
Mix Your Contexts Well: Opportunities Unleashed by
Recent Advances in Scaling Context-Sensitivity

Manas Thakur
IIT Mandi, India

manasthakur@iitmandi.ac.in

V. Krishna Nandivada
IIT Madras, India
nvk@iitm.ac.in

Abstract

Existing precise context-sensitive heap analyses do not scale
well for large OO programs. Further, identifying the right
context abstraction becomes quite intriguing as two of the
most popular categories of context abstractions (call-site- and
object-sensitive) lead to theoretically incomparable precision.
In this paper, we address this problem by first doing a detailed
comparative study (in terms of precision and efficiency) of
the existing approaches, both with and without heap cloning.
In addition, we propose novel context abstractions that lead
to a new sweet-spot in the arena.
We first enhance the precision of level-summarized rel-

evant value (LSRV) contexts (a highly scalable abstraction
with precision matching that of call-site-sensitivity) using
heap cloning. Then, motivated by the resultant scalability,
we propose the idea of mixing various context abstractions,
and add the advantages of k-object-sensitive analyses to
LSRV contexts, in an efficient manner. The resultant con-
text abstraction, which we call lsrvkobjH , also leads to a
novel connection between the two broad variants of other-
wise incomparable context-sensitive analyses. Our evalua-
tion shows that the newer proposals not only enhance the
precision of both LSRV contexts and object-sensitive analy-
ses (to perform control-flow analysis of Java programs), but
also scale well to large programs.

CCS Concepts · Theory of computation → Program

analysis; · Software and its engineering→ Compilers;
Object oriented languages.

Keywords Static analysis, Context-sensitivity, Java

ACM Reference Format:

Manas Thakur and V. Krishna Nandivada. 2020. Mix Your Con-

texts Well: Opportunities Unleashed by Recent Advances in Scaling

Context-Sensitivity. In Proceedings of the 29th International Con-

ference on Compiler Construction (CC ’20), February 22ś23, 2020,

San Diego, CA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3377555.3377902

ACM acknowledges that this contribution was authored or co-authored

by an employee, contractor or affiliate of a national government. As such,

the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes

only.

CC ’20, February 22ś23, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00

https://doi.org/10.1145/3377555.3377902

1 Introduction

Context-sensitive analyses, specially for object-oriented lan-
guages such as Java, are known to be notorious for their
precision-scalability trade-offs. Compared to their context-
insensitive counterparts, context-sensitive analyses have
been shown to improve the precision significantly; however,
the scalability of precise context-sensitive analyses contin-
ues to be a cause of concern. The degree by which a given
context-sensitive analysis improves precision depends on
howwell the context abstraction partitions the dataflow facts
across the various created contexts. Similarly, the degree by
which a context-sensitive analysis may increase the analy-
sis time depends on whether the partitioned dataflow facts
succeed or fail in leading to an enhanced precision for the
analysis under consideration. Thus, as also noted by prior
works [7, 26], the choice of context abstraction plays a very
important role in deciding whether a given context-sensitive
analysis gives good enough precision for its associated cost.
The classical call-strings approach [23, 24], which uses

the string formed by the callers of a method as the context,
statically models the run-time stack, and hence is arguably
the most intuitive context abstraction. The value-contexts
approach [10, 20] uses the dataflow values reaching the call-
sites of a method to restrict the unbounded growth of call-
strings, and thus provides a way to realize the precision of
infinite-length call-strings. Thakur and Nandivada [30] iden-
tify the relevant portions of value contexts and summarize
them to form the analysis-specific abstraction of LSRV con-
texts; their approach scales individual value-contexts based
analyses, and hence call-strings based analyses, without com-
promising on the precision of the analysis.
Object-sensitivity [16], another popular context abstrac-

tion, distinguishes contexts based on the chain formed by the
allocation sites of successive receiver objects. Over the last
few years, limited-length versions of object-sensitivity (ab-
breviated as kobj) have been shown to offer reasonably well-
balanced precision-scalability trade-offs for object-oriented
programs [28, 29]; their variants have also been introduced
with a great interest, specially in order to make the original
approaches scale to large programs [13, 14, 22].

Nystrom et al. [18] proposed heap cloning as yet another
technique to improve the precision of existing context ab-
stractions. Heap cloning specializes allocation sites with the
context of creation, which usually improves the partitioning
of the per-context information computed by a given analysis.

27

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3377555.3377902

CC ’20, February 22ś23, 2020, San Diego, CA, USA Manas Thakur and V. Krishna Nandivada

Though this improves the precision of context-sensitive anal-
yses significantly, typical heap analyses with even one-level
of heap-cloning do not scale to large benchmarks. Recent
approaches [14, 27] solve this problem by coming up with
heuristics to perform context-sensitivity selectively, thus
scaling such analyses by sacrificing some precision.
We note two salient points in the above discussion. First,

the popular choices of context abstractions can be divided
broadly into two variants: call-string and object-sensitivity
based. As shown in Figure 1, the highly scalable LSRV con-
texts (and its basis - value contexts) are based on

kobj

kobjH
kcs

= valcs
= lsrv

kcsH

call-string basedobject-sensitivity based

Figure 1. Relative precision of
existing context abstractions.

call-site-sensitivity, and
have the same preci-
sion as full-length clas-
sical call strings. How-
ever, the precision of
the other popular vari-
ant (object-sensitivity)
is incomparable with
the call-site-sensitive variants. Second, though heap cloning
is known to improve the precision of individual variants,
the effects of heap cloning on the newer context abstrac-
tions, such as value contexts and LSRV contexts, are not
known. In this paper, we address the resulting challenges
from these points, while giving a clear picture of the theo-
retical and practically achievable precision of the popular
existing context-sensitivity abstractions, with and without
heap-cloning. In the pursuit to do so, we also present a novel
way of mixing the existing, otherwise incomparable, context
abstractions to realize a novel sweet-spot between precision
and scalability.
We show that heap-cloning leads to interesting conclu-

sions in terms of the relative precision of different existing
context abstractions. We enhance the precision of LSRV con-
texts using heap cloning, we call it lsrvH . We show that
unlike their counterparts without heap-cloning, the heap-
cloned versions of value-contexts and lsrvH do not have the
same precision. But their precision remains incomparable
with the object-sensitive variants with heap-cloning.

Motivated by the scalability of the LSRV approach, we
next extend its definition to also consider the k-level ob-
ject context as the context abstraction. This not only leads
to a very novel experiment of performing a very precise
context-sensitive analysis (we term the resultant parameter-
ized abstraction as lsrvkobjH), but also uniquely results in
scalable analyses that are more precise than both call-string
based and object-sensitivity based analyses.
We implement the proposed approaches to perform Java

control-flow analysis, in the Soot framework [32]. We evalu-
ate the implementations by comparing them with standard
k-object-sensitive analyses with heap cloning. The results
show that not only do the newer proposals scale well to
large benchmarks, they also enhance the precision of both
LSRV-contexts based and object-sensitive analyses.

1 class A {

2 A f1,f2;

3 void foo(){...

4 c.bar(a);

5 d.bar(b);

6 } /*foo*/

7 void bar(A p){

8 A x=new A();

9 p.f1.f2=x;

10 } /*bar*/

11 }

(a)

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

Om...
f2

f2

(b)

Oa

Oi

Oj

Oc Ol

p

this

f1

f1

f1

f1
Om...

(d)

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

O8

f2

f2

f2

f2

Om...

(c)

Ok
f1Obp

this

f2

f2Ol

f1 Om...

(e)

Oa

Oi

Oj

p

f1

f1

(f)

Ob

Ok

Ol

p

f1

f1

(g)

f1ODp OD

(h)

Figure 2. (a) A Java code snippet. (b) and (c) The assumed points-

to graphs at lines 4 and 5. (d) and (e) The value contexts for bar

at lines 4 and 5. (f) and (g) The relevant value-contexts for bar at

lines 4 and 5. (h) The LSRV context for bar at lines 4 and 5 (for

escape analysis), assumingOa ,Ob ,Oi ,O j ,Ok andOl do not escape;

OD represents a universal non-escaping object. Figure derived from

a similar code used by Thakur and Nandivada [30].

2 Background

In this section, we give a brief background of some popular
context abstractions (for heap analyses) and heap cloning.

2.1 Existing Context Abstractions

Call-site sensitivity. The call-string based approach [23,
24] identifies contexts based on the call-string formed by
a method’s callers. For example, the call-strings approach
would analyze the method bar in Figure 2a in two contexts
ś one each for the calls at lines 4 and 5. A major drawback
of the call-strings approach is that in the presence of recur-
sion and deep nesting of multiple calls, the length of the
call-strings, and hence the number of contexts, may grow
combinatorially. This makes the analysis unscalable to large
real-world programs. Consequently, to improve scalability,
typical call-site sensitive analyses usually impose a limit on
the call-string length, and treat the greater length contexts
conservatively; however, it compromises on the precision.
Value contexts. Using value-contexts [10], in a top-down
context-, flow-, and field-sensitive points-to analysis [20],
on reaching a call-statement for a methodm, the method is
(re-)analyzed, if the current value context is different from the
prior value contexts (if any) in whichm was analyzed. Here,
the value context at a call tom is the points-to (sub) graph
passed tom, which is the parameter-reachable graph ofm.
For the code shown in Figure 2a, the points-to relationships
(represented as parameter-reachable graphs in Figures 2d
and 2e) at both the calls to bar are different, and hence bar
would be analyzed in two different contexts. The disadvan-
tage of value contexts for heap analyses is that the łvaluesž,
that is, the points-to graphs tend to grow very large resulting

28

Mix Your Contexts Well CC ’20, February 22ś23, 2020, San Diego, CA, USA

into significant memory overheads and costly comparison
at each call-site, thus making the analysis unscalable.
LSRV contexts. Recently, Thakur and Nandivada [30] pro-
posed level-summarized relevant value-contexts (LSRV con-
texts) as a way to scale value-contexts based heap analyses.
For a given points-to graph based analysis, instead of com-
paring the complete points-to graphs at each call-site, the
LSRV approach compares only the relevant portion of the
level-summarized points-to graphs. The approach is divided
into three stages: pre-, main-, and post-analysis.
The notion of relevance determines the portion of the

callers’ heap that is actually accessed by a called method
(approximated in the pre-analysis). For example, the method
bar in Figure 2a accesses only the parameter p passed from
its caller(s) and that too only up to two levels (for p.f1.f2),
and hence the corresponding relevant points-to graphs at
lines 4 and 5 are as shown in Figures 2f and 2g, respectively.
On top of the notion of relevance, level-summarization

computes a per-level summary of the relevant points-to
graphs by taking a meet of the represented analysis-specific
dataflow values (for example, escape-statuses D and E repre-
senting DoesNotEscape and Escapes, respectively, for escape
analysis, and types of the represented objects for control-
flow analysis), instead of the actual nodes of the points-to
graphs. For example, assuming none of the objects in Fig-
ures 2f and 2g escape, the LSRV context while performing
escape analysis for both the calls to bar in Figure 2a is as
shown in Figure 2h. As a result, the method bar would be
analyzed only once. Note that if the lattice of dataflow values
of the analysis being performed is smaller than that of the
points-to graphs (which is quite often the case), then LSRV
contexts significantly scale value-contexts based analyses,
without compromising on their precision (because of the
sound but conservative definition of relevance; see [30]).
Object sensitivity. An object-sensitive analysis [16] distin-
guishes the contexts of a method based on the allocation site
of the receiver object. For scalability, similar to call-string
based analyses, object-sensitive analyses also use a limit k
on the length of the chain formed by the receivers. For ex-
ample, a one-level object-sensitive analysis (denoted as 1obj)
would analyze the method bar (see Figure 2a) in two con-
texts ś at lines 4 and 5 ś as the receiver objects at both the
sites are different (Oc andOl , respectively). Over the last few
years, object sensitivity has become a much used context
abstraction; further, there are several recent works that fo-
cus on scaling existing object-sensitive analyses, usually by
compromising on their precision [13, 14, 22, 29].

2.2 Heap Cloning

Heap cloning [18] is a technique to specialize the different
instances of the objects allocated on the heap, based on the
context in which they are created. This may lead to the
removal of some spurious points-to facts, and hence may im-
prove the precision of the analysis being performed. Say we

1 class D {

2 void fb(A y) {/*y not null*/

3 A t1 = t2 = y;

4 while (t1 != null) {

5 t2 = t1;

6 t1 = t2.f; } /*while*/

7 t2.f = new A();

8 if (*) { fb(y); }

9 } /*fb*/ } /*class D*/

(a)

1 class D {

2 void m1() {

3 P p = new P();

4 Q q1 = p.m2();

5 Q q2 = p.m2(); }

6 void m2() {

7 return new Q();

8 } /*m2*/

9 } /*class D*/

(b)

Figure 3. Code snippets to show that (a) valcsH may not
terminate; (b) valcsH is less precise than kcsH .

are performing a call-string based context-sensitive points-
to analysis. In Figure 2a, without heap cloning, though bar

is analyzed it two contexts (created at lines 4 and 5), after
the call, both a.f1.f2 and b.f1.f2 in foo point to the same
objectO8, and thus are identified as aliases (though they will
point to different objects at runtime). With heap cloning, the
object created at line 8 is qualified by the context in which
it is created (say O4_8 and O5_8). As a result, in method foo,
a.f1.f2 and b.f1.f2 would point to different objects (O4_8

and O5_8, respectively), and would (correctly) not be identi-
fied as aliases, hence possibly triggering other optimizations.

3 Value/LSRV Contexts with Heap Cloning

In this section, we enhance the precision of value contexts
and LSRV contexts using heap cloning.

3.1 Adding Heap Cloning to Value Contexts

We now briefly discuss an as-yet unexplored context abstrac-
tion ś value contexts with heap cloning; we call it valcsH .
InvalcsH , each abstract object can be represented using two
values: the allocation site and the value context in which
it is created. As expected by specializing the heap, valcsH
might partition the dataflow facts better than valcs and thus
lead to an enhanced precision. An interesting fact about
each cloned object in valcsH based analysis is that there is a
corresponding cloned object in the corresponding call-site
sensitive analysis with heap cloning.

Termination. Note that without heap cloning, the number
of abstract objects that could be created while performing
a heap analysis is bound by the number of allocation state-
ments in the program, which is finite. However, with heap
cloning, the number of objects (and hence the termination
of the analysis) also depends on the number of contexts that
could be created. We now present an interesting observa-
tion concerning valcsH , which shows that unlike traditional
value contexts, valcsH might not terminate in the presence
of recursion. Consider the code snippet shown in Figure 3a.
Here, for each subsequent call to the method fb at line 8,
with heap cloning, the value context keeps changing (as the
object allocated at line 7 in each context is different). As a

29

CC ’20, February 22ś23, 2020, San Diego, CA, USA Manas Thakur and V. Krishna Nandivada

result, an analysis using valcsH contexts might not termi-
nate for such recursive calls that keep adding a heap-cloned
object as part of the łvaluež (that is, the points-to graph at
the entry of a method), which leads to a new value context
at each call-site to the method being called recursively.

3.2 Adding Heap Cloning to LSRV Contexts

Similar to value contexts, we now extend LSRV contexts with
heap cloning; we call the resultant version lsrvH . As heap
cloning may only improve the partitioning efficacy, the preci-
sion of lsrvH can be more but never less than LSRV contexts,
with a possible trade-off in the analysis time. In Section 6, we
evaluate lsrvH by comparing it with plain LSRV contexts,
for performing control-flow analysis of Java programs; as we
will see, the lsrvH approach scales over all the benchmarks
under consideration, and noticeably improves precision over
the corresponding analysis using plain LSRV contexts.
Termination. Similar to lsrv contexts, lsrvH contexts re-

strict the growth of the values, that is, points-to graphs, us-
ing level-summarization. Thus, for LSRV contexts with heap
cloning, if the lattice of the analysis under consideration is
finite (which bounds the number of possible contexts), the
number of objects that could get created with heap cloning
is also finite, and the analysis would still be guaranteed to
terminate. For example, in Figure 3a, contrary tovalcsH , the
lsrvH approach for analyses with a finite lattice (such as
escape statuses in escape analysis and types in control-flow
analysis) is guaranteed to terminate.

4 Relative Precision

Given the variety of choices we have discussed in the previ-
ous sections (existing context abstractions in Section 2 and
two new abstractions with heap cloning in Section 3), an
analysis writer needs to carefully choose a particular abstrac-
tion to suit the requirements of the context-sensitive analysis
under consideration. The major factors affecting the decision
are the precision and the scalability of the analysis with a
given context abstraction. The focus of this section is the rel-
ative precision of these abstractions, with and without heap
cloning; later, Section 6 evaluates the different approaches
to compare the same empirically.

The context abstractions discussed in Sections 2 and 3 can
be broadly categorized into two classes: call-string based,
which includes value contexts and LSRV contexts, and object-
sensitivity based. Figure 4 shows the abbreviations used to
represent the context abstractions discussed in this paper; as
higher levels of heap cloning have not been used in literature
in a scalable manner, we limit the discussion to a single level
of heap cloning (denoted as XH for an abstraction X), for
all the variants. We now describe our comparison scheme,
followed by discussions to establish the precision relations.
Terminology. In order to measure the precision of an

analysis, we use the number of optimization opportunities

Abbreviation Abstraction

kcs k-length call-site-sensitive analysis.

kobj k-length object-sensitive analysis.

valcs Value-contexts based analysis.

lsrv LSRV-contexts based analysis.

XH Variant X with heap cloning.

Figure 4. Notations used to represent context abstractions.

generated by that analysis; for example, the number of calls
that could be resolved as monomorphic can be a measure
of the precision of control-flow analysis. While comparing
two context abstractions X1 and X2, we say that X1 has a
higher theoretical precision than X2, if an analysis using X1

is guaranteed to cover all the optimization opportunities
generated by an analysis using X2. On the other hand, if an
analysis using a context abstractionX1 is known to terminate
faster than another using X2, then we say that X1 has a
higher scalability thanX2. Further, ifX1 andX2 have the same
theoretical precision, but X1 has a higher scalability than X2,
then we say that the practical precision of X1 is higher than
that of X2. Note: to establish a hypothesis that X1 can be less
precise than X2, it is enough to show an example where X1

misses an optimization opportunity captured by X2.

4.1 kcs versus valcs

The value-contexts approach (valcs) simply scales call-string
based analyses (kcs), and as shown by Padhye and Khedker
[20], each value context for a method can be mapped back
to a call-string based context. Thus, the theoretical precision
of kcs and valcs is the same. However, note that this rela-
tion holds for a full-length call-string based analysis (that is,
k = ∞). In practice, call-string based analyses for higher
values of k (> 2 or 3) are known not to scale, and hence,
valcs offers a better practical precision than kcs .

4.2 valcs versus lsrv

For a given analysis, Thakur and Nandivada [30] show that
LSRV contexts (lsrv) only scale the corresponding value-
contexts based analysis, without affecting its precision. Fur-
ther, lsrv can be trivially extended to maintain a map that
records the value contexts for which lsrv skips analyzing
a method. Thus, for a given analysis, the theoretical preci-
sion of both the approaches is the same. However, as shown
by Thakur and Nandivada [30],valcs does not scale for popu-
lar whole-program heap analyses. Hence, lsrv offers a much
better practical precision than valcs .

4.3 kcs/valcs/lsrv versus kobj

The contexts created in the call-string based and the object-
sensitive approaches are quite different: in the former, the
contexts created for a method can be directly mapped to the
runtime call-stack; whereas in the latter, the contexts created
depend on the possible receiver objects. Consequently, the
per-context theoretical precision of object-sensitive analyses

30

Mix Your Contexts Well CC ’20, February 22ś23, 2020, San Diego, CA, USA

1 class D {

2 ...

3 void foo() {

4 B x = new B();

5 Y y = new Y();

6 Z z = new Z();

7 x.m3(y);

8 x.m3(z); } /*foo*/

9 void bar() {

10 B o1 = new B();

11 B o2 = new B();

12 B o3 = * ? o1 : o2;

13 o3.m4(); } /*bar*/

14 B m3(B p) { p.f = p;}/*m3*/

15 B m4() {

16 this.f = this; } /*m4*/ }

Figure 5. Example to show the incomparability of
kcs/valcs/lsrv and kobj.

cannot be compared with those of call-string based analyses.
As value contexts, and hence LSRV contexts, are also based
on call-site sensitivity, they are also theoretically incompa-
rable with object-sensitive analyses.
Theoretical precision aside, there are cases where one

of the above two approaches may enable an optimization
opportunity, and not the other. Figure 5 shows one case
where kcs/valcs/lsrv are more precise than kobj, and an-
other case where kobj is more precise than kobj/valcs/lsrv .
The method foo calls the method m3 at lines 7 and 8. In kobj ,
as the receiver object in both the calls isO4, the analysis hap-
pens in only one context, both y.f and z.f conservatively
point to both O5 and O6, and hence are aliases (imprecise).
On the other hand, in the method bar, where using kobj

leads to distinct contexts for the method m4 (one each for
the receivers O10 and O11), using kcs/valcs/lsrv results in
only one context for m4. Consequently, though o1.f and
o2.f point to different objects (O10 and O11, respectively)
in kobj, they point to the same set of objects {O10, O11} in
kcs/valcs/lsrv and become aliases (imprecise). The above ex-
amples further illustrate the incomparability of the precision
of the call-string based and the object-sensitive approaches.
Sections 4.1-4.3 establish the precision relations among

various context abstractions in the absence of heap cloning.
The next three sections illustrate how heap cloning changes
the obtained relations in a somewhat surprising manner.

4.4 kcsH versus valcsH

As discussed in Section 4.1, without heap cloning, the theo-
retical precision of analyses that use value contexts (valcs)
is the same as the ones that use call-strings (kcs). However,
specializing the heap gives a different result, as illustrated in
Figure 3b. With heap cloning, the objectO7 in the method m2
is qualified with the context in which it is created. However,
invalcsH (and also in lsrvH), m2 is analyzed in only one con-
text (as the respective values at lines 4 and 5 are the same).
As a result, in valcsH , the variables q1 and q2 are marked
as aliases (imprecise); whereas in kcsH , m2 is analyzed twice
(for the calls at lines 4 and 5 in m1), q1 and q2 point to dif-
ferent objects (O4_7 and O5_7, respectively), and do not alias
(precise). As observed in Section 3.1, for each context where
valcsH clones an object, the object would have been cloned
even by kcsH . However, the above example shows that the

1 class W {

2 X f;

3 W() { f = new X(); }

4 void setG(Y y) {

5 f.g = y; }

6 Y getG() {

7 return f.g; } }

8 class X { Y g; }

9 class Y {

10 void m() {...} }

11 class Z extends Y {

12 void m() {...} }

13 class D {

14 void bar() {

15 W w1 = new W();

16 Y y1 = new Y();

17 w1.setG(y1);

18 W w2 = new W();

19 Z z1 = new Z();

20 w2.setG(z1);

21 Y p = w1.getG();

22 p.m();

23 Y q = w2.getG();

24 q.m(); } }

Figure 6. An example where an lsrvh control-flow analysis
is less precise than one based on kobjh.

reverse is not true, and hence unlike the versions without
heap cloning, valcsH is less precise than kcsH . Note that
this relation holds only for k = ∞, and thus for finite values
of k the precisions of valcsH and kcsH are incomparable.

4.5 lsrvH versus kobjH

Another interesting precision relationship can be observed
when heap cloning is added to both LSRV contexts (to obtain
lsrvH) and to object-sensitivity (to obtain kobjH). Figure 6
shows a case where a control-flow analysis using lsrvH may
be less precise than one using kobjH . Here, the class W is
like a container with a field f of class X (initialized in the
constructor of W). The field g of X objects may in turn store
an object either of class Y or of class Z (as Z extends Y).
The method bar of class D creates two W instances at

lines 15 and 18, pointed-to by w1 and w2, respectively. How-
ever, as the lsrvH contexts for the W constructor at both the
allocation sites are the same (the level-summarized receiver),
an lsrvH control-flow analysis would not re-analyze the
constructor at line 18. As a result, the object pointed-to by
w1.f and w2.f would be the same, that is,O3. Consequently,
though the method setG is analyzed in two lsrvH contexts
(due to the types of the parameter being different) at lines 17
and 20, both w1.f.g and w2.f.gwould point to bothO16 and
O19. Thus, the variables p and q would point to both Y and Z
objects (O16 and O19, respectively), leading to both the calls
to the method m (that is, at lines 22 and 24) being deemed as
polymorphic (having multiple targets ś imprecise).
Contrary to lsrvH , a kobjH control-flow analysis would

forcefully re-analyze the constructor of class W at line 18
(as the receiver object is different). As a result, w1.f and
w2.f would point to two different objects (O15_3 and O18_3,
respectively), w1.f.g and w2.f.g would respectively point
to O16 and O19, and hence both the calls to the method m

would be monomorphic (having a single target ś precise).
The above example shows that lsrvH can be less precise

than kobjH . We now argue the other way and show that
kobjH can also be less precise than lsrvH . In Figure 5, owing
to different types of parameters, the lsrvH approach will

31

CC ’20, February 22ś23, 2020, San Diego, CA, USA Manas Thakur and V. Krishna Nandivada

create two different contexts at lines 7 and 8, and precisely
identify that o1.f and o2.f do not alias after the calls. On
the other hand, a kobjH analysis would imprecisely identify
o1.f and o2.f as aliases (see Section 4.3). Thus, we conclude
that the precisions of lsrvH and kobjH are incomparable.

4.6 lsrvH versus valcsH

The addition of heap cloning modifies yet another precision
relation with respect to the one without heap cloning. As
the value context changes if the receiver has changed, in
Figure 6, valcs also re-analyzes the constructor of class W
at line 18. Also, it is trivial to note that whenever lsrvH
clones an object, the object would have been cloned even by
valcsH . Thus, we conclude that lsrvH is less precise than
valcsH . However, as we show in Section 6, contrary to lsrvH ,
the valcsH approach does not scale well (reasons being the
possible non-termination as discussed in Section 3.1 and the
non-scalability of valcs itself [30]).
Discussion. Overall, for the existing context abstractions

and the newer variants introduced in Section 3, we can make
three important observations: (i) As the LSRV approaches are
not k-limited, they offer the best practical precision among
all context abstractions. (ii) Compared to object-sensitivity
with heap cloning, there are cases where the LSRV approach
with heap cloning is not able to capture some optimization
opportunities. This is because the LSRV (and value context)
approaches might not create new contexts for some methods
(such as the constructor of class W in Figure 6) as against the
object-sensitive approach. (iii) The relative precision of the
call-site-sensitive (kcs , kcsH ,valcs ,valcsH , lsrv , lsrvH) and
the object-sensitive (kobj and kobjH) context abstractions
can still not be compared. However, the theoretical preci-
sions of various variants within each set can be summarized
as follows: kcsH > valcsH > lsrvH > (kcs = valcs = lsrv)

and kobjH > kobj. Further, the practical precisions of the
variants with the same theoretical precision can be summa-
rized as: lsrv > valcs > kcs [30].
Using the first two insights discussed above, we next de-

cribe a novel way ofmixing the LSRV and the object-sensitive
approaches, which finally provides a context abstraction that
is more precise than both kobjH and lsrvH .

5 Mixing Contexts for Enhanced Precision

As seen in Section 4, there is no łmost precisež existing con-
text abstraction, and each abstraction might miss out on
some optimization opportunities covered by another. Fur-
ther, many of the context abstractions, though theoretically
very precise, do not scale to large programs and hence are not
practical (for example, an infinite-length call-strings based
analysis with heap cloning). However, among the existing
context abstractions, the LSRV approaches (with lsrvH be-
ing more precise than plain lsrv) offer the best practical
precision in terms of scalability to large programs. On the

other hand, the object-sensitive approaches, though not as
efficient as the LSRV approaches, cover some optimization
opportunities that might get missed by the latter. Based on
the above observations, given a context abstraction c1, in
order to cover the optimization opportunities missed by c1
but covered by another context abstraction c2, we propose
a simple, yet novel idea: mix c1 and c2 to derive a new con-
text abstraction c1•2, such that at each call-site, c1•2 creates a
new context if either of the component contexts of c1 and c2
has changed. An advantage of such a mixing scheme is that
the resultant context abstraction covers the optimization
opportunities of both the component abstractions. That is,
by construction, c1•2 is more precise than both c1 and c2.

5.1 Mixing LSRV Contexts and Object-sensitivity

Whilemixing two context abstractions to come upwith a new
one, one can visualize two intuitive requirements. First, the
component abstractions should include non-overlapping op-
timization opportunities. In order to satisfy this criterion, we
propose tomix one abstraction from the call-site-sensitive ap-
proaches and another from the object-sensitive approaches.
Second, as mixing two context abstractions is likely to in-
crease the cost of performing the resultant context-sensitive
analysis, it is crucial that the chosen abstractions be as scal-
able as possible, that is, with a good practical precision.
Candidate 1. As discussed in Section 4, among the call-

site-sensitive variants, the LSRV approaches offer the best
practical precision. This is because of the identification of rel-
evance and the notion of level-summarization, and the split-
ting of the overall approach into three stages: pre-analysis,
main-analysis, and post-analysis [30]. The pre-analysis iden-
tifies which portions of the callers’ heaps may be affected by
each method (expressed as the access-depth of each param-
eter). This information is then used to create and compare
smaller contexts during the main-analysis, and to defer the
analysis of methods that do not affect their callers (zero
access-depth for all the parameters). The deferred methods
are analyzed later in a post-analysis pass. Motivated by the
high scalability (along with precision) of LSRV contexts, and
the further increase in precision with the addition of heap
cloning (as discussed in Section 3.2), we pick lsrvH as our
mixing candidate from the call-site-sensitive abstractions.
Candidate 2. Among the object-sensitive approaches, as

shown by our examples in Section 4 and by prior works [12,
16, 26], k-level object-sensitivity with one level of heap
cloning (that is, kobjH) offers the best precision-scalability
trade-off for typical pointer analyses. Hencewe choosekobjH
as our second pick for the mix.

We now discuss how we mix lsrvH and kobjH to derive a
new context abstraction called lsrvkobjH .

5.1.1 Computation

When we reach a call-site for a methodm that has been pre-
viously analyzed in a context c , we need to decide whetherm

32

Mix Your Contexts Well CC ’20, February 22ś23, 2020, San Diego, CA, USA

needs to be re-analyzed. This is done by computing the cur-
rent context (based on the context abstraction being used),
and comparing it with the existing context c . More the num-
ber of existing contexts form, more number of comparisons
may need to be performed ś a costly operation, specially
for heap analyses where the contexts are typically larger
than non-heap analyses. Similarly, more the number of con-
texts for m, more is the number of times m needs to be
analyzed ś again a costly operation. The computation of the
lsrv part of our mixed context is already optimized based on
per-parameter access-depths. For lsrvkobjH , we further op-
timize the context computation, using the following insight:

Insight 1. If a methodm and its callees do not store any new

object to a non-primitive field of the receiver, then a change

in the receiver object will not contribute towards changing the

summary ofm or its callees.

In order to find whether a method or its callees satisfy
Insight 1, we modify the multi-stage analysis approach (con-
sisting of a pre-, a main- and a post-analysis) already in place
for LSRV contexts [30], as discussed next.
Pre-analysis. The pre-analysis pass of LSRV processes

each statement of each function (in the bottom up order
of the call-graph). We modify the handling of three state-
ments: (i) store, (ii) call , and (iii) endProcedure statements
in the existing pre-analysis, by maintaining a special field
receiverStore (initialized to unknown) for each method. At
the end of the pre-analysis, if the field receiverStore for a
methodm is set to true, it indicates thatm satisfies Insight 1.
procStorePre. At a store statement a. f = b, where f is a

non-primitive field, if an object Ob pointed to by b does
not flow from the caller (that is, it is allocated either in the
current methodm or one of its callees), then we set the field
m.receiverStore to true.

procCallPre.At a call statement a.n() in the current method
m, if we find thatn.receiverStorewas true (indicating that
the calleen satisfies Insight 1), we set the field receiverStore
of each object Oa pointed-to by a to true. We handle recur-
sion conservatively: if the information about a method n is
not known, then we conservatively set the receiverStore
field of all the objects in the points-to set of a to true.
procEndProcedurePre. At the end of processing a method

m, if m.receiverStore still has the unknown value, then
m.receiverStore is set to false.

Main-analysis. In order to keep the main analysis (which
uses the mixed lsrvkobjH context abstraction) efficient, we
conditionally check the kobj context for a methodm, only if
the receiverStore field form is set. Thus, at each call-site
for a methodm, we either construct and compare the full
lsrvkobjH context or only the lsrvH context, based on the
satisfiability of Insight 1 form.

Post-analysis. Similar to LSRV contexts [30], in the main-
analysis, we defer the analysis of methods that do not access
their callers’ heap, and analyze them in a post-analysis pass.

5.1.2 Precision

As lsrvkobjH contexts are the result of mixing lsrvH and
the kobjH , and by the definition of mixing the precision
of lsrvkobjH is higher than each of its constituents. For
example, using lsrvkobjH for the code in Figure 6, we would
re-analyze the constructor of class W at line 18, be able to
distinguish the objects pointed-to by w1.f and w2.f, and
hence resolve both the calls to the method m as monomorphic.

5.1.3 Termination

As discussed in Section 3.2, analyses using lsrvH contexts
are guaranteed to terminate. Further, if k is a finite posi-
tive integer, k-object-sensitive analyses are guaranteed to
terminate. The number of lsrvkobjH contexts that could be
created depends not only on the number of contexts that
could be created individually by the lsrvH and the kobj ap-
proaches, but also on the newer combinations of contexts
that could be created due to the new dataflow facts generated.
However, the newer contexts that could be created are still
bound by the number of combinations possible due to the
cross product of the number of allocation sites, the number
of contexts in kobj and the ones in lsrvH , which is still finite.
As a result, analyses that use lsrvkobjH contexts are also
guaranteed to terminate. Note that in practice, due to the ad-
ditional precision achievable using lsrvkobjH contexts, the
contexts created do not reach the worst case proportions.

5.2 The Updated Precision View

Recall the precision view shown in Figure 1 that compared
the theoretical precision of the various context abstractions
prior to this manuscript. We had two non-overlapping blocks
for context abstractions: one each for call-site- and object-
sensitivity. Further, for both the non-overlapping blocks,
heap cloning was known to improve the precision of each
of the base approaches.

kobj

kobjH kcs
= valcs
= lsrv

kcsH

call-string basedobject-sensitivity based

valcsH

lsrvkobjH

lsrvH

Figure 7. Updated relative preci-
sion of context abstractions.

Based on the pro-
posals and insights
in this manuscript,
Figure 7 shows the
updated view of the
precision of the var-
ious context abstrac-
tions that are now in
picture. We can ob-
serve that with heap
cloning, the preci-
sions of the value-contexts (valcsH) and the LSRV (lsrvH)
approaches do not match the precision of call-site-sensitivity
(kcsH). Importantly, we now have another context abstrac-
tion lsrvkobjH , which is more precise than the heap-cloning
enabled versions of value contexts (valcsH), LSRV contexts
(lsrvH), as well as object-sensitivity (kobjH). To the best of
our knowledge, lsrvkobjH is the first context abstraction

33

CC ’20, February 22ś23, 2020, San Diego, CA, USA Manas Thakur and V. Krishna Nandivada

that combines the precision of the call-site- and the object-
sensitive approaches, in a scalable manner (see Section 6). In
the world view of Figure 7, kcsH andvalcsH may still lead to
improved precision in some cases (compared to lsrvkobjH).
Similarly, a mix of valcsH and kobjH will have more preci-
sion than lsrvkobjH . However, none of these abstractions
may terminate in general. Thus, in practice (as validated
in Section 6), our newly proposed abstraction (lsrvkobjH)
currently offers the best practical precision.

Note that Figure 7 is not complete, and could show a few
more relationships. For example, wemay have amix lsrvkobj
(without heap cloning), which will be more precise than both
lsrv and kobj. We focus only on the heap-cloning enabled
variants, as they have been used more popularly in recent
literature [13, 14, 22] due to their higher precision.

6 Implementation and Evaluation

We have implemented the various context abstractions to
perform control-flow analysis [21, 24] of Java programs, in
Soot [32] version 2.5.0. The experiments were performed on
a 64-core 512GB AMD Abu Dhabi system with OpenJDK 8
as the installed JVM. We have evaluated our techniques on
seven benchmarks from the DaCapo-9.12 suite [2], and three
benchmarks from Section C (with large applications) of the
JGF suite [5]; these benchmarks are listed in Figure 8, along
with some static characteristics. We used the extremely help-
ful tool TamiFlex [3] to resolve reflective calls in the original
DaCapo benchmarks, so that they could be analyzed by Soot.
The benchmarks excluded from the DaCapo suite are the
ones which either could not be translated by TamiFlex, or
could not be analyzed by Soot (using OpenJDK8) after the
TamiFlex pass. The number of classes in the benchmarks
(excluding the JDK library) varied from 13 (small programs)
to 1.6K (large applications). Figure 8 also shows the number
of JDK classes referred by each benchmark (gives the total
number of analyzed classes), computed using the call-graph
generated by our default call-graph tool Spark [11].
We compare four different context abstractions: (i) lsrv:

the base implementation of LSRV contexts [30]; (ii) lsrvH :
LSRV contextswith heap cloning; (iii)kobjH : one-level object-
sensitivity with heap cloning, based on full object-sensitivity

as defined by Smaragdakis et al. [26]; and (iv) lsrvkobjH : a
mix of (ii) and (iii), as discussed in Section 5.1. The lsrvkobjH
andkobjH implementations are parameterizedwith the value
of k . For our evaluation, we set k = 1, as it is well-known [13,
14, 22] that the next more precise object-sensitive analysis
2objH , does not directly scale for many large benchmarks.
We have also run the evaluation valcsH , but it did not ter-
minate for any of the benchmarks under consideration and
hence not reported. This behavior of valcsH is in line with
the observations of Thakur and Nandivada [30] that the base
valcs itself does not terminate for any of these benchmarks
under consideration, within the cutoff time (of 3 hours).

We now present an evaluation to compare the various
context abstractions, with respect to their relative empirical
precision (Section 6.1) and their scalability (Section 6.2).

6.1 Precision of Various Context Abstractions

As many of the context abstractions under consideration
are in principle incomparable, we compare their precision,
similar to existing works [12ś14, 26, 30], by normalizing the
numbers for two precision-indicating clients over all the
contexts: (i) #polyCall: the number of call-sites that could not
be resolved to a single method (Figure 9a); and (ii) #callEdge:
the number of edges in the on-the-fly call-graph (Figure 9b).
For both the clients, a lower value indicates higher precision.
Figure 9a compares the numbers for #polyCall. We can

see that the number of polymorphic calls reduces, albeit
marginally, from lsrv to lsrvH . The number of polymorphic
calls in case of 1objH is the highest among the four reported
versions, which indicates that overall, the number of opti-
mization opportunities enabled (over all contexts) by the
LSRV approaches is better than that by the object-sensitive
approach. Importantly, it can be seen that even though 1objH
leads to more number of polymorphic calls (compared to
lsrvH), lsrv1objH leads to improved precision (better than
both lsrvH and 1objH) ś this attests to the non-overlapping
cases reported by 1objH and lsrvH and the theoretically
superior precision of lsrv1objH over both. Across all the
benchmarks, we can see that lsrv1objH leads to the least
number of polymorphic calls (5.73% less than lsrv , 5.65%
less than lsrvH , and 12.23% less than 1objH for cases where
1objH terminates, on average), which establishes it as a su-
perior alternative over the other context abstractions.
Figure 9b compares the numbers for #callEdge for each

context abstraction. We see that similar to #polyCall, the nor-
malized #callEdge reduces, though by a small amount, from
lsrv to lsrvH . The number of call-graph edges is the highest
for 1objH , and the reduction is the highest for lsrv1objH :
0.41%, 0.35% and 4.97% fewer call-edges compared to lsrv ,
lsrvh and 1objH (where 1objH terminates), respectively.

Overall, among the context abstractions considered, we
see that lsrv1objH , as also expected from its theoretical
model (Section 5), offers the best precision in terms of gen-
erated optimization opportunities. We next compare the
scalability of the various approaches to find out how does
lsrv1objH fare compared to the rest of the abstractions.

6.2 Scalability of Various Context Abstractions

We now evaluate the scalability of the various context ab-
stractions, by comparing them with the base lsrv approach,
in terms of two parameters: the analysis time and the peak
memory requirement. Columns 4 and 5 of Figure 8 show the
corresponding numbers for lsrv [30].
Analysis time. Columns 6-8 of Figure 8 show the addi-

tional analysis time (in percentage) taken by the various
context abstractions over lsrv . We can see that though the

34

Mix Your Contexts Well CC ’20, February 22ś23, 2020, San Diego, CA, USA

1 2 3 4 5 6 7 8 9 10 11

Benchmark #classes time memory % increase in time % increase in memory

application jdk∗ lsrv (s) lsrv (GB) lsrvh 1objh lsrv1objh lsrvh 1objh lsrv1objh

avrora 527 1588 55 11.2 24.5 646.2 26.5 6.3 19.7 7.9

batik 1038 3700 946 64.4 167.3 709.8 129.2 31.1 -21.2 -6.1

eclipse 1608 2589 988 49.1 224.0 - 225.9 121.8 - -

luindex 199 1485 46 11.1 38.5 653.9 23.3 -2.3 14.3 -9.0

lusearch 198 1481 57 11.2 44.6 672.1 61.4 2.3 30.6 5.8

moldyn 697 1607 53 10.5 85.3 448.5 83.6 18.7 13.4 20.1

montecarlo 225 3509 53 9.4 58.3 474.3 67.2 0.7 67.2 0.7

pmd 13 1555 108 13.3 44.8 587.3 2263.2 25.0 21.8 309.6

raytracer 19 1555 53 9.6 62.1 452.6 68.7 0.0 11.9 0.0

sunflow 19 1555 684 52.9 40.8 1097.1 53.2 8.7 34.1 42.9

GeoMean 174 1928 130 17.7 62.3 - 93.6 17.5 - -

Figure 8. Scalability results for various context abstractions as % increase over lsrv numbers (obtained using the techniques
of Thakur and Nandivada [30]). ∗JDK classes computed using Spark’s [11] call graph.

(a) (b)

Figure 9. Normalized number of (a) polymorphic calls; (b) call-graph edges. Lower the better for both.

time taken by lsrvH is in most cases higher than lsrv (62.3%
higher, on average), the analysis nevertheless terminates for
all the benchmarks in a reasonable time (on average under 4
minutes, and maximum 53 minutes for eclipse).

Figure 8 also shows that the 1objH approach takes a much
higher time than the LSRV approaches for most of the bench-
marks, and does not terminate (in 3 hours ś our cutoff) for
the largest benchmark eclipse. The lsrv1objH approach, on
the other hand, terminates for all the benchmarks, albeit tak-
ing 93.6% higher time than lsrv ; this overhead is the cost we
pay for the improved precision (see Section 6.1). Interestingly,
for most benchmarks (except pmd, where object-sensitivity
adds a significant overhead), lsrv1objH takes lesser time
than even 1objH . We attribute this pattern to two facts: (i) a
higher precision (as shown in Section 6.1) leading to the
analysis of a fewer number of methods; and (ii) skipping of
the creation of redundant contexts resulting from Insight 1.

Memory consumption. Columns 9-11 of Figure 8 show the
peak memory consumption for the four approaches, as per-
centage increase over the lsrv approach. For small bench-
marks, we observe that the memory requirements of all the

approaches, though higher than lsrv , remain in the range
of about 16-32 GB. For larger benchmarks (eclipse and sun-

flow), the memory requirements are significantly higher
than lsrv (absolute numbers were between 100-200 GB). For
eclipse, though lsrv1objH terminated normally (see col-
umn 4), it timed out when we enabled memory measurement.
For batik and luindex, we notice a slight drop in the peak
memory requirement compared to lsrv; we attribute it to
the flattening of the overall memory requirement by the GC
passes.We also observe that formany benchmarks, the 1objH
approach takes lesser memory than the LSRV approaches;
however, as seen in Section 6.1, the number of optimization
opportunities generated by the LSRV approaches is higher.
We highlight an interesting point here: the benchmarks

for which lsrv1objH leads to improvement/deterioration in
the analysis time (compared to the other variants), there is a
corresponding comparative increase/decrease in the memory
consumption. This is in line with the above discussion of
improvement in analysis time due to precision.
Effect of Insight 1. In order to study the impact of In-

sight 1 on lsrv1objH , Figure 10 shows the analysis time and

35

CC ’20, February 22ś23, 2020, San Diego, CA, USA Manas Thakur and V. Krishna Nandivada

Figure 10. Percentage overhead without Insight 1.

the peak memory consumption when it was not used. Here,
a method was re-analyzed if any of the lsrvH or the 1objH
contexts changed, without considering whether that method
(or its callees) store(s) an object to the receiver or not. As we
can see, the analysis time without the optimization resulting
from Insight 1 increases significantly; on average, 41.6% over
lsrv1objH (though the precision of both the approaches is
the same). A similar trend can be seen for the memory re-
quirement as well: the average peak memory consumption
without Insight 1 is mostly higher (and sometimes slightly
less or similar) than lsrv1objH . These statistics show two
things. First, the impact of Insight 1 for applying object-
sensitivity selectively is significant. Second, the remaining
difference between 1objH and lsrv1objH (which adds lsrvH
to, and uses Insight 1 over, 1objH) is the result of the addi-
tional precision gained by the latter (see Section 6.1).

Overall, among the considered variants, the novel mix of
lsrvkobjH offers the best practical precision: scales quite
well and generates more number of optimization opportu-
nities than the existing approaches that scale. Further, the
approaches proposed in this paper to scale the various con-
text abstractions can be used as it is, and augmented with
more pre-analysis based techniques (for example, the ones
proposed by Li et al. [13]), to scale more existing context
abstractions as well as to come up with even newer ones.

7 Related Work

There have been several recent works that scale context
abstractions for analyzing Java programs. Tan et al. [29]
scale context-sensitive analyses for call-graph construction
by merging type-consistent objects identified using equiva-
lent automata. Li et al. [14] use a pre-analysis to gain meta-
information about methods, and then select among the dif-
ferent variants of object-sensitivity for each method (with a
small dip in the precision). Some prior works [13, 15] use a
pre-analysis to approximate the methods/objects that follow
some insightful patterns, and apply context-sensitivity par-
tially to the identified methods/objects. Rama et al. [22] use
slicing to incrementally enhance the precision of k-limited

object-sensitive analysis, and increase the value of k for ob-
jects that are identified as precision-critical. On the other
hand, in this paper, we propose the idea of mixing differ-
ent context abstractions, with non-overlapping optimization
opportunities, in an efficient manner.

There have been more works that scale the łmainž context-
sensitive analysis using a pre-analysis. Oh et al. [19] estimate
the impact of context-sensitivity on different methods for
a given set of queries in a pre-analysis, and use the com-
puted information during the main analysis to reduce the
precision on methods that might not benefit from the en-
hanced precision. Tan et al. [28] use a pre-analysis to identify
and eliminate redundant objects from object-sensitive anal-
yses and reduce the number of effective contexts. Recently,
Karkare [8] uses a pre-analysis to mark variables whose
shape cannot be refined, and skips them in a following pre-
cise (slow) pass. Prior works [25, 27] use a pre-analysis to
identify code portions that do not affect the analysis results
or may degrade scalability, and analyze them conservatively.
Thakur and Nandivada [30] use a pre-analysis to identify
the portions of the callers’ heap that are accessed by each
method, and use them to compute a new scalable context ab-
straction called LSRV contexts. A variation of LSRV contexts
is also used by the PYE framework [31] to write efficient
static partial analyses. In this paper, we enhance the preci-
sion of LSRV contexts using heap cloning [18] (to obtain
lsrvH), mix lsrvH with object-sensitivity to obtain a newer,
more precise context abstraction (called lsrvkobjH), and use
a pre-analysis to scale the proposed context abstraction.
In this paper, we have focussed our discussion on the

context abstractions that are representative of the recent
and the classical advancements in the area. There are some
more context abstractions in the literature that could also
be of academic interest, such as the cartesian product algo-
rithm [1] (may generate a large number of spurious contexts
and be highly inefficient, especially in the context of heap
analysis) and type-sensitivity [26] (scales well, but trades-
off precision). We leave the corresponding empirical study,
comparing type-sensitivity with the LSRV approaches (with
and without heap cloning), as a future work.

The idea of combining abstractions has been explored ear-
lier in various domains. Codish et al. [4] combine multiple
analyses by performing them together over a combined do-
main. Kastrinis et al. [9] observe that combining call-site-
and object-sensitivity is infeasible due to its cost, and apply
them selectively based on program features (such as static
versus virtual method calls). On the other hand, we show
that by choosing suitable representatives of the two broad
variants, we are able to scale the combined abstraction for
the whole program.
It has been observed [12, 16] that in general, for object-

oriented programs, object-sensitivity is expected to give a

36

Mix Your Contexts Well CC ’20, February 22ś23, 2020, San Diego, CA, USA

better trade-off between precision an scalability than call-
site-sensitivity. We note that with our approach, it is possi-
ble to get the benefits of both object-sensitive and call-site-
sensitive words in a scalable manner. Further, it should be
straightforward to augment our approaches with recent ap-
proaches [13, 14, 27] that adapt existing context abstractions
based on various program features, where our pre-analysis
can be used to compute the heuristics involved therein. It
would also be interesting to compare our approaches to scale
context-sensitivity with approaches used in other domains
such as logic programming [6, 17].

There have been prior works that explain existing context
abstractions and present new insights about when to use
a particular abstraction. Smaragdakis et al. [26] clarify the
original definition of object-sensitivity proposed by [16], and
propose type-sensitivity as a closer sibling that scales better
than object-sensitivity. Kanvar and Khedker [7] present a
survey of existing heap abstractions, including for context-
sensitivity, and assert the importance of the abstraction used
towards the precision and the scalability of a given analy-
sis. Lhoták and Hendren [12] evaluate call-site- and object-
sensitive abstractions using a binary decision diagrams based
framework. On the other hand, in this paper, we present a
detailed comparison of various context abstractions, includ-
ing recent ones whose placement in the area was not well
understood, and also come up with a more precise abstrac-
tion that for the first time leads to a scalable connection
between the call-site- and the object-sensitive approaches.
Overall, we believe that our work significantly expands the
understanding of the relative advantages and disadvantages
of various classical as well as recent context abstractions,
and thus advances the state of the art in this space.

8 Conclusion

In this paper, we first presented a detailed study of the vari-
ous abstractions used for performing context-sensitive anal-
yses. We then expanded the space of available choices by
adding heap cloning to the recently introduced abstraction
of LSRV contexts. Based on the differences between the the-
oretical and realistically achievable precisions of the various
abstractions, we then proposed mixing of contexts as a way
forward. To demonstrate the idea, we utilized the scalability
of the LSRV approaches and augmented them with k-level
object-sensitivity to propose a new context abstraction called
lsrvkobjH that includes the benefits of the two approaches.
We evaluated the abstractions under discussion by using
them to perform control-flow analysis of Java programs.
The evaluation showed that among the approaches under
consideration, lsrvkobjH generated more optimization op-
portunities, while also scaling to large benchmarks.

Acknowledgments

V. Krishna Nandivada is partially supported by an IBM CAS
grant (1101) and SERB CRG grant (CRG/2018/002488).

References
[1] Ole Agesen. 1995. The Cartesian Product Algorithm: Simple and

Precise Type Inference Of Parametric Polymorphism. In Proceedings of

the 9th European Conference on Object-Oriented Programming (ECOOP

’95). Springer-Verlag, Berlin, Heidelberg, 2ś26. http://dl.acm.org/

citation.cfm?id=646153.679533

[2] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,

Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko

Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. 2006. The DaCapo Benchmarks: Java Benchmarking Devel-

opment and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-oriented Programming Systems, Languages, and

Applications (OOPSLA ’06). ACM, New York, NY, USA, 169ś190.

[3] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira

Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Presence

of Reflection and Custom Class Loaders. https://github.com/secure-

software-engineering/tamiflex. In Proceedings of the 33rd International

Conference on Software Engineering (ICSE ’11). ACM, New York, NY,

USA, 241ś250. https://doi.org/10.1145/1985793.1985827

[4] Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria García

de la Banda, and Manuel Hermenegildo. 1995. Improving Abstract

Interpretations by Combining Domains. ACM Trans. Program. Lang.

Syst. 17, 1 (Jan. 1995), 28ś44. https://doi.org/10.1145/200994.200998

[5] Charles Daly, Jane Horgan, James Power, and John Waldron. 2001.

Platform Independent Dynamic Java Virtual Machine Analysis: The

Java Grande Forum Benchmark Suite. In Proceedings of the 2001 Joint

ACM-ISCOPE Conference on Java Grande (JGI ’01). ACM, New York,

NY, USA, 106ś115. https://doi.org/10.1145/376656.376826

[6] Isabel Garcia-Contreras, José F. Morales, and Manuel V. Hermenegildo.

2018. Towards Incremental andModular Context-Sensitive Analysis. In

Technical Communications of the 34th International Conference on Logic

Programming, ICLP 2018, July 14-17, 2018, Oxford, United Kingdom.

7:1ś7:2. https://doi.org/10.4230/OASIcs.ICLP.2018.7

[7] Vini Kanvar and Uday P. Khedker. 2016. Heap Abstractions for Static

Analysis. ACM Comput. Surv. 49, 2, Article 29 (June 2016), 47 pages.

https://doi.org/10.1145/2931098

[8] Amey Karkare. 2018. TwAS: Two-stage Shape Analysis for Speed

and Precision. In Proceedings of the 33rd Annual ACM Symposium on

Applied Computing (SAC ’18). ACM, New York, NY, USA, 1857ś1864.

https://doi.org/10.1145/3167132.3167330

[9] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-

Sensitivity for Points-to Analysis. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI’13). Association for Computing Machinery, New York,

NY, USA, 423ś434. https://doi.org/10.1145/2491956.2462191

[10] Uday P. Khedker and Bageshri Karkare. 2008. Efficiency, Precision,

Simplicity, and Generality in Interprocedural Data Flow Analysis: Res-

urrecting the Classical Call Strings Method. In Proceedings of the Joint

European Conferences on Theory and Practice of Software 17th Interna-

tional Conference on Compiler Construction (CC’08/ETAPS’08). Springer-

Verlag, Berlin, Heidelberg, 213ś228. http://dl.acm.org/citation.cfm?

id=1788374.1788394

[11] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Anal-

ysis Using SPARK. In Proceedings of the 12th International Conference

on Compiler Construction (CC’03). Springer-Verlag, Berlin, Heidelberg,

153ś169. http://dl.acm.org/citation.cfm?id=1765931.1765948

[12] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of

Context-sensitive Points-to Analysis Using a BDD-based Implemen-

tation. ACM Trans. Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008),

53 pages. https://doi.org/10.1145/1391984.1391987

37

http://dl.acm.org/citation.cfm?id=646153.679533
http://dl.acm.org/citation.cfm?id=646153.679533
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/200994.200998
https://doi.org/10.1145/376656.376826
https://doi.org/10.4230/OASIcs.ICLP.2018.7
https://doi.org/10.1145/2931098
https://doi.org/10.1145/3167132.3167330
https://doi.org/10.1145/2491956.2462191
http://dl.acm.org/citation.cfm?id=1788374.1788394
http://dl.acm.org/citation.cfm?id=1788374.1788394
http://dl.acm.org/citation.cfm?id=1765931.1765948
https://doi.org/10.1145/1391984.1391987

CC ’20, February 22ś23, 2020, San Diego, CA, USA Manas Thakur and V. Krishna Nandivada

[13] Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018.

Precision-guided Context Sensitivity for Pointer Analysis. Proc.

ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages.

https://doi.org/10.1145/3276511

[14] Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018.

Scalability-first Pointer Analysis with Self-tuning Context-sensitivity.

In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 129ś140.

https://doi.org/10.1145/3236024.3236041

[15] Jingbo Lu and Jingling Xue. 2019. Precision-preserving Yet Fast Object-

sensitive Pointer Analysis with Partial Context Sensitivity. Proc. ACM

Program. Lang. 3, OOPSLA, Article 148 (Oct. 2019), 29 pages. https:

//doi.org/10.1145/3360574

[16] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parame-

terized Object Sensitivity for Points-to Analysis for Java. ACM Trans.

Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1ś41. https://doi.org/10.1145/

1044834.1044835

[17] Kalyan Muthukumar and Manuel V. Hermenegildo. 1990. Deriving a

Fixpoint Computation Algorithm for Top-down Abstract Interpretation

of Logic Programs. Technical Report. Informatica, Madrid, Spain. http:

//oa.upm.es/15292/

[18] Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. 2004. Im-

portance of Heap Specialization in Pointer Analysis. In Proceedings

of the 5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering (PASTE ’04). ACM, New York, NY, USA,

43ś48. https://doi.org/10.1145/996821.996836

[19] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and

Kwangkeun Yi. 2014. Selective Context-sensitivity Guided by Im-

pact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’14). ACM,

New York, NY, USA, 475ś484. https://doi.org/10.1145/2594291.2594318

[20] Rohan Padhye and Uday P. Khedker. 2013. Interprocedural Data Flow

Analysis in Soot Using Value Contexts. In Proceedings of the 2nd ACM

SIGPLAN International Workshop on State Of the Art in Java Program

Analysis (SOAP ’13). ACM, New York, NY, USA, 31ś36. https://doi.

org/10.1145/2487568.2487569

[21] Jens Palsberg andMichael I. Schwartzbach. 1991. Object-oriented Type

Inference. In Conference Proceedings on Object-oriented Programming

Systems, Languages, and Applications (OOPSLA ’91). ACM, New York,

NY, USA, 146ś161. https://doi.org/10.1145/117954.117965

[22] Girish Maskeri Rama, Raghavan Komondoor, and Himanshu Sharma.

2018. Refinement in Object-sensitivity Points-to Analysis via Slicing.

Proc. ACM Program. Lang. 2, OOPSLA, Article 142 (Oct. 2018), 27 pages.

https://doi.org/10.1145/3276512

[23] M Sharir and A Pnueli. 1978. Two approaches to interprocedural data

flow analysis. New York Univ. Comput. Sci. Dept., New York, NY.

https://cds.cern.ch/record/120118

[24] Olin Grigsby Shivers. 1991. Control-flow Analysis of Higher-order

Languages or Taming Lambda. Ph.D. Dissertation. Pittsburgh, PA, USA.

UMI Order No. GAX91-26964.

[25] Yannis Smaragdakis, George Balatsouras, and George Kastrinis. 2013.

Set-based Pre-processing for Points-to Analysis. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Pro-

gramming Systems Languages & Applications (OOPSLA ’13). ACM, New

York, NY, USA, 253ś270. https://doi.org/10.1145/2509136.2509524

[26] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick

Your Contexts Well: Understanding Object-sensitivity. In Proceedings

of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’11). ACM, New York, NY, USA, 17ś30.

https://doi.org/10.1145/1926385.1926390
[27] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014.

Introspective Analysis: Context-sensitivity, Across the Board. In Pro-

ceedings of the 35th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’14). ACM, New York, NY,

USA, 485ś495. https://doi.org/10.1145/2594291.2594320

[28] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive

Pointer Analysis More Precise with Still k-Limiting. In Static Analysis,

Xavier Rival (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 489ś

510.

[29] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-to

Analysis: Modeling the Heap by Merging Equivalent Automata. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2017). ACM, New York,

NY, USA, 278ś291. https://doi.org/10.1145/3062341.3062360

[30] Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, De-

fer More: Scaling Value-contexts Based Whole-program Heap Anal-

yses. In Proceedings of the 28th International Conference on Com-

piler Construction (CC 2019). ACM, New York, NY, USA, 135ś146.

https://doi.org/10.1145/3302516.3307359

[31] Manas Thakur and V. Krishna Nandivada. 2019. PYE: A Framework for

Precise-Yet-Efficient Just-In-Time Analyses for Java Programs. ACM

Trans. Program. Lang. Syst. 41, 3, Article 16 (July 2019), 37 pages. https:

//doi.org/10.1145/3337794

[32] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization

Framework. In Proceedings of the 1999 Conference of the Centre for

Advanced Studies on Collaborative Research (CASCON ’99). IBM Press,

13ś23. http://dl.acm.org/citation.cfm?id=781995.782008

38

https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3360574
https://doi.org/10.1145/3360574
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
http://oa.upm.es/15292/
http://oa.upm.es/15292/
https://doi.org/10.1145/996821.996836
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2487568.2487569
https://doi.org/10.1145/2487568.2487569
https://doi.org/10.1145/117954.117965
https://doi.org/10.1145/3276512
https://cds.cern.ch/record/120118
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3302516.3307359
https://doi.org/10.1145/3337794
https://doi.org/10.1145/3337794
http://dl.acm.org/citation.cfm?id=781995.782008

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Context Abstractions
	2.2 Heap Cloning

	3 Value/LSRV Contexts with Heap Cloning
	3.1 Adding Heap Cloning to Value Contexts
	3.2 Adding Heap Cloning to LSRV Contexts

	4 Relative Precision
	4.1 kcs versus valcs
	4.2 valcs versus lsrv
	4.3 kcs/valcs/lsrv versus kobj
	4.4 kcsH versus valcsH
	4.5 lsrvH versus kobjH
	4.6 lsrvH versus valcsH

	5 Mixing Contexts for Enhanced Precision
	5.1 Mixing LSRV Contexts and Object-sensitivity
	5.2 The Updated Precision View

	6 Implementation and Evaluation
	6.1 Precision of Various Context Abstractions
	6.2 Scalability of Various Context Abstractions

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

