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Optimizations in Java JIT Compilers

Based on Value Types

What are “Value Type” Objects ?
Consider This Running Example
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We do it because it has latency-related 
benefits --- fewer cache misses, for 
example.



It works because Integers are merely 
wrappers over numerical values, and 
usually, no other objects are trying to 
access/mutate them synchronously...

We commonly see integers in Java 
being declared as s rather than 

objects. 
int

Integer 

=> the  loses 
its identity (address) 
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But we still haven’t addressed the 
elephant in the room...Point is also merely 
a wrapper over a bunch of values, isn’t it?

And what about Circle? If Circle objects 
aren’t synchronized, we can treat them as 
a bunch of int values as well�

�� For Integers, we sacrifice object 
representation because it’s a minor 
inconvenience�

�� But for other objects which do not 
synchronize or mutate, a similar 
feature would be useful, as long as 
there’s not much programmer effort�

�� Project Valhalla [1] addresses this by 
allowing objects to be declared as 
“value type”: final objects which acts 
as wrappers over primitives.



Object Inlining
This feature can lead to several cool optimizations! The one we have been 
seeing is called Object Inlining. If we declare  to be a value type 
object, its entire depth will be inlined within .
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The immutability of value types could 
allow each thread to run an 
independent GC algorithm on local 
value type objects through an 
optimization called copy on update [2]

Better Garbage Collection?
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Get used to noticing 
when certain classes do 

not need an identity, 
because in the future, 

you’ll be able to 
leverage it to make your 

java code run faster 
with minimal effort!
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