OPTIMIZING DYNAMIC LANGUAGES CS=

IIT Bombay

Introduction

‘& Dynamic languages like Python, JavaScript and R are everywhere.

JavaScript is widely used to design User

‘4% Despite their popularity, they suffer from performance bottlenecks and slow warmups. Intertaces, Servers and Mobile Applications.

L _ o _ _ Lack of standard representations and tools to study
‘' Static analysis tools help optimize static languages like C, C++ and Java, but these .
and optimize programs.

concepts seldom apply to dynamic languages. We are developing a framework called IRIDIUM

4% We are developing tools and frameworks to perform static analysis of JavaScript. that will be used to study and optimize JavaScript
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Optimization requires a precise pointer information,

_ _ we are developing a closure aware pointer analysis
3J5 1s a fully compiant for IRIDIUM to model the dynamic language featues

language subset of ECMAScript 2025 of JavaScript.

L L Our next step Is to integrate IRIDIUM to load
representation for JS optimized code into existing Virtual Machine
systems like SpiderMonkey, V8 and JSC.
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