
Arjun Harikumar

AMD, Bangalore
Sardar Vallabhbhai National

Institute of Technology, Surat
Indian Institute of Technology

Bombay

Bhavya Hirani Prof. Manas Thakur

Optimizations in Java JIT Compilers

Based on Value Types

What are “Value Type” Objects ?
Consider This Running Example

HEAP
MEMORY

Integer

int val: 50
Header

Point

Header

int x:

int y:

5

10

Circle

Header

Integer radius

Point center

2DPlane

Header

...

Circle c1

Point

Header

int x:

int y:

5

10

Circle

Header

int radius:

Point center

50

We do it because it has latency-related
benefits --- fewer cache misses, for
example.

It works because Integers are merely
wrappers over numerical values, and
usually, no other objects are trying to
access/mutate them synchronously...

We commonly see integers in Java
being declared as s rather than

objects. 
int

Integer

=> the loses
its identity (address)

Integer

TAKEAWAY

Circle

Header

int radius:

int x:

int y:

50

5

10

But we still haven’t addressed the
elephant in the room...Point is also merely
a wrapper over a bunch of values, isn’t it?

And what about Circle? If Circle objects
aren’t synchronized, we can treat them as
a bunch of int values as well�

�� For Integers, we sacrifice object
representation because it’s a minor
inconvenience�

�� But for other objects which do not
synchronize or mutate, a similar
feature would be useful, as long as
there’s not much programmer effort�

�� Project Valhalla [1] addresses this by
allowing objects to be declared as
“value type”: final objects which acts
as wrappers over primitives.

Object Inlining
This feature can lead to several cool optimizations! The one we have been
seeing is called Object Inlining. If we declare to be a value type
object, its entire depth will be inlined within .

Circle
2DPlane

2DPlane

Header

...

int c1_radius:

int c1_x:

int c1_y:

50

5

10

The immutability of value types could
allow each thread to run an
independent GC algorithm on local
value type objects through an
optimization called copy on update [2]

Better Garbage Collection?

SHARED HEAP

THREAD 1

HEAP

THREAD 2

HEAP

O1

Copy

of O1

Get used to noticing
when certain classes do

not need an identity,
because in the future,

you’ll be able to
leverage it to make your

java code run faster
with minimal effort!

STACK
2DPlane p1;

Saved 36
bytes

(header)
and two

levels of
Indirection

�� OpenJDK. 2023. Project Valhalla. https://openjdk.org/projects/valhalla�
�� Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector for a multithreaded implementation of ML. In Proceedings of the 20th ACM SIGPLAN- SIGACT Symposium on Principles of Programming Languages - POPL

’93, pages 113–123, Charleston, South Carolina, United States, 1993. ACM Press.

...

