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e Speedup execution utilizing Parallelism.
e Parallelize hot portions — Loops.
e Must not contain loop carried dependence.

\_

LIMITATIONS OF TORNADOVM

\_

1 public void scale(int[] ar) {
2 int n = ar.length;

3 int alpha = 2;

4 for (int i = 0; i < n; i++) {
5 ar[i] = ar[i]*alpha;

6 }

7}

e Does not automatically insert annotation at
potential locations.
e Users have to identify parallelizable loops.

1 public void swap(int[] ar) {

2 int n = ar.length;

3 for (@Parallel int i = 0; i < n; i++) {
4 int temp = ar[i];

5 ar[i] = ar[i-1];

6 ar[i-1] = temp;

7 %

8 }

e Does not verify if the annotated loop is parallelizable.

e Wrongly annotated loops can lead to unsound
results.
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Saxpy 22.205 2.224 2
HilbertMatrix 9.981 3.842 2
MatrixTranspose 96.334 7.33 1
Convolution2D 27.982 5.152 1
VectorAddInt 10.322 1.742 1

\_

Table - Running times of different programs in serial and
parallel execution.

e Tests include examples provided by TornadoVM
as well as self-written cases.

\ handle function calls inside loops. \
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1 for (@Parallel int i = 0; i < n; ++i) {
2 // Do something
3}
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e TornadoVM][1]: A Java accelerator plugin for Java
Virtual Machines.
e Parallelizes manually annotated loops.
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e Program analysis written in Soot|[2].
e Supported Loop Identifier -
e Identify bounds, update statement and iteration variable.
e Reject loops with multiple update statements or exits.
e Not trivial because loops in Jimple (Soot’s IR) composed of ifs and gotos.
e Dependence Analysis -
Identify scalar variables not local to the loop (nonLocalVars).
Object references treated as nonLocalVars.
Loops having function calls or writes to nonLocalVars rejected.
Array references handled separately -
e Array elements written to in one iteration should not be read from or written to in
any other iteration.
e 73 Solver|3|: Identify array dependence by solving the Satisfiability Problem.
e Encode relevant portions of the program into logic.

1 public void foo(int ar[]) { (k3" == £3(i",k2")) 2 (k2" == f2(i",k1")) /4 (k1" == f1(i")) 4

2 for(int i=0; i<10000; i++) { (k3" ==13(i",k2%)) 4 (k2" == f2(i",k1")) 4 (k1V == f1(i)) 4

3 int k1 = £1(i); (i" > 0) / (i < 10000) / (i > 0) A (i¥ < 10000) 4

4 int k2 = £2 (1 5 kl) s (Iu ;ﬁ IV) /A (k3u == k3v) u and v are different iterations (U # V)
5 int k3 = £3(i, k2);

6 ar [k3] = k2; Problem Statement — “Is there a satisfying assignment
7} for variables under the given constraints, such that the
8 } index can be the same for two different iterations?”

e Annotation Generator -
e Extract start pc, slot and length attributes of iteration variable from the class file.
e Write to AnnotationMap object file.
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e Conclusion:
e AutoTornado identifies loop-carried
dependences and marks appropriate loops
as parallelizable. 2]
e Most of the loops that are marked not
parallelizable conservatively come from
the scalar analysis.

e Future work:
e Plans to improve scalar analysis and
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