public void swap(int[] ar) {
2 int n = ar.length;
3 for (@Parallel int i = 0; i < n; i++) {
4 int temp = ar[i];
5 ar[i] = ar[i-1];
6 ar[i-1] = temp;
7 }
8 }

1 public void scale(int[] ar) {
2 int n = ar.length;
3 int alpha = 2; 
4 for (int i = 0; i < n; i++) {
5 ar[i] = ar[i]*alpha;
6   }
7 }
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(k3u == f3(iu,k2u)) ∧ (k2u == f2(iu,k1u)) ∧ (k1u == f1(iu)) ∧
(k3v == f3(iv,k2v)) ∧ (k2v == f2(iv,k1v)) ∧ (k1v == f1(iv)) ∧
(iu ≥ 0) ∧ (iu < 10000) ∧ (iv ≥ 0) ∧ (iv < 10000) ∧
(iu ≠ iv) ∧ (k3u == k3v) u and v are different iterations (u ≠ v)

1 public void foo(int ar[]) {
2 for(int i=0; i<10000; i++) {
3 int k1 = f1(i);
4 int k2 = f2(i, k1);
5 int k3 = f3(i, k2);
6 ar[k3] = k2;
7 }
8 }
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• Does not automatically insert annotation at 
potential locations.

• Users have to identify parallelizable loops.

• Does not verify if the annotated loop is parallelizable.
• Wrongly annotated loops can lead to unsound 

results.

• Speedup execution utilizing Parallelism.
• Parallelize hot portions – Loops.
• Must not contain loop carried dependence.

Problem Statement – “Is there a satisfying assignment 
for variables under the given constraints, such that the 
index can be the same for two different iterations?”
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Evaluating Precision and Soundness of 
AutoTornado over Test Cases

• Conclusion:
• AutoTornado identifies loop-carried 

dependences and marks appropriate loops 
as parallelizable.

• Most of the loops that are marked not 
parallelizable conservatively come from 
the scalar analysis.

• Future work:
• Plans to improve scalar analysis and 

handle function calls inside loops.

Test Program 

Running Time (seconds) Analysis 
Time 

(seconds)
Before 

AutoTornado
After 

AutoTornado

Saxpy 22.205 2.224 2

HilbertMatrix 9.981 3.842 2

MatrixTranspose 96.334 7.33 1

Convolution2D 27.982 5.152 1

VectorAddInt 10.322 1.742 1

Table - Running times of different programs in serial and 
parallel execution.
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• Tests include examples provided by TornadoVM 
as well as self-written cases.
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