
A STUDY OF THE IMPACT OF CALLBACKS IN
STAGED STATIC+DYNAMIC PARTIAL ANALYSIS

ADITYA ANAND†

STAGED ANALYSIS
• Java programs are compiled statically as

well as just-in-time (JIT).
• JIT-compilation time also affects the

execution-time of programs.
• Typical JIT compilers perform imprecise

analyses (e.g., intraprocedural) and sacri-
fice precision.

• Recent approaches [1, 2] perform partial
analysis of available program statically,
and record the dependencies on the un-
available portions as conditional values.

JIT compiler
Highly optimized code

Very fast compilation

JVMJava
compiler

.java

files Static
analyzer

+

Source machine Target machine

.class
files
.res
files

Partial Result
Evaluator

IMPACT OF CALLBACKS

• The statically unknown argument passed to
foo from a library method may affect:

– object O3 in foo.
– object O8 in bar.

GENERATION OF CONDITIONAL VALUES

• Conditional Value for Object O3: {⟨caller,⟨argument,1⟩, ⟨A.bar,⟨parameter,1⟩⟩}

• Conditional Value for Object O8: {⟨caller,⟨argument,1⟩⟩}

FINDING CALLBACK-AFFECTED METHODS/OBJECTS

1 Procedure callbackObjectsAndMethods()
2 foreach application class c do
3 if c overrides or implements a library method m then
4 Mark m and all its parameters as callback_affected.

5 repeat
6 foreach callback_affected method mtd do
7 foreach object obj ∈ mtd do
8 if obj has dependency on a callback_affected formal parameter then
9 Mark obj as a callback_affected object.

10 foreach callback_affected object obj do
11 if obj is passed as the kth argument to another method n then
12 Mark n and its kth parameter as callback_affected.

13 until fixpoint;

1. Identify library-overridden and implemented methods in application classes, and mark all their pa-
rameters as potentially callback-affected.

2. For all the callback-affected methods, if any of their local objects depend on the existing callback-
affected methods and objects, mark those also as callback-affected.

3. Finally, if any of the callback-affected objects is passed to another method, say as the kth argument,
mark the callee as well as the corresponding parameter as callback-affected.

4. Perform the previous two operations till a fixed point.

STUDY SETUP
1. Static Analysis (in Soot):

• Extend an existing tool [3] that generates
dependencies for each program element.

• Identify the dependencies that may get af-
fected by possible callbacks from libraries.

2. Benchmarks:

• 10 benchmarks from the DaCapo 9.12 suite
using the “default” input size.

EVALUATION RESULTS

Bench- Callback Total Callback Total
mark methods methods objects objects
avrora 43 3181 147 13344
batik 896 6934 1865 34137
lusearch 123 1971 338 9054
luindex 69 1998 171 10260
pmd 595 5941 1301 30016
sunflow 49 2428 104 14136
h2 639 4777 1315 27610
xalan 821 6396 2131 31488
fop 968 11470 2387 74590
eclipse 1515 29419 3505 79443

• On average, 7.7% applica-
tion methods are identified
as callback-affected (either di-
rectly or through parameters).

• 4.1% application objects con-
tain dependencies related to
the parameters involved in
potential callbacks.

CONCLUSION AND FUTURE WORK
• Static-analysis results by prior static+dynamic schemes may be unsound in presence of corresponding

callbacks at run-time.

• Overall low percentage of objects affected by callbacks enhances the confidence on the potential of
existing static+dynamic schemes.

• It is important to develop schemes that maintain precision and soundness in their presence.

• Future research: Extend the idea of staged partial analysis to efficiently and precisely impart sound-
ness in presence of dynamic features such as callbacks.

REFERENCES
[1] Manas Thakur and V. Krishna Nandivada. PYE: A
Framework for Precise-Yet-Efficient Just-In-Time Anal-
yses for Java Programs. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), July 2019.

[2] Aditya Anand and Manas Thakur. 2022. Principles
of Staged Static+Dynamic Partial Analysis. In Proceed-
ings of the 29th Static Analysis Symposium (SAS 2022).
Springer International Publishing, 30 pages.

[3] Nikhil T R, Dheeraj Yadav, and Manas Thakur. 2021.
Stava. [https://github.com/CompL-IITMandi/stava].

ACM STUDENT RESEARCH COMPETITION (SPLASH 2022), AUCKLAND, NEW ZEALAND.
† Author address: ud21002@students.iitmandi.ac.in; School of Computing and Electrical Engineering, IIT Mandi, Himachal Pradesh, India.
• PhD Advisor: Manas Thakur, manas@iitmandi.ac.in; School of Computing and Electrical Engineering, IIT Mandi, Himachal Pradesh, India.


