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Abstract
Despite being a very old discipline, pointer analysis still at-
tracts several research papers every year in premier program-
ming language venues. While a major goal of contemporary
pointer analysis research is to improve its efficiency without
sacrificing precision, we also see works that introduce novel
ways of solving the problem itself. What does this mean?
Research in this area is not going to die soon.

I too have been writing pointer analyses of various kinds,
specially for object-oriented languages such as Java. While
some standard ways of writing such analyses are clear, I have
realized that there are an umpteen number of nooks and pit-
falls that make the task difficult and error prone. In particular,
there are several misconceptions and undocumented prac-
tices, being aware of which would save significant research
time. On the other hand, there are lessons from my own
research that might go a long way in writing correct, precise
and efficient pointer analyses, faster. This paper summarizes
some such learnings, with a hope to help readers beat the
state-of-the-art in (Java) pointer analysis, as they move into
their research careers beyond 2020.

CCS Concepts: • Theory of computation → Program
analysis; • Software and its engineering→ Compilers;
Object oriented languages.
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1 Introduction
At the dawn of the twenty-first century, Michael Hind asked
if we weren’t done with solving the problems associated
with pointer analysis yet [12]. He concluded that pointer
analysis, though a problem very intensively worked upon in
the previous century, was still an active research area with
several challenges lined up to be solved, specially for object-
oriented languages such as Java. Twenty years from then,
pointer analysis still finds a decent place in the proceedings
of premier programming language conferences and journals,
with the kinds of problems pointed out by Hind still being
addressed, and novel ways of solving the same actively being
invented. The central reason behind the continued interest
is two-fold: (i) applications of precise pointer-analysis re-
sults have continued to expand, even more so in parallel
programs; whereas (ii) precise pointer analysis continues to
be unscalable for large applications, even in the serial world.
Before we dive in to understand the motivation behind this
paper, a few words on these points, from the perspective of
new researchers, deserve attention.
First, why should one care about pointer analyses? For a

program involving memory allocation on the heap, points-
to analysis tells which objects on the heap may be pointed
to by which variables or field references at run-time. The
resultant points-to relationships are important enablers for
various other analyses and optimizations (such as alias anal-
ysis, escape analysis, virtual-call resolution, and so on). In
other words, if you want to perform almost any analysis or
optimization on programs with dynamic memory allocation,
there is a high chance the efficacy of the same would depend
heavily on the precision of the underlying pointer analysis.
The problem becomes more interesting for languages like
Java, where idiomatic program design focuses centrally on
defining classes and instantiating objects on the heap.
Second, what is the problem with performing precise

pointer analyses? The answer to this boils down to the
amount of points-to relationships that need to be created
and maintained during the analysis in order to more pre-
cisely model the actual points-to relationships at run-time.
Obviously, at run-time, each variable (and field reference)
will point to exactly one object on the heap. However, as
static analysis can only approximate the run-time, the preci-
sion varies across several dimensions such as field-sensitivity,
flow-sensitivity, context-sensitivity, and path-sensitivity. Out
of these, for Java, field-sensitivity is considered essential
for usefulness of pointer-analysis results; path-sensitivity is
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exponential and usually not given much attention; context-
sensitivity is very useful but has several variations most
of which do not scale well; and flow-sensitivity interacts
differently with different context-sensitivity variations. Re-
searchers in this area have been paying special attention to
scaling context-sensitivity, and as we will see in this paper,
some exciting results, specially for particular kinds of pointer
analyses, have started peeping in just very recently.

I started studying and implementing Java pointer analyses
in 2014, as part of my PhD thesis. The intent was to improve
the precision of the analyses performed by just-in-time (JIT)
compilers (where resource availability is stringent), without
increasing the time spent during JIT compilation. The re-
sult was the development of the PYE framework [41] that
mitigated inefficiency by offloading complex analyses to the
static compiler, and maintained precision by generating par-
tial results in form of conditional values. Meanwhile, I encoun-
tered interesting challenges and insights related to context-
sensitive pointer analyses, which led to the development of
some novel abstractions [40, 42] for context-sensitivity.
Though the exercises I did over the last few years were

quite fruitful, the path was filled with difficulties of various
kinds. First, there were misconceptions, either because of the
corresponding subtleties not being explicit in the literature,
or because of differences between learning about pointer
analyses using toy languages versus implementing them for
a full programming language. Second, it was often the case
that the idea was in place, the first shot over its implementa-
tion was done, but the analysis failed miserably to scale when
performed over large real-world benchmarks. Third, there
were issues resulting either from certain tricky language fea-
tures or from the state-of-the-art tools available for writing
pointer analysis, which posed threats to the correctness of
the generated results.

The premise of this paper is that the life of future pointer-
analysis researchers would be much easier if the kinds of
issues highlighted above, and their acceptable solutions, were
known beforehand. To provide a redressal, this paper high-
lights pertinent issues under the three categories discussed
above, with possible available solutions, and the challenges
still remaining to be solved. The examples in the exposition
are taken from Java, but the concepts are applicable to any
language involving object allocation on a heap.
The rest of the paper is organized as follows. Section 2

gives an overview of some preliminary concepts and terms
used through the later sections. Section 3 describes several
misconceptions that plague the mind when a student moves
from learning about pointer analysis from a classroom set-
ting to implementing them for real-world programming lan-
guages. Section 4 extracts certain key ideas from recent ad-
vancements aimed at imparting efficiency, that is, reducing
the resources consumed, while maintaining or even improv-
ing the precision. Section 5 highlights key challenges in

1 class B {B f;}

2 class C {

3 static B global;

4 void foo() {

5 B r1 = new B();

6 B r2 = new B();

7 synchronized(r2) {...}

8 global = r2;

9 r1.f = new B();

10 } }

(a)

O5 O6

O9

f

r1 r2

global

(b)

Figure 1. (a) A Java code snippet. (b) Points-to graph after
analyzing the method foo.

ensuring and arguing correctness in presence of certain lan-
guage features, distinguishing between acceptable ways to
get the ideas published and taking the ideas to production.
Finally, Section 6 discusses relevant related work and Sec-
tion 7 concludes the paper by illuminating some of the ways
to pursue pointer analysis research in future.

2 Background
This section presents some preliminary concepts, terms and
notations that are used throughout the paper.

2.1 Points-to Analysis
Points-to analysis is a static program-analysis technique that
establishes which pointers, or reference variables, may point
to which objects or storage locations, at runtime. The results
obtained by points-to analysis are key to several other heap
analyses and related optimizations; for example, alias analy-
sis, shape analysis, escape analysis, null-check elimination,
call-graph construction, method inlining, and so on.
We say that the points-to set of a variable 𝑣𝑎𝑟 is 𝑆 , if

the elements of the set 𝑆 represent the objects that may be
pointed-to by the variable during program execution. One of
the ways of statically representing all the run-time objects
allocated at line 𝑙 is using an abstract object denoted as 𝑂𝑙 .
Using this notation, for the code shown in Figure 1a, the
may-points-to sets of the reference variables r1 and r2 are
{𝑂5} and {𝑂6}, respectively.

2.2 Points-to Graphs
Points-to graphs and their variations are widely used [37,
39, 40, 44] for representing the points-to relations in Java
programs. A points-to graph𝐺 (𝑁, 𝐸) comprises of (i) a set 𝑁
of nodes that represent variables and abstract objects in the
program; and (ii) a set 𝐸 of edges that represent points-to
relationships among the nodes in the program. An edge
can optionally have a label representing the field in the cor-
responding points-to relationship. For example, Figure 1b
shows the points-to graph for the code shown in Figure 1a.
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The graph denotes that the variables r1, r2 and global point
to the sets {𝑂5}, {𝑂6} and {𝑂6}, respectively, and that the field
f of the object𝑂5 points to the set {𝑂9}. The reader may like
to go through one of the standard texts describing points-to
and similar graphs [7, 44] to understand the way graphs such
as these are constructed for given Java programs.

2.3 Modular Analysis
Modular analysis, as proposed by Cousot and Cousot [8], is
a well-explored technique to scale interprocedural analyses.
Under this approach, different modules of a program are
analyzed separately, and the modular results are composed
to obtain the results for the whole program [6, 7, 37, 44].
A recent survey by Madhavan et al. [23] evaluates several
modular analysis techniques in a well-formalized framework.
In the context of Java pointer analysis, modular analysis
typically implies analyzing each method in the program
separately (possibly resulting into a per method points-to
graph), and then merging the results at method call-sites to
form interprocedural analysis results.

2.4 JIT Compilation
The programs written in some of the modern programming
languages (such as Java and C#) are translated to machine
code in two stages: the program is first statically compiled to
a platform-independent intermediate code (such as Bytecode
for Java), which might then get translated to native code on
a possibly different machine. The second step, which often
happens when the program is already being interpreted, is
called just-in-time (JIT) compilation, and is a common way
to optimize programs in virtual machines [10, 28, 30].

A particular challenge with JIT compilation is that as the
time spent in program analysis gets added to the execu-
tion time of the program being compiled, the trade-off be-
tween an analysis’s precision and its efficiency is much more
pronounced than in static compilers. A recent technique to
balance this trade-off was proposed as part of the PYE frame-
work [41], where complex analysis of Java applications is
performed in the static Java compiler using Soot [43], and
the (partial) conditional results generated for the application
and the libraries (analyzed offline) are merged during JIT
compilation in the OpenJDK HotSpot JVM.

3 Clearing Misconceptions
Pointer analysis for modern object-oriented languages such
as Java and C++ involves handling several different state-
ments and possible corner cases. Most new analysis writ-
ers start with implementing prototypes, often for subsets
of these languages, in popular tools such as LLVM [16],
Soot [43] and DOOP [5], before actually implementing their
research ideas for real-world benchmark programs written
using the complete (superset) language. Consequently, new

analysis writers are often challenged by surprises and unex-
pected scenarios that sometimes are detected only in the later
stages of their implementations. This section discusses three
such misconceptions usually resulting from working with
prototype languages and programs, in the context of per-
forming pointer (or heap) analyses for Java-like languages.

3.1 There Ain’t Just Four Statements
Courses on program analysis and compiler design usually
follow a very pedagogic approach for introducing students
to writing program analyses. They define a subset program-
ming language and provide students with skeleton programs
wherein students are asked to fill in the gaps as part of pro-
gramming assignments. These assignments are often a case
analysis over the different kinds of statements that may oc-
cur in programs written in the subset language. In my ex-
perience, as a reminiscent of standard Andersen’s pointer
analysis [1], students are often taught that generating con-
straints for a pointer analysis involves handling four kinds of
statements on variables of pointer types: (i) reference assign-
ment (a = &b or a = new A()); (ii) copy (a = b); (iii) load
(a = *b or a = b.f); and (iv) store (*a = b or a.f = b).

Once students encounter programs written in real lan-
guages, it is imperative that they soon realize that the num-
ber of statements they need to handle is nowhere near four,
and it varies with the kind and scope of the analysis they
intend to write. For example, for writing an interprocedu-
ral thread-escape analysis for Java [3], the minimum num-
ber of statements that need to be handled are at least nine:
reference assignment, copy, load, store, and (v) null assign-
ment (a = null); (vi) exception throw and handler (throw a
and catch(a); (vii) method call (a.foo(b)); (viii) method
entry (foo(a,b)), including the handling of the zeroth pa-
rameter (this) for virtual methods; and (ix) return state-
ment (return a). Additionally, if the analysis intends to
take special care of flow-sensitivity for synchronization eli-
sion [41] (an application of thread-escape analysis), then
a tenth statement needs to be considered: (x) synchroniza-
tion (synchronized(a)). A timely awareness of the fact that
real pointer analyses are much more complex to write than
their programming assignments would not only help stu-
dents better estimate the amount of time required (and hence
to plan their studies), but also enhance the confidence and
subsequent arguments about correctness of their algorithms.

3.2 Graphs Need Not Have Nodes and Edges
As mentioned in Section 2.2, points-to graphs are a com-
mon way to implement different kinds of pointer and heap
analyses. As also mentioned in Section 2.2 and in various
research articles [7, 44] on the subject, a points-to graph is
essentially a graph 𝐺 (𝑁, 𝐸) comprising of a set 𝑁 of nodes
and another set 𝐸 of edges. Further, for points-to graphs con-
structed for programs written in Java-like languages, there
can be two kinds of nodes – those representing variables
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1 interface Node {...}

2 interface Edge {

3 Node src; Node dst; ...

4 }

5
6 class VariableNode implements Node {...}

7 class ObjectNode implements Node {...}

8
9 class StackEdge implements Edge {...}

10 class HeapEdge implements Edge {

11 Field f; ...

12 }

13
14 class PointsToGraph {

15 Set<Node> nodes; Set<Edge> edges; ...

16 }

Figure 2. A possible design of a points-to graph.

(say 𝑁𝑉 ) and those representing (abstract) objects (say 𝑁𝑂 );
and two kinds of edges – those representing points-to re-
lationships originating from the stack (variables to objects;
say 𝐸𝑆 ) and those representing points-to relationships from
the heap (objects to objects via fields; say 𝐸𝐻 ). Consequent
to such descriptions in literature, Figure 2 shows the most
straightforward way to implement points-to graphs, say in
Java. Simple it may look, but the design shown in Figure 2
is highly inefficient. There are two primary culprits for this
inefficiency, as discussed next.
The first reason behind the inefficiency of the design in

Figure 2 is the need to maintain consistency between the
abstract objects stored in the set nodes and as source src
and destination dst of the points-to relationships stored in
edges. In order to elucidate this point, consider the follow-
ing question: “When should a node be a part of a points-to
graph?” Say the statement being analyzed is 𝑠: 𝑎 = 𝑏, as a
result of which a variable edge should be added from 𝑎 to all
the objects pointed to by 𝑏 in the points-to graph before 𝑠 .
Say the analysis being performed is flow-sensitive. At this
point, if there were edges resulting from 𝑎 before 𝑠 , they
may be removed from the graph after 𝑠 . If a removed edge
was the only edge to an object 𝑜 , should 𝑜 be a part of the
points-to graph after 𝑠 or not? On the other hand, if points-to
graphs did not maintain an explicit set of nodes, removing
redundant objects would not be required as an explicit op-
eration at all. However, note that this choice should depend
on the analysis being performed. For example, an analysis
written to garbage collect unreachable objects on the heap
may want to remove 𝑜 after 𝑠 , but an analysis that prints
some information about the objects allocated in a method
(say escape status [3, 41]) might want to keep 𝑜 in the set of
nodes till the call to the print routine.
The second reason behind the inefficiency of the design

in Figure 2 becomes apparent when one needs to iterate

over the objects reachable from a given node in the points-to
graph. For several kinds of statements (such as 𝑎 = 𝑏, 𝑎 = 𝑏.𝑓

and 𝑎.𝑓 = 𝑏), the points-to graph needs to be updated by
iterating over the set of objects pointed to by the variable
or the field reference on the right side of a statement (such
as 𝑏 or 𝑏.𝑓 ), and adding edges from the variable or the field
reference on the left side of a statement (such as 𝑎 or 𝑎.𝑓 ).
For such operations, it is almost always necessary to collect
the points-to set by iterating over the outgoing edges from
the node corresponding to a given source (variable or ob-
ject). This requires two look-up iterations: first for the node
corresponding to the source, and then for the points-to set
of the resultant node. It would save a significant amount of
analysis time if the points-to graph was simply a map from
nodes to a set of another nodes, denoting their points-to sets.
However, this is still easier said than done: there would be
a need to store an additional label (representing the field)
for edges on the heap (that is, in 𝐸𝐻 ), which would require
further engineering to denote the mapping from keys (nodes)
of the map to the objects in the points-to set.

3.3 Not All of Them Are Flow-sensitive
Another issue faced by new analysis writers while taking
ahead their literature review arises from misunderstanding
the need of flow-sensitivity. The standard way to model flow-
sensitivity [25] is by using a worklist-based iterative dataflow
analysis (IDFA), wherein the flow sets (in our case, points-to
graphs) are maintained and updated as IN and OUT sets
before and after each program point (in our case, statement).
Typically, novices try to fit each analysis they write into
the IDFA approach. The confusion surmounts when papers
(citations skipped to avoid incompleteness) do not specify
whether the analysis proposed therein is flow-sensitive or
insensitive and assume the reader to understand this trivially.
This distinction is very important from an implementation
perspective, as there is a huge difference in the scalability of
flow-sensitive and flow-insensitive analyses [11].
Apart from the perspective of scalability, several prob-

lems do not require flow-sensitivity by definition – popular
examples being object- and type-sensitive pointer analy-
ses [24, 35], and some of the pre-analyses in various recent
works that use the idea of staging (discussed in detail in Sec-
tion 4.3). For example, Thakur and Nandivada [40] estimate
the required amount of value contexts [14, 29] (points-to
graphs reaching the entry points of methods) by computing
the depth of the subgraphs reachable from each parameter
of a method, in a pre-analysis; this information is indepen-
dent of the flow and does not require performing an expen-
sive iterative dataflow analysis. The key takeaway is that
analysis writers should proactively judge if their ideas need
flow-sensitive information, and if not, then save enormous
amounts of time in scaling and proving the correctness of
flow-sensitivity in their analyses.
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4 Imparting Efficiency
This section is dedicated to the real challenge that drives
pointer analysis research: scalability of precise pointer anal-
yses over large real-world programs. As pointer analysis
enables a large number of optimizations and even other anal-
yses, enhancements in its precision along any analysis di-
mension (such flow-sensitivity, field-sensitivity and context-
sensitivity) are important. Out of these possible precision
enhancements, it has been shown that context-sensitivity
plays a significant role in improving the precision of the
results generated for object-oriented programs such as those
in Java [18]. Consequently, over the last few years, much
of the research in pointer analysis has been focused upon
improving the scalability of context-sensitive analyses, while
looking for novel ways to balance the trade-offs with their
precision. This section extracts five key principles from some
recent advancements in scaling precise context-sensitive
analyses, with the suggestion that more work in some of
these directions should form the road ahead.

4.1 Context Abstraction Matters a Lot
A context-insensitive analysis generates a single summary in-
formation for a method, which is (soundly) applicable across
all contexts in which the method is called, thus merging
the dataflow values among different call-return pairs. On
the other hand, a context-sensitive analysis specializes the
analysis information for a method for each context from
which it is called, thus quite often enhancing the precision.
However, the precision and the scalability vary with “what
constitutes the context”, termed as the context abstraction of
a context-sensitive analysis. This section gives an overview
of the common choices available, along with the scenarios
in which each of them tends to generate better results.

Popular context abstractions can be divided into two broad
categories: those based on object-sensitivity [24] and those
based on call-strings [32]. Object-sensitivity distinguishes
contexts based on the receiver object on which a method is
called, and is particularly suited in cases where most meth-
ods modify or access the state of the receiver. On the other
hand, object-sensitivity fails to distinguish the contexts of
class (or static) methods (as they have the same receiver ev-
ery time they are called – the object corresponding to the
class to which they belong), and hence are not suited for the
same. Similarly, object-sensitive analyses are not suited for
methods that modify or access the state of parameters other
than the receiver. However, in object-oriented languages, as
it is more common to write methods that operate on the
receiver, cases such as these are typically less frequent.
There are analyses for which rather than the actual re-

ceiver objects, only the precise type of receiver objects yields
good enough precision. Examples include pointer analyses
for resolving virtual calls (thus enabling method inlining), for

constructing precise call-graphs, and so on. For such analy-
ses, instead of object-sensitivity, another context abstraction
called type-sensitivity [35] is a good candidate for generat-
ing context-sensitive results. Type-sensitive analyses scale
better than their object-sensitive counterparts, and hence
could be the pick for type-based analyses and optimizations.

The classical call-strings approach [33] distinguishes con-
texts based on the string formed by the calling sequence of a
method. As call strings are an approximation over the actual
run-time call stack, they can be easily mapped to program
execution. However, the length of call-strings grows expo-
nentially in presence of recursive calls, and their bounded (𝑘-
limited) versions usually do not scale well for the achievable
precision. Khedker and Karkare [14] reduce the number of
contexts in the call-strings approach by merging call-strings
in which the same dataflow value reaches the entry of a
method (terming the resultant abstraction value contexts).
Though quite promising in terms of maintaining the full pre-
cision of call-strings, value contexts do not scale well if the
dataflow values tend to be very large. This is typically true
for pointer analyses, as points-to graphs (the value contexts)
usually consist of thousands of nodes and edges, making
merging contexts by checking their similarity a very expen-
sive operation. Section 4.2 discusses a related alternative
context abstraction that works particularly well for certain
kinds of pointer analyses.
The takeaway from this section is that there are various

choices available to choose as a context abstraction, and each
of them suits particular cases. Hence, the recommendation
in 2020 is to avoid getting into the lure of using the same
context abstraction for the complete program (or for all the
programs in the benchmark suite under consideration). It is
better to profile or estimate the needs of the different kinds of
methods (such as static and non-static) in a given program,
and use an appropriate approach based on the computed
information. Section 4.3 discusses a promising way to com-
pute information that may help in deciding which context
abstraction to apply for a given method in a program. For a
more comprehensive discussion on the relative precisions
of various context abstractions from Java program-analysis
literature, the reader is referred to a recent work by Thakur
and Nandivada [42].

4.2 Generalization Is Not Always the Best Thing
Given the wide applicability of pointer analysis, the research
in this space has been centered around coming up with ways
to scale the computation of general points-to information, ir-
respective of the application for which the results may be em-
ployed. Observing that in spite of continuous advancements
triggered by this generalization, we still do not have precise,
specially context-sensitive, pointer analyses that could be
used in time- and memory-critical systems (such as JIT com-
pilers), I argue that while moving forward, we should work
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towards designing analysis- or application-specific abstrac-
tions. In particular, for scaling context-sensitivity, Thakur
and Nandivada [40, 42] propose several variants of novel
analysis-specific context abstractions, and also use them as
part of scaling precise analyses for JIT compilers [41].

A particular example of analysis-specific contexts, termed
level-summarized relevant value (or LSRV) contexts, was re-
cently [40] used to obtain highly scalable variants of the call-
strings approach for performing thread-escape and control-
flow analyses on Java programs. LSRV contexts have two
underlying ideas concerning analyses involving points-to
graphs: (i) approximate howmuch of a points-to graph reach-
ing a given method is actually accessed or modified by the
method; and (ii) instead of using actual nodes of the points-to
graph, project the relevant nodes to form another graph that
uses elements from the lattice of the optimization intended
to be performed using the computed pointer-analysis results.
For example, after performing the first step to filter out the
irrelevant portions of a points-to graph reaching a method, if
the application depends only on the escape status of objects,
then the LSRV context would be a graph containing only
the escape statuses of the corresponding objects from the
points-to graph. The advantage of this approach is that the
graphs after projecting the relevant information tend to be
significantly smaller than original points-to graphs and also
lead to the merging of a higher number of value contexts (if
the lattice used for projection is smaller than the lattice of
points-to graphs, which is quite often the case).
The catch associated with using analysis- or application-

specific pointer analyses is obvious: the results may no longer
be equally useful for performing different dependent anal-
yses and optimizations. However, given the scalability ad-
vantages, it would be prudent to channelize future research
towards increasing the reuse of information computed by
using multiple analysis-specific abstractions.

4.3 Staging: The New Buzzword
This section discusses a very effective strategy for imparting
efficiency without sacrificing, and often enhancing, the pre-
cision of pointer analysis: staging. The idea of staging is to
break the analysis into multiple phases, such that the com-
plete analysis information is available after the last phase. An
effective approach to staging an analysis is to first perform
a pre-analysis that gathers information about the various
parts of a program, and to subsequently use that information
to scale the main analysis. In order to avoid inheriting the
problems of the expensive main analyses, such pre-analyses
often need to be insensitive across various analysis dimen-
sions. Interestingly, fast pre-analyses have been found to be
capable of gaining strong enough insights about the program
that the main analysis can often be scaled quite astonishingly
utilizing the same. Multiple ways of staging an analysis have
been adopted over the last few years in the pointer analysis
community, some of which are discussed next.

The first class of pre-analyses includes those that are
aimed at filtering the information that is not required for
maintaining precision. For example, while performing 𝑘-
limited object-sensitive and call-strings based analyses, a
pre-analysis can be used to estimate the depth of the con-
text (chain of receivers or call-sites) required to maintain
precision for a given method [27, 38]. Similarly, it is also
possible to estimate which all constituents of a value- or
an object-sensitive context can be dropped by estimating
relevance of the context for a given method [39, 40]. The in-
sight behind these approaches is that the reason a particular
sensitivity leads to enhanced precision can be mapped to
certain patterns in a given program, and those patterns can
be approximated while being insensitive in that particular
dimension, that is, without incurring the overheads of the
problem being tried to be solved. An explicit example of this
insight was used by Li et al. [19] to identify methods that are
part of the object-flow paths where information would get
merged if thosemethods were analyzed context-insensitively.
Thus, the methods identified to maintain precision in the
pre-analysis are analyzed context-sensitively, whereas the
remaining methods can be analyzed context-insensitively
without incurring much loss of precision (the loss depends
on the precision of the pre-analysis).
A second class of pre-analyses includes those that target

scalability, with or without losing precision. For example,
pre-analyses have been used to identify methods analyz-
ing which precisely may thwart the scalability of a given
analysis [20], and then to analyze those methods conserva-
tively. On the other hand, sometimes simply postponing the
analysis of certain methods to a separate pass enhances the
scalability, an example being the post analysis of LSRV con-
texts [40]. The insight there interestingly relates to the need
for garbage collection in languages with an automatically
managed heap (such as Lisp, Java and C#). In particular, as
an analysis stage keeps running for long without releasing
resources (such as accumulated points-to graphs), memory
consumption keeps increasing and the time required for
standard operations (such as getting the points-to graph of
a method from the set of graphs maintained for all the meth-
ods in all the contexts) keeps increasing. Thus, when it can
be identified that postponing the analysis of a method would
not lead to loss of precision, it helps to simply skip it in the
current pass and analyze it afresh on a clean(er) slate.
A promising future direction in writing staged analyses

would be to use them in forming interesting amalgamations
of different abstractions. For example, the author of this
paper would be interested in leveraging the idea of staging to
reuse information that is computed using different analysis-
specific abstractions for different parts of a program (that
is, using the concepts presented in Sections 4.1, 4.2 and 4.3
together!). Readers are encouraged to contact the author in
case of further (or more complex) ideas on the subject.
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1 class D {

2 D g;

3 }

4 class C {

5 static D f;

6 void foo() {

7 D x = bar();

8 D y = f.g;

9 /* Q1: Will f.g throw a NullPointerException? */

10 /* Q2: Are x and y aliases? */

11 }

12 }

Figure 3. Example illustrating some complexities while per-
forming pointer analysis in presence of static fields.

4.4 To Static or Not to Static
Dataflow values can reach, and be modified by, a method

in two ways: either via its parameters or via global variables
(static fields in Java), the latter deserving special attention. To
illustrate the kinds of problems static fields may introduce,
consider the code snippet shown in Figure 3. The class C
includes a static field f, which is by default null. Does it re-
main null and hence result into a NullPointerException
at line 8? If there is no exception thrown and the execution
proceeds, can x and y potentially alias after line 8? None
of these questions can be answered precisely just by look-
ing at foo or even bar, and require the availability of the
whole potential points-to graph reachable from f (which
can be modified in any method that can access f). To make
situations worse, effects of f possibly being accessed simulta-
neously by multiple threads need to be factored in (as objects
reachable from static fields may be shared by threads). Han-
dling the portion of the heap reachable from static fields thus
involves performing some kind of escape analysis, which
in turn depends on the results of a precise pointer analy-
sis, thus introducing the second notoriously famous cycle
in pointer analysis (the first being the interplay between
pointer analysis and call-graph construction).
A trivial and practically employed way to handle static

fields is to handle them naively, whereby anything is as-
sumed to be reachable from all the static fields of a program
– though this sounds very conservative, it might often work
well in practice [40] (depending on the amount of useful
information maintained using static fields). Another extreme
is to analyze the program in a top-down manner, while tak-
ing care of the possible execution orders, ensuring that the
points-to graph reachable from static fields is always an over-
approximation of the actual possible heap. An example of
this approach appears in the implementation of value con-
texts in VASCO [29], which is also a good place to look at an
attempt that tries to update the heap reachable from static
fields in an efficient manner.

1 class ArrayList<E> implements List<E> {

2 Object[] arr;

3 public ArrayList() {

4 arr = new Object[X]; // X: some default initial size

5 }

6 public E get(int i) { return arr[i]; }

7 public void add(E e, int i) {

8 // Bounds check and expand routines skipped

9 arr[i] = e;

10 }

11 }

Figure 4. Simplified structure of java.util.ArrayList.

4.5 You Enter the Library, You Stay in The Library
Let us conclude the discussion on efficiency with an often
problematic source of inefficiency in analyzing even small
Java programs: the JDK library. It is almost impossible to
write a Java program that does not call methods from the JDK
library (definitely impossible if the call to the constructor
of java.lang.Object is considered). Further, because of a
heavy use of inheritance in the JDK libraries, various works
report having had to treat them specially [36, 40], lest their
analyses would not terminate in a reasonable amount of time.
In order to understand the reasons behind the inefficiency
while performing such whole-program pointer analyses over
Java programs, consider the typical structure of JDK collec-
tion classes illustrated by java.util.ArrayList as shown
in Figure 4. The ArrayList is inherently implemented us-
ing an array, which is initialized with some default size and
expanded when required. Not tuning a pointer analysis to
handle such classes properly leads to two kinds of problems,
as discussed next.
First, as an ArrayList is only one of the possible imple-

mentations of a List, if the call-graph for a given program
is constructed using an algorithm that does not consider the
dynamic type of objects (such as class-hierarchy analysis [9],
which is the default in many tools such as Soot [43]), then
subsequent calls to all occurrences of methods such as add
and getwould lead to the analysis of all such methods across
all the implementations of java.util.List, in the JDK as
well as in the application. Thus, it would be prudent to use a
pointer-analysis based call-graph construction algorithm for
analyzing programs containing heavy inheritance in general,
and involving JDK libraries in particular.

The second source of inefficiency with the ArrayList im-
plementation shown in Figure 4 concerns heap cloning [26],
which is a technique to specialize (abstract) objects with the
context in which they are allocated. For example, consider
the array object 𝑂4 allocated in ArrayList’s constructor at
line 4. If the pointer analysis being performed was context-
insensitive, or even if it was context-sensitive but did not
employ heap cloning, then all the ArrayList objects created
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throughout the program would have their array field arr
pointing to the same object 𝑂4. Consequently, say there are
two ArrayLists l1 and l2 containing elements of different
types (say 𝐸1 and 𝐸2), the objects added to l1 and l2 via
the add method would get merged, and performing a get
operation1 on either of 𝑙1 or 𝑙2 would return both the ob-
jects together. Thus, l1.arr and l2.arrwould effectively be
aliases (imprecise). Further, say both classes 𝐸1 and 𝐸2 share
the inheritance hierarchy and override a method m, then the
pointer analysis, on encountering a statement x.m();where
x is obtained by calling get on any of the two lists, would
conclude that the method m defined in both 𝐸1 and 𝐸2 may
be called, thus again leading to imprecision.
To conclude, the key takeaway from this subsection is

that in order to avoid getting your analyses stuck inside
JDK libraries, consider analyzing them either very precisely
(adopting context-sensitivity with heap cloning), or accept
having to treat them specially (say assuming or by defining a
set of specifications). In particular, JDK libraries are a typical
example of the case where improving the precision of pointer
analysis affects its scalability positively.

5 Arguing Correctness
Till now we have seen various misconceptions that slow
down the process of writing pointer analyses, in particular
for new analysis writers, and various challenges in terms of
efficiency faced by even expert analysis writers, along with
several insights on how to mitigate the same. Once an analy-
sis scales and delivers reasonable numbers, one is faced with
the following pertinent question2: “Is my analysis correct?”
More than writing a formal proof of correctness for each
analysis, it is important that the analysis writers first con-
vince themselves that their analysis would indeed enable the
intended optimizations in a correct manner. This section ad-
dresses some of the challenges thrown up by contemporary
programming languages, and techniques adopted to design
efficient pointer analyses. The list is in no sense exhaustive,
but specifically important in context of Java pointer analysis
as discussed in this paper.

5.1 Did You Handle Them All?
In academic settings and in a research paper, it is typically
not expected that implementations handle all the nooks and
corners of the language under consideration. However, be-
fore taking the ideas to production-level environments, it
is important to answer if the ideas would work correctly in
their presence – if yes, then how much would be the im-
pact; if not, then modulo which features. Thus, an important
question to be asked by analysis writers, at least to convince
1This example assumes that different array indices are treated as the same
field, say ‘[]’.
2If the writers did not ask such questions to themselves, the reviewers of a
decent peer reviewed conference/journal would anyway make sure they
are addressed.

themselves, is if the unhandled possibilities of their target
language pose a serious threat to their techniques, first with
respect to correctness and then with respect to the impact
of the numbers obtained in their evaluation.
The first item on the checklist of this section is the var-

ious kinds of statements relevant for pointer analysis, as
mentioned in Section 3.1. Unless one is working on a subset
language (or intermediate representation) proven to be equiv-
alent to the full language under consideration, it is unwise to
assume that all the statements that may affect the informa-
tion computed by the analysis being performed have been
handled correctly. An example of the same was discussed in
Section 3.1, where one may find a given set of statements to
be sufficient for pointer analysis in general, but may have to
expand the set for specific analyses or optimizations (such
as handling the synchronized construct while performing
thread-escape analysis). While using tools such as LLVM
and Soot, one trivial but effective way to check whether you
have handled all kinds of statements is to simply go over the
class hierarchy in the respective tool’s documentation.

Apart from handling the statements that may affect points-
to relationships, another question to ask while analyzing
Java programs concerns the handling of calls to non-Java
(native) methods. There are two equally attractive ways to
address native methods in Java: (i) Assume the worst, that is,
the points-to sets of all the objects reachable from the argu-
ments passed to native methods, after the call, are unknown,
which is not too bad given that most native methods in Java
are related to mathematical computations and hence not
very critical for pointer analysis. (ii) Analyze native methods
manually (yes, you read it right) and hard-code their han-
dling into the implementation, which also is not too bad if
the number of referred native methods is not very high.
For completeness, there is another way of handling un-

common language features: claim that your target programs
do not have those features and relax (obviously, this has
to be supported with an analysis of the benchmarks under
consideration). However, there are features, which though
may not be very interesting in terms of spending energy in
handling them in static pointer analyses, yet are so widely
used in standard Java programs that they cannot be hand
waived in contemporary pointer analysis implementations.
One such painful feature is the focus of the next section.

5.2 Did You Reflect Enough?
Perhaps the biggest show-stopper while writing static anal-
yses for Java programs is reflection. Using reflection, it is
possible to pass the name of a class as a string, create an
instance of that class, and access/modify the fields or invoke
the methods of the obtained object. Figure 5 shows an exam-
ple of using reflection to call a particular playmethod based
on the name of the game passed by the user. The problem
with this code is that which play method is called cannot be
determined statically, thus leading to an imprecision in the
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1 interface Game { void play(); }

2 class Cricket implements Game {

3 void play() { ... }

4 }

5 class Soccer implements Game {

6 void play() { ... }

7 }

8 class M {

9 void m(String c) throws Exception {

10 Class<?> cls = Class.forName(c);

11 Method mtd = cls.getDeclaredMethod("play", null);

12 Object obj = cls.newInstance();

13 mtd.invoke(obj); // obj is the receiver

14 } }

Figure 5. Example of a reflective call in Java.

call graph. Furthermore, the name of the method itself may
have been taken as a parameter, in which case any method3
of any class could have been called at line 13.
Reflection turns out to be an even bigger killer for static

analyses on real-world Java benchmarks such as DaCapo
v9.x [2], where the entry method of a benchmark itself is in-
voked by passing the name of the benchmark to the DaCapo
wrapper jar, taken as a command-line argument during run-
time. As a result, a sound static analysis would not be able to
determine any particular benchmark for analysis, and would
analyze all the benchmarks, leading to highly imprecise re-
sults (and a very bad scalability). In fact, due to this very
reason, several recent works still prefer to use older DaCapo
benchmarks (2006 version), which provided a patched jar
that did not use reflection – sound but not really up-to-date.
A popular way to analyze DaCapo (and in general, any

benchmark that uses reflection) with Soot [43] is using the
tool TamiFlex [4]. Running a benchmark with TamiFlex cre-
ates a log file listing the actual method called from each
reflective call-site. These logs are then used by Soot to com-
plete the call-graph for interprocedural static analysis4. The
problem with using TamiFlex is apparent: the log is correct
only for a particular run of the benchmark; hence if the
benchmark was driven by events that could lead to different
outcomes, the analysis results would be unsound. Recently,
there have been studies and improvements [21, 31] suggest-
ing ways to distinguish the sound parts of an analysis from
the potentially unsound ones due to reflection, but taming
this dynamic feature to write complete and sound pointer
(and even other) analyses continues to haunt the static anal-
ysis community, with no fool-proof solution in sight.

3An improvement could be done by observing that the parameter list used
to get the method at line 11 is null, indicating that the method does not
take any parameters.
4In fact, if you analyze a benchmark that uses reflection with Soot but
without TamiFlex, the call-graph will have missing edges, thus leading to
an unsound as well as incomplete analysis.

1 class Y {...}

2 class X {

3 Y g;

4 X() { g = new Y(); }

5 }

6 class N {

7 void n() {

8 X s = new X();

9 new L().l(s);

10 synchronized(s.g) {...}

11 } }

11 class L {

12 void l(Object t) {

13 // doesn't access t.g

14 } }

Figure 6. A Java code snippet to demonstrate static+JIT
analysis. The library class L is unavailable while analyzing
the application classes X, Y and N, and vice-versa.

5.3 Static+JIT is Not the Same as Modular
Pointer analysis in JIT compilers is very different from that
in static compilers. As static analyses are performed offline,
it is perfectly fine for them to take several hours and to con-
sume several gigabytes of memory, before generating results
that can be used to perform optimizations. However, in JIT
compilers, as the time spent in analysis affects the execution
time of the program, and given the already present scalabil-
ity challenges with pointer analyses, most such analyses in
typical JIT compilers [10, 28, 30] are performed very con-
servatively (for example, intraprocedurally), thus neglecting
the use of almost all the advancements from the static analy-
sis community. The recently proposed PYE framework [41]
proposes to solve this problem by performing the analysis
of the different modules of the program statically, while de-
noting inter-module dependence using conditional values
for the elements in the domain of an analysis, and only re-
solving the conditions during JIT compilation. Albeit a very
promising approach for imparting precise analysis results
to JIT optimizations, a correctness issue originates from the
careful observation that splitting the analysis of the different
modules of a program (such as the application and the JDK)
across static and JIT compilation is not the same as standard
modular analysis followed by composition [7, 44].
Consider the Java program shown in Figure 6. Suppose

the goal is to determine if the synchronization operation
at line 10 can be elided. Clearly, this requires knowing that
the method l of the library class L does not make the object
pointed-to by t.g thread-shared. However, typically the code
for the library class L is not accessible while analyzing the
application classes X, Y and N. PYE resolves this issue by
statically generating a conditional value representing that
the synchronization operation at line 10 can be elided based
on the information about the field f of the first argument
passed to l, and resolves this condition in the JIT compiler.
Though this looks similar to modular analysis, the problem
is that there is a gap between the time such conditional
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values are generated statically and when they are resolved
in the JIT compiler. Consequently, the problems that can be
caused by this delay need to be accounted for, before eliding
synchronization operations in the JVM. Observe that such a
challenge simply does not exist in standard modular analysis:
the analysis results are declared to be complete, and hence
usable for performing optimizations, only after composing
the results of the different modules.
There are two ways to handle the possible security issue

discussed above. First, verify that the results indeed corre-
spond to the code that is being linked in the JVM, while
handling cases such as dynamic classloading [15] in a pos-
sibly imprecise but sound manner. Second, use the results
of such static+JIT analyses under guarded conditions. Both
these promising ideas are works in progress.

5.4 What to Do When Things Go Wrong?
First of all, how do analysis writers detect whether the results
computed by their analyses are wrong? This is a difficult
question, and even the not-so-perfect answers depend usu-
ally on the analysis being performed. For example, an analy-
sis that elides synchronization could instrument the program
at each pre-transformation synchronization point, and check
at run-time that a thread other than the current one indeed
does not access the corresponding memory location (sim-
ilar to the approach proposed by Lee et al. [17]). Another
option that sometimes helps is to print enough information
that could be verified after performing transformations; for
example, the DaCapo harness [2] pre-computes a checksum
on the output and the error streams, and explicitly notifies
the user if the checksum computed at runtime is different.
As this paper puts special emphasis on new researchers,

the first step to handling wrong analysis results has to be
philosophical. Reckon that most software that is out there is
buggy, and that there is always a way to move ahead. The
next step is to find the source of the bug. As a PhD student,
I recall spending days looking at the dumps of my points-
to graphs, often containing thousands of nodes and edges,
trying to understand where did the analysis go wrong. Most
of the times the observable effect was a non-terminating
analysis, and the cause turned out to be some piece of imple-
mentation that broke monotonicity. This experience helped
recently when one of my students faced a similar issue: we
step-by-step looked into the handling of cases that might
make the information swing up-and-down over the under-
lying lattice and thus break monotonicity (result: we could
resolve the issue in two hours).
The process of debugging becomes more involved when

working with multi-stage analyses or optimizations; for ex-
ample, static and JIT as in PYE. Once you find a bug, how
do you pin-point whether its source is in the static analysis,
in the JIT implementation, or possibly in the way you have
integrated the same. The general solution here is to rely on
good software design principles: break down the program

into modules that compose well. However, in particular for
pointer analyses written in Java, ideas such as limiting the
number of places where you mutate objects, such as main-
taining final fields and immutable data structures for (parts
of) points-to graphs, helps quite a bit in limiting problems
in the first place and in debugging them later, if required.

6 Related Work
The previous sections have illuminated several aspects re-
lated to designing and implementing pointer analyses for
Java programs: common misconceptions, challenges and
ways to impart efficiency, and road-blocks in ensuring and
arguing correctness – all based on the author’s experience
of writing various kinds of pointer analyses over the last
few years. This section highlights some of the recent related
works that either survey or present ways to address one or
more of the issues discussed in the rest of this paper.
Smaragdakis and Balatsouras [34] present a comprehen-

sive discussion of pointer analysis, with a declarative flavour.
This approach has quite frequently been used over recent
years [19, 20, 36] while implementing various techniques
to scale object-sensitive analyses with heap cloning for per-
forming pointer analysis over Java programs. Though the
discussion in the current paper has often given examples
from analyzing Java programs in Soot [43], many of the
points are equally applicable while expressing the analysis
in a declarative manner in tools such as DOOP [5].
The importance of the abstraction used in designing an

analysis, including that of the context abstraction used in a
context-sensitive analysis, heavily affects not only the preci-
sion of the analysis but also its scalability to large programs.
Kanvar and Khedker [13] present a detailed study of the vari-
ous choices available while writing such analyses in general,
and Thakur and Nandivada [42] evaluate existing and novel
choices of context abstractions for Java programs. Many of
the insights discussed in Section 4.1 have been drawn from
the experiences of implementing the latter.
The importance of soundness while taking the results of

static pointer analyses to production, and the absence of
soundness in most recent works, in presence of dynamic
features such as reflection in Java and other languages, was
highlighted recently by Livshits et al. [22]. The authors of
that article, while acknowledging that techniques to han-
dle all such cases soundly are not foreseeable in the near
future, coin the term soundiness to describe such analyses,
and suggest that contemporary researchers should enlist the
cases modulo which their techniques work correctly. The
additional takeaway from the current paper is that in future,
more novel modular ways of establishing correctness would
be required, specially as wemove aheadwith designing novel
abstractions to scale precise analyses and inventing novel
ways of organizing analyses themselves.
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7 Conclusion
This paper attempted to cover a vast sphere – precise, scal-
able and correct pointer analysis of Java programs – based on
the experience of someone working towards keeping precise
analyses efficient and observing the recent research trends in
the community. The aim was not to just showcase the recent
advancements in last few years, but to enrich the literature
by documenting often missed lessons drawn from the strug-
gles behind implementing and getting good research work
published. A particular target audience was the community
of new and budding analysis writers, who would take up the
evergreen task of improving the state-of-the-art in pointer
analysis, specially for object-oriented programs.

The paper presented lessons under three categories: (i) mis-
conceptions arising due to undocumented principles and
practices to be kept in mind when advancing from the stage
of a “learner” in classrooms to a “researcher” in improving
pointer analyses; (ii) the ideas behind the various techniques
employed by contemporary researchers in scaling precise,
specially context-sensitive, Java pointer analyses; and (iii) the
hurdles people face in first themselves getting confident, and
then convincing the reviewers and the community, about
the validity, the vitality and the reliability of their ideas in
presence of quirky language features.

Pointer analysis was an active research area at the dawn of
the twenty-first century, and has continued getting traction
twenty years down the line. Now as we move onward –
beyond 2020 – the key meat of this paper is that in the
coming years, we should expect to see more and more work
that specializes pointer and program analysis, in general,
for the particular problems at hand. The ideas of staging an
analysis to gain insights about the program, of splitting the
analysis across various phases in a program’s life cycle, and
of mixing multiple novel abstractions while analyzing the
different parts of the same program, would go a long way in
improving the overall programming-language ecosystem.
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