OPTIMIZING DYNAMIC LANGUAGES CS=

IIT Bombay

Introduction

‘& Dynamic languages like Python, JavaScript and R are everywhere.

JavaScript is widely used to design User

‘4% Despite their popularity, they suffer from performance bottlenecks and slow warmups. Intertaces, Servers and Mobile Applications.

L _ o _ _ Lack of standard representations and tools to study
‘' Static analysis tools help optimize static languages like C, C++ and Java, but these .
and optimize programs.

concepts seldom apply to dynamic languages. We are developing a framework called IRIDIUM

4% We are developing tools and frameworks to perform static analysis of JavaScript. that will be used to study and optimize JavaScript

100
y: 111
1 const ff = function () { //f
> this.x = 100 | - e
3 this Yy = 111 t > this ——= console.log(this.x, this.y 100 111 . =
4 // Returmed Function foo |mplICIt contEth
5 return function foo () { . .
6 console.log(this.x, this.y) Chammg Uperators
7 } x: 160 x: 109
y: 111 . .
3 Complex Lexical Scoping
o let t = ££() 7
llsi 1) === 1 111 /
o EL A alie natl) se=e 190 — Temporal Dead Zones
H . c 109 . Lo [o.t() J————> this ——— console.log(this.x, this.y) 109 undefined
12 const o = X , t: : :
13 0.t() // Callsite(2) ===> 109 undefined Dynamlc pointers
14
15 let t1 = o.t . e ligati
16 t1() // Callsite(3) ===> 100 111 V111 v | x: e Complex Class Initialization

let t1 = o.t ’
[£10) }—) this ———= console.log(this.x, this.y) 100 111

ridium Passes wmlp CODE GENERATION

SOURCECODE m=sp 3)S = [RDIUM m=mp

Optimization requires a precise pointer information,

_ _ we are developing a closure aware pointer analysis
3J5 1s a fully compiant for IRIDIUM to model the dynamic language featues

language subset of ECMAScript 2025 of JavaScript.

L L Our next step Is to integrate IRIDIUM to load
representation for JS optimized code into existing Virtual Machine
systems like SpiderMonkey, V8 and JSC.

Meetesh Kalpesh Mehta (PhD IITB), Prof Manas Thakur (Advisor) I) L f‘ T ()

Programming Languages Analysis Translation Optimization

