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Just-in-time (JIT) compilers typically sacri�ce the precision of program analysis for e�ciency, but are capable

of performing sophisticated speculative optimizations based on run-time pro�les to generate code that is

specialized to a given execution. On the contrary, ahead-of-time static compilers can often a�ord precise

�ow-sensitive interprocedural analysis, but produce conservative results in scenarios where higher precision

could be derived from run-time specialization. In this paper, we propose the �rst-of-its-kind approach to

enrich static analysis with the possibility of speculative optimization during JIT compilation, as well as its

usage to perform aggressive stack allocation on a production Java Virtual Machine (JVM).

Our approach of combining static analysis with JIT speculation – named CoSSJIT – involves three key

contributions. First, we identify the scenarios where a static analysis would make conservative assumptions

but a JIT could deliver precision based on run-time speculation. Second, we present the notion of “speculative

conditions” and plug them into a static interprocedural data�ow analyzer (whose aim is to identify heap objects

that can be allocated on stack), to generate partial results that can be specialized at run-time. Finally, we extend

a production JIT compiler to read and enrich static-analysis results with the resolved values of speculative

conditions, leading to a practical approach that e�ciently combines the best of both worlds. Cherries on the

cake: Using CoSSJIT, we obtain 5.7× improvement in stack allocation (translating to performance), while

building on a system that ensures functional correctness during JIT compilation.
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1 Introduction

Modern managed runtimes have multiple tiers of translation comprising interpreters as well as
baseline and optimizing just-in-time (JIT) compilers. Though JIT compilers cannot a�ord performing
complex program analysis like ahead-of-time (AOT) compilers, their tour-de-force is to generate fast
paths of the code being compiled by specializing it to the current execution. These specializations
are achieved by maintaining run-time pro�les, which record a plethora of information related to
call sites, branches, receiver types, and so on. An optimizing JIT compiler uses these pro�les to
perform various speculative optimizations, which often lead to performant binaries.
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Fig. 1. Block diagram of our approach CoSSJIT. Abbreviations indicate modifications done in OpenJ9 towards

the resolution of conditions related to: (i) SMC: speculative polymorphic calls; (ii) SMI: speculative method

inlining; and (iii) SBE: speculative branch execution.

In contrast, recognizing the imprecision in standard JIT analyses, many recent works have
proposed the usage of static AOT analyses to deliver precise optimizations in JIT compilers. These
range from usages of partial program analysis in absence of parts of the program [12, 27], to
o�ine analysis of JIT-compiled code [20, 32], to feedback-based approaches that improve results
over multiple executions [5]. In order to mitigate concerns that o�ine-analysis results may lead
to incorrectness in presence of dynamic features or changes in program paths, some of these
approaches require a closed-world assumption [32], whereas others employ run-time techniques to
detect issues and/or repair the state before they could alter the program’s behavior [1, 16].
In spite of the bene�ts of o�oading complex program analysis to static time and using the

generated results to achieve precision in a managed runtime, there are key di�erences between the
precision capabilities of AOT and JIT compilers not captured by any prior work. In particular, we
observe that relying on a completely static program analysis can take away what a JIT compiler is
better at – speculation based on run-time pro�les. A static analysis could generate better results if
it accounted for the possibility of speculation in the JIT compiler, thus allowing run-time pro�les
to be integrated into its otherwise precise results during JIT compilation. A manifestation of such
an amalgam would result into the best of both the worlds, and enable the use of highly precise
program-analysis results in driving aggressive optimizations during JIT compilation. In this paper,
we present the �rst static+JIT strategy of this kind and implement it in a production setting, to
perform an impactful optimization much more aggressively than the state-of-the-art.
The optimization we choose is stack allocation [8, 11, 30] – which exploits the property that an

object whose lifetime is shorter than that of its allocating method can be allocated on the stack
frame of that method (either as an aggregate or decomposed into its �elds, called scalar replacement).
Allocating an object on stack is known to reduce the access time of its �elds, often improve cache
locality, reduce the need of garbage collection, and consequently improve performance. Owing to
these bene�ts, most OO JIT compilers (for languages such as Java) estimate the lifetimes of objects
using escape analysis and implement a stack allocation and/or scalar replacement pass. Recent
works have also proposed functionally correct usages of static escape analysis for stack allocation
in various JITs, making it a perfect candidate for demonstrating our hypothesis stated above.
Our approach (called CoSSJIT) to integrate static escape analysis with run-time speculation,

for performing aggressive stack allocation during JIT compilation, has two major components: (i)
the “enriched” static analysis; and (ii) the more “capable” JIT compiler; see Figure 1. We chose to
build the �rst over an existing formulation of static escape analysis [26], which implements the
classic �ow-, �eld- and context-sensitive pointer and escape analysis proposed by Whaley and
Rinard [29, 30]. This analysis is known to be more precise than the JIT analyses implemented in
popular Java Virtual Machines (JVMs) such as HotSpot, OpenJ9 and GraalVM.

In order to enrich static analysis with the possibility of run-time speculation, our �rst contribution
is the introduction of speculative conditions while performing interprocedural data�ow analysis, at
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points where a JIT compiler might be able to generate more precise results than a static analyzer.
We add these conditions as special values in the lattice of the underlying analysis, so that the
analysis can generate and propagate these conditions apart from the data�ow values in the existing
analysis lattice (which are escapes and does-not-escape for escape analysis). In particular, for each
abstract object in the escape-analysis domain, our static analysis generates results that may be
conditional to three kinds of speculations that can be performed by the JIT compiler: speculative
polymorphic call, speculative method inline, and speculative branch execution.
Speculative polymorphic-call conditions allow an object to be stack allocated if the set of likely

callees at a polymorphic call site is known not to let the passed object escape. Speculative method-

inline conditions allow an object escaping from a callee to be allocated on the caller’s stack if the
callee is inlined into the caller and the caller is known not to let it escape. Speculative branch-
execution conditions allow an object to be stack allocated if it escapes only in branches that are
determined to be taken less frequently than others. We describe each of these conditions along
with examples in Section 4, and have implemented them in the Soot framework [28].

Our second contribution is the usage of speculative static-analysis results in the optimizing
JIT compiler of a production JVM. The idea is to extend the JIT’s escape analysis to consult
the static-analysis results, and to hook static-analysis results to the JIT compiler’s speculation
infrastructure. The resolution of speculative method-call and method-inline conditions depends on
the dynamic class-hierarchy table (maintained by the JVM to resolve calls and perform type-based
optimizations), as well as the receiver pro�les at call sites (maintained by the JVM to optimize
polymorphic calls). Similarly, the resolution of speculative branch-execution conditions depends
on branch or basic-block pro�les (maintained by the JVM to perform more aggressive optimization
of program hot-spots and for hot-code basic-block ordering). For the speculative conditions that
depend on a pro�le value, we also have a tunable “speculation threshold” that determines the pro�le
percentage we consider good enough for driving speculative stack allocation. In order to detect
and repair incorrect speculative allocations, we utilize an existing notion called heapi�cation that
uses run-time checks to identify a�ected objects, and to copy them onto the heap while updating
their references. We have implemented the components associated with this contribution in the
Testarossa JIT compiler of the Eclipse OpenJ9 VM [14].

We evaluate our approach by comparing it with the baseline escape analysis of the Eclipse
OpenJ9 VM over benchmarks from the DaCapo 23.11 [6] and 9.12 [7] suites, as well as from
SPECjvm2008 [24]. We �nd that our approach signi�cantly increases the amount of stack allocation
performed by the JVM (5.7×, overall), which translates to decent performance improvements (0.34-
20% and on average 6.7% across benchmarks with improved stack allocation, and without any
noticeable degradation for the rest). We also study the e�ects of di�erent kinds of speculative stack
allocations, and �nd that though they are essentially program-dependent, speculative method-inline
conditions are the most impactful over di�erent benchmarks. Finally, we measure the overheads of
our approach in terms of additional time spent during JIT compilation, and �nd them to be minimal
(0.75%) compared to the huge bene�ts obtained therein.

Contributions:

• We introduce CoSSJIT, an idea that enriches static analysis to account for the possibility of
run-time speculations into its results.

• We instantiate our idea for speculatively allocating objects on stack in three scenarios: (i) An
object can be allocated on its allocating method’s stack when it does not escape at a polymor-
phic call site based on run-time pro�le information. (ii) A callee object can be allocated on
the caller’s stack frame when the callee method is inlined into the caller and the object does
not escape further. (iii) A method-local object that does not escape in some of the conditional
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branches can be allocated on stack if those branches are more likely. Incorrect speculative stack
allocations are dealt through an existing idea that heapi�es them before being referenced.

• We implement our proposed integration of speculation-enriched static analysis results and
speculative stack allocation across the tiered infrastructure of a production JVM.

• We provide a comprehensive evaluation demonstrating that enhancing static analysis with
speculative results increases the extent of stack allocation performed by a JIT compiler. This,
in turn, improves run-time performance in allocation-intensive programs.

The rest of the paper is organized as follows. Section 2 presents an overview of various concepts
and frameworks used in our paper. Section 3 illustrates the interesting challenges that our proposed
approach handles, using a motivating example. Section 4 describes the static component of our
approach in terms of enriching a static escape analysis to account for possible speculations during
JIT compilation. Section 5 describes the key run-time components of our approach for making
decisions about allocating objects on stack speculatively, using dynamic class hierarchies, run-time
pro�les, and method-inlining information. Section 6 evaluates the improvements imparted by our
approach in terms of increase in stack allocation, impact on performance and garbage collection,
as well as the contribution of the key ideas in delivering precision. Finally, Section 7 presents
important related work and Section 8 concludes the paper.

2 Background

2.1 Escape Analysis and Stack Allocation

Escape analysis [11] is a popular program-analysis technique employed by many JIT compilers
to determine objects whose references are not accessible outside their scope of allocation. If a
reference to an object is never required beyond accessing its �elds, it can often be decomposed into
scalar variables (an optimization called scalar replacement [18, 25]), and if the object cannot be
accessed once the allocating method’s lifetime is over then it can be allocated on stack instead of
on the heap (an optimization called stack allocation [8, 11, 30]). Typical JIT compilers determine
the “escape status” of an object based on a reachability test from external and global references
over the points-to graph [30] of a method.
If an object can be allocated on stack, its �elds can be accessed faster using constant o�sets

through the stack pointer instead of via indirections in the heap. In addition, a stack-allocated
object is not only faster to allocate in the �rst place, it gets freed away with no cost as soon as
the activation record of the allocating method is popped o� the run-time stack. For managed
languages such as Java, this also leads to reduced garbage collection. Expectedly, an increase in
stack allocation has been shown to signi�cantly improve performance of Java-based systems, and
hence it is employed by most Java JIT compilers at their higher optimization levels.
Another popular optimization enabled by escape analysis (though in fewer scenarios than

stack allocation) is scalar replacement [18]. Here, an eligible object is replaced by its constituent
�elds and the object header is removed. In the popular HotSpot VM, this is performed based on
a reachability test over the connection-graph representation [11] of the methods being compiled
at higher optimization levels of the C2 (Server) JIT compiler [23]. Similarly, the JIT compiler of
GraalVM [22] performs scalar replacement aggressively, and materializes [25] the �elds on the
heap in branches where the corresponding object is found to escape.

2.2 Speculation during JIT Compilation

JIT compilers are known to be resource constrained as the compilation time directly a�ects the
execution time of the program being compiled. Consequently, they end up performing imprecise
program analyses and miss optimization opportunities, instead of say performing �ow-sensitive or
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interprocedural data�ow analyses. However, in contrast to static analyses performed by ahead-
of-time compilers, JIT compilers have access to run-time pro�les computed either in a previous
interpreter pass or while executing code compiled at a lower optimization level. These pro�les
typically correspond to information such as the popular types of the objects collected as parameters,
the branches taken at if-else conditionals or switch cases, and the receiver types or the methods
bound at polymorphic call sites [13].
Based on run-time pro�les, JIT compilers can make sophisticated assumptions to perform

several optimizations and generate highly specialized code pertaining to the assumptions. Such
optimizations are called speculative optimizations, whereby the compiled code is protected from
unsoundness by anchoring it to “guards” that check the assumptions. If an assumption is found to
be violated during execution, the runtime deoptimizes [17], which translates to falling back either
to a safer version of compiled code or to interpreting original input code. Typical Java runtimes
perform speculative optimizations such as method inlining and inline caching (based on callsite
pro�les) and aggressive optimization of program hotspots (based on branch-target pro�les). These
can often enable many more optimizations in the specialized code, ranging from better constant
propagation to better escape analysis and stack allocation (for example, a JVM may be able to stack
allocate an object whose reference is passed to a method even with an intraprocedural escape
analysis, if that method is inlined into the caller).

2.3 Testarossa JIT and Eclipse OpenJ9

Eclipse OpenJ9 is a popular Java runtime that closely resembles the Oracle HotSpot JVM on tradi-
tional workloads and even outperforms it for high-performance applications. On the compilation
front, it consists of a sophisticated JIT compiler called Testarossa [14] (TR-JIT), which converts
Java Bytecode to a Tree intermediate language (Tree IL) and performs optimizations tiered across
multiple optimization levels (cold, warm, hot, very hot, and scorching). At higher optimization lev-
els, it also performs various OO optimizations such as stack allocation and object scalarization (also
called non-contiguous stack allocation), enabled by a primarily intraprocedural escape analysis that
sometimes can “peek” inside called methods to get an interprocedural �avor. The TR-JIT compiler
of OpenJ9 also adapts the idea of partial escape analysis [25] to stack-allocate objects in hot paths
and “heapify” them in cold blocks. Other JITs such as Oracle’s C2 compiler and GraalVM’s Graal
compiler have similar capabilities built in too, which we mention to assert that the contributions
we make in this paper can be expected to provide similar improvements therein.

A recent work [1] proposed the idea of run-time checks and dynamic heapi�cation to correctly
utilize interprocedural �ow-sensitive static-analysis results for enabling stack allocation during
JIT compilation in the OpenJ9 VM1. Its evaluation showed that it was not only feasible to use
static-analysis results for improving stack allocation signi�cantly, but that the increased allocation
led to reduced garbage collection and to noticeable improvements in performance. In this paper,
we propose a di�erent approach that makes a complementary hypothesis: We claim that there
are interesting scenarios where a JIT analysis would be better than a purely static analysis, and
that it is possible to design an approach that takes advantage of the best of both the worlds. To
demonstrate that both the ideas – using static analysis to improve JIT optimizations, and using JIT
speculation to improve static-analysis results – can be applied together, we (i) choose OpenJ9 itself
for implementing our approach; and (ii) compute the impact of our work over and above what can
be accomplished by the prior art.

1Unlike materialization [25] that reconstructs and allocates scalar-replaced objects on heap (in GraalVM), heapi�cation [1]

moves stack-allocated objects to heap (in OpenJ9).
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1 class A {

2 A f;

3 static A global;

4 void foo(A p1) {

5 A x = new A(); // $5

6 A y = new A(); // $6

7 x.f = new A(); // $7

8 A z;

9 if (p1 instanceof A) {

10 z = new B(); // $10

11 } else {

12 z = new C(); // $12

13 global = y; // $6 Escapes

14 }

15 z.bar(x);

16 } /* method foo */

17 void bar(A z) { ... }

18 } /* class A */

19 class B extends A {

20 void bar(A p2) {

21 // p2 doesn't Escape

22 p2.f = new A(); // $22

23 . . .

24 } /* method bar */

25 } /* class B */

26 class C extends A {

27 void bar(A p3) {

28 // Object pointed-to by p3 Escapes

29 global = p3;

30 . . .

31 } /* method bar */

32 } /* class C */

Fig. 2. Motivating example to illustrate various considerations made by CoSSJIT.

3 Motivating Example

Consider the Java code snippet shown in Figure 2, which consists of three classes A, B and C. Here,
class B and class C inherit from class A, and override its method bar. Denoting abstract object(s)
allocated at line ; as $; , we can see that in the method foo the reference variable x points to the
object $5, y points to $6, and that the �eld f of $5 points to the object $7 (lines 5-7). Furthermore,
depending on the conditional, the reference variable z may point to either the object $10 or the
object $12. At line 15 of the method foo, a call to bar occurs, which can invoke either the bar from
class B or from class C. In the method bar de�ned in class B, the parameter p2 does not escape,
whereas in the bar de�ned in class C the parameter p3 escapes because it is assigned to the static
�eld global. So, for the object $5 in method foo, a static interprocedural escape analyzer would
take a conservative union of both the possibilities (where it could be passed to either B’s bar or C’s
bar), and as a result mark object $5 as escaping, which further causes $7 — the object stored in
$5.f — to escape. Also in the method bar de�ned in class B, an object $22 is allocated and assigned
to p2.f, causing $22 to escape because it is stored in the parameter p2’s �eld.
Now consider a scenario in which during program execution in the JVM, the method foo is

being JIT-compiled with pro�le information available until that point (collected usually during
interpretation and/or in a lower optimizing tier of the JIT compiler). It may happen that one of
the possible receiver types at line 15 has been found to be more likely than the other; say that
happens to be B. In such a case, the JIT would usually speculate and either replace the virtual call
at 15 with a direct (guarded) jump to B’s bar or, sometimes even inline B’s bar. With either of the
decisions, note that it would have been safe to allocate the objects$5 and$7 on foo’s stack, though
a JIT that uses the static-analysis results would have lost that opportunity. In fact, it is possible
that the runtime had not even loaded class C until this point (typically recorded in a “dynamic
class-hierarchy table”), in which case the JIT could have even removed the associated guard.
Next, recall that the object $22 in B’s bar escapes and hence cannot be allocated on its stack

because it is stored into the �eld of a parameter. During JIT compilation, either because of the
dynamic class hierarchy or because of the run-time pro�le, say the VM decides to inline this bar
into foo (at line 15). In such a scenario, it would be possible to allocate $22 onto foo’s stack instead
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of on the heap, as the object pointed to by x.f does not escape later in foo. But again, a standard
static analysis would have missed this opportunity.

Finally, consider the object$6 in method foo. It escapes only in the false branch of the conditional
at line 9 and not in the true branch. Sophisticated JIT compilers compute frequency information
either at edge or basic-block levels, and use it to perform various speculative optimizations (such as
optimization of hot paths, basic-block ordering, etc), and can tell us if one of the branches is more
likely than the other. Consequently, similar to the previously discussed scenarios for speculative
stack allocation, the object $6 can be allocated on foo’s stack if the JIT determines the false branch
to be more likely than the true branch. But a standard static analysis would take a control-�ow
merge and lose this opportunity for additional stack allocation as well.

After seeing opportunities for improving escape analysis with JIT speculation, one may wonder
what would happen if a precise escape analysis was performed during JIT compilation itself.
However, typical JIT compilers do not have enough budget to perform precise program analysis
(e.g. interprocedural �ow-sensitive) in the �rst place, which makes them incapable of computing
intricate information considering object �ows in the kinds of scenarios discussed above.
Our proposed scheme in this paper generates static-analysis results that are “aware” of the

possibility of run-time speculation during JIT compilation using a novel notion of speculative
conditions, and then resolves those conditions by hooking on to a managed runtime’s speculation
infrastructure before performing stack allocation. Apart from the possibility of “in-favor pro�les”,
our scheme considers the speculation made using dynamic class-hierarchy tables (as illustrated
using the example above). Furthermore, in addition to avoiding imprecision for objects from a caller
passed to multiple possible callees at polymorphic call sites, our scheme considers objects in callees
that could be allocated on caller’s stack in case the JIT compiler speculates and decides to inline the
callee within a particular caller (achieving context sensitivity at the callsite). Finally, our proposed
scheme also addresses the imprecision that could arise from objects escaping in certain branches
(whether directly within the branch like the assignment to global shown in the example above or
inside some deep chain of calls made in the branch), and marks them from stack allocation based
on the available branch pro�les during JIT compilation.
To complete the motivating example, for the code shown in Figure 2, our speculative stack

allocation approach would be able to (i) allocate $5 and $7 on foo’s stack if the JIT compiler
speculates that the likely receiver at line 15 is a B type; (ii) allocate $6 on foo’s stack if the JIT
speculates that the likely branch for the conditional at line 9 is the true one; and (iii) allocate $22

on foo’s stack if the JIT speculatively inlines B’s bar at line 15.
What happens if the speculation goes wrong? The JVM that we use for implementing our scheme

(Eclipse OpenJ9) provides a feature called dynamic heapi�cation, which allows an object (and its
reachables) to be moved from the stack to the heap and correct its references by walking the stack.
OpenJ9 currently uses this routine to heapify a�ected objects in presence of dynamic features like
hot-code replacement that change code during execution. A recent work [1] added this notion for
guaranteeing functional correctness while utilizing static-analysis results in the VM, and we build
our approach on top of its (publicly available) implementation. Essentially, this approach inserts
run-time checks in the interpreter and in the JIT-compiled code to detect and heapify incorrectly
stack-allocated objects in a timely manner, using multiple tricks to make this process e�cient. Thus,
in our approach, an object for which speculative stack allocation goes wrong during execution is
heapi�ed by the JVM, after which the execution continues without triggering a recompilation or
full-�edged deoptimization. Such heapi�cations of course have penalties, and are better kept at
the minimum. Hence we have parameterized our approach to use a “speculation threshold” that
sets the in-favor pro�le percentage beyond which we decide to speculatively allocate an object on
stack; we discuss this in detail in Section 5.
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4 Enriching Static Analysis

We now present our contribution to enrich static analyses with speculative conditions. We discuss
these in context of an escape analysis whose goal is to identify objects that can be allocated on
stack instead of on the heap. However, our extensions are general enough to be applied to other
analyses as well, at least with respect to the speculative conditions described herein.

We have implemented our additions over an existing formulation of static escape analysis (link
hidden for anonymity) for Java programs, which implements the classic �ow-, �eld- and context-
sensitive pointer and escape analysis proposed byWhaley and Rinard [30]. This base escape analysis
takes the class �les corresponding to a Java program, and generates a per-method list of bytecode
indices corresponding to allocation sites of objects that can be allocated on its stack. As convention
goes, the underlying static analysis is conservative, and lists only those objects that are guaranteed
not to outlive the allocating method. (Note that an object outlives its allocating method, also said
to escape, if a reference to that object is stored in a global variable or into the �eld of a formal
parameter or a thread object, or if a reference to that object is returned from the method. In addition,
an object escapes if it is reachable from (i.e. accessible through) another escaping object.)

Recall that our objective is to reduce the cases where a static analysis would present a conservative
answer, if it is possible to improve it later based on speculations that can be made by the JIT compiler.
In context of escape analysis, these pertain to the scenarios where a static escape analysis would
determine an object to be escaping across all the possible executions when it may actually be
stack allocatable in a few. Based on a thorough understanding of JIT speculations, we classify such
scenarios into three kinds of program statements: polymorphic call sites, possibilities of method
inlining, and conditional branches. The remainder of this section describes how we handle these
three scenarios during static analysis, to record the possibility of a run-time speculation with
each object that can be stack allocated based on the same: Section 4.1 for polymorphic call sites,
Section 4.2 for conditional branching, and Section 4.3 for method inlining.

4.1 Handling Polymorphic Callsites

In Java, a polymorphic call site refers to a method invocation where the actual method executed is
determined by the runtime type of the receiver object. A typical interprocedural static analysis
examines all possible callees, merges their e�ects for the arguments being passed and the values
being returned, and generates the result. In the context of escape analysis, an object passed as an
argument is conservatively marked as escaping if the corresponding parameter escapes in any of
the possible callees. However, it is possible that the object escapes only in a subset of callees that
are less likely to be invoked at run-time. Consequently, the object would be stack-allocatable in the
caller in a majority of its invocations, despite being classi�ed as escaping by the static analysis.
Our approach begins by identifying objects that are marked as escaping solely because they

are passed as arguments at a polymorphic call site and escape in at least one of the possible
callees. Instead of conservatively marking such objects as escaping, we introduce a speculative
polymorphic-call condition of the form ⟨2128 ,)2 ,$128⟩, where 2128 represents the bytecode index of
the call site (identifying the call instruction in the corresponding Java class �le), )2 denotes the
set of possible types of the receiver object for which the passed objects do not escape, and $128 is
the set of bytecode indices corresponding to objects that can be stack-allocated. This condition is
interpreted as follows: if, at a call site with bytecode index 2128 , the receiver object’s type belongs
to )2 , then the objects in $128 are marked for stack allocation.
Consider the code example shown in Figure 2. At line 15 of the method foo, the method bar is

invoked with the object $5 passed as an argument. Since the run-time type of the receiver z can be
either B or C, the method bar de�ned in one of these classes will be invoked during execution. In
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Fig. 3. Handling a polymorphic callsite: (a) Existing static analysis; (b) CoSSJIT’s static analysis. Arrows

indicate (may) points-to relationships.

the method bar de�ned in class B, the parameter ?2 does not escape, whereas in the method bar

de�ned in class C, the parameter ?3 does escape. Consequently, a state-of-the-art static analysis
will conservatively merge the results from both callees, marking$5 as well as all objects that can be
accessed through $5 (in this case, $7) as escaping. In contrast, our approach generates a condition
of the form ⟨I, {�}, {$5,$7}⟩, where I represents the bytecode index (bci) of the call site, and
$5, $7 are the objects that can be stack allocated. Figure 3 illustrates this case for the given code
snippet, contrasting the existing (conventional) approach with ours.

4.2 Handling Conditional Branching

Conditional statements are a fundamental construct in programs, allowing for di�erent execution
paths based on run-time conditions. In such statements, a local object may escape in one branch but
may be stack allocatable in the other. Conventional static escape analysis again takes a conservative
approach by computing a meet operation over the escape statuses of objects at the merge point of
the conditionals. Consequently, if the object escapes in any of the branches, it is uniformly marked
as escaping, even if it remains stack-allocatable in a majority of branch targets. A JIT compiler
using this result would thus allocate the object on the heap, irrespective of the branch taken out of
that conditional at run-time.
Given a conditional statement, our CoSSJIT approach extends static escape analysis with the

identi�cation of objects that escape in some branch targets but not in all. For such objects, it
generates a speculative branch-execution condition of the form {⟨�>=3128 ,$128⟩} where �>=3128
denotes the set of bytecode indices representing branch targets that, if taken, would allow objects
(represented again by bytecode indices) in the set $128 to be stack-allocated.

Consider the code example in Figure 2. At line 13, within the else branch, the object $6 escapes
as it is assigned to the static �eld global of class A. Consequently, conventional static analysis
marks it as escaping. In contrast, our approach introduces a branch-execution condition of the
form ⟨{9}, {$6}⟩, where 9 represents the bytecode index (bci) of the true branch target, and $6 is
the object that can be stack allocated if the corresponding target is taken. Figure 4 illustrates this
scenario for the given code snippet, contrasting the existing (conventional) approach with ours.
Note that in this instance, the escape is directly observable in the caller; however, it is also

possible that $6 is passed to a method and escapes within that method. Identifying such cases
requires interprocedural analysis, such that only those objects are identi�ed and listed that escape
in one of the considered branches but do not escape elsewhere due to any other reason. Similar to
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Fig. 4. Handling objects in branches: (a) Existing static analysis; (b) CoSSJIT’s static analysis.

the manner described in Section 4.3, we implement the addition of speculative branch-execution
conditions as an additional pass over the existing escape analyzer.

4.3 Handling Method Inlining

Method inlining is one of the most fundamental and widely used optimizations performed by
optimizing compilers. In context of escape analysis, when a method is inlined at a call site, it may
enable the allocation of local objects from the callee on the caller’s stack. However, static escape
analysis (performed o�ine) cannot account for the possibility of method inlining at various call
sites. As a result, the local objects within the callee that can be allocated on the caller’s stack if the
callee method gets inlined are conservatively marked as escaping.
In CoSSJIT, for each call site, we analyze the callee to identify objects allocated therein that

escape solely due to one of the following reasons: (i) being stored in a parameter’s �eld or (ii) being
returned from the callee to the caller. In both cases, if the callee method is inlined (which is decided
only at run-time) and then escape analysis is performed, it would be able to successfully mark
those objects for stack allocation in the caller’s frame. To account for this during static analysis,
instead of immediately marking such objects as escaping, we generate a speculative method-inline

condition of the form ⟨2128 ,<B86=,$128⟩, where 2128 represents the bytecode index of the callsite in
the caller,<B86= denotes the signature of the invoked method, and$128 is the set of bytecode indices
corresponding to local objects in the callee that can be stack-allocated.
This condition is interpreted as follows: if, at a call site with bytecode index 2128 in the caller

method, the method with signature<B86= is inlined at runtime, then the objects in $128 are marked
for stack allocation in the caller’s stack frame. For a polymorphic call site, we statically analyze
and generate information corresponding to each possible method that could be potentially called
and inlined therein. Note that we cannot generate this condition simply while processing a call
site in the caller; we need to make sure that the objects allocated in the callee, if reachable in the
caller after the call, do not escape otherwise from the caller. That is, these conditions need to be
generated and maintained while performing the original static escape analysis. We implement this
by adding another pass to detect such scenarios over the existing escape analyzer, wherein we
iterate over the statements of a method, collect locally allocated objects from callees that escape
due to the aforementioned reasons (stored into parameter �elds or returned), and �lter the ones
out that do not escape in the caller due to any other reason.

Consider the code snippet shown in Figure 5, where at line 4, there is a call to the method bar. In
the de�nition of bar within class B, the local object$13 is stored into a �eld of its parameter p2, due
to which a traditional static analysis would mark it as escaping. Now let us assume that neither of
the two foobar implementations (in classes A and B) let anything reachable from their parameters
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1 class A {

2 void foo(A p1) {

3 . . . // from Fig. 2

4 z.bar(x);

5 z.foobar(x);

6 } /* method foo */

7 void bar(A z) { ... }

8 void foobar(A p3) { ... }

9 } /* class A */

10 class B extends A {

11 void bar(A p2) {

12 // p2's pointee doesn't escape

13 p2.f = new A(); // $13

14 p2.foobar(p2.f);

15 } /* method bar */

16 void foobar(A p4) { ... }

17 } /* class B */

18 class C extends A { ... }

Fig. 5. Extended example from Figure 2 to illustrate benefits of conditional inlining by CoSSJIT.

Fig. 6. A callsite with possible inlining: (a) Existing static analysis; (b) CoSSJIT’s static analysis.

escape. In such a scenario, during JIT compilation, even if B’s bar is inlined at line 4, there is no
guarantee that foobar would be inlined at lines 14 and 5, both of which are necessary conditions
for a traditional JIT analyzer to determine that $13 stays stack-allocatable in the caller foo. On the
other hand, our approach statically analyzes the call-tree rooted at line 14, synthesizes a run-time
condition about the stack-allocation of $13, propagates it to the caller, analyzes the call-tree at
line 8, and maintains the condition until JIT compilation. Speci�cally, it generates a method-inline
condition of the form ⟨4, �.10A (?2), {$13}⟩ where 4 denotes the call site, and $13 represents the
object that can safely be stack allocated on the caller’s frame. Thus, just if B’s bar is inlined at
line 4, our approach would be able to mark $13 for stack allocation in the caller foo, without the
requirement of any further inlining and without any further JIT analysis.
Figure 6 illustrates case under discussion for the given code snippet, contrasting the existing

(conventional) approach with ours. Note that apart from conditionally escaping objects such as$13,
in the list of callee objects that become eligible for allocation on caller’s stack post inlining, we also
include bytecode indices of the objects that callee-local (i.e., unconditionally stack allocatable).

4.4 Discussion

As the speculative conditions described in this section are posed to be resolved during JIT com-
pilation, one must pay special attention in ensuring that the overheads in storing and resolving
them are kept minimal. We do so by listing the conditions in special text �les (called .res files),
in a format that can be understood by the VM as it is. For example, we represent objects using
the bytecode indices (BCIs) of their allocation sites in Java class �les (which are visible during JIT
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compilation of bytecodes), and we list down method signatures and type descriptors in the same
format as represented by the JVM in its internal data structures.
Similarly, to minimize the number of generated speculative conditions and the overhead of

resolving them during JIT compilation, we have made a few trade-o�s. In particular, we have
chosen not to generate branch-execution conditions for objects that are involved in multiple
speculative conditions. Thus, if an object escapes through a polymorphic callsite as well as through
a conditional statement, we simply mark it as escaping. Same goes when an object is involved
in multiple sets of conditional statements. We avoid handling these scenarios as the exponential
blowup such combinations may generate is a well-known problem with path-sensitive analyses.
Note that this choice does not reduce precision for objects that are not involved in non-branch
conditions; for example, if an object may escape through multiple polymorphic callsites one after
another, we generate a polymorphic-call condition for each of them. For all other scenarios, the
merge operation of the extended static analysis is simply a union of the speculative conditions
reaching that point, for each object.

5 Implementation in OpenJ9

Having described the generation of conditional static-analysis results in Section 5, we now turn our
attention to the support we add in a managed runtime to be able to take advantage of (enriched)
static-analysis results during JIT compilation, by plugging in run-time information.
We begin by describing the relevant run-time and pro�le information provided by the Eclipse

OpenJ9 VM (Section 5.1), followed by explaining how we utilize them to resolve the three kinds
of speculative conditions, to consequently allocate more objects on stack (Section 5.2). Note that
even though we describe our changes with respect to OpenJ9, most Java VMs maintain and provide
run-time information of the kinds we require; as a result, we claim that our approach can be applied
without any conceptual changes in other JVMs that support stack allocation too, with appropriate
engineering prior to its optimization pass.

5.1 Working of OpenJ9

We �rst give a brief overview of how escape analysis operates in OpenJ9, followed by the run-time
data structures that allow us to retrieve useful pro�le information.
1. Escape Analysis in OpenJ9: In the OpenJ9 VM, escape analysis is triggered when a method’s

optimization level reaches the warm level. The extent of escape analysis is determined by the
optimization level, which can range from warm, hot, very-hot and scorching, in order of increasing
aggressiveness of performed optimization. Each level dictates various constraints, such as the
number of analysis passes, the depth of peeking for a method call, etc (an object passed down the
callee chain beyond the peeking depth is marked escaping). During each pass, escape analysis
identi�es a set of bytecode indices (BCIs) corresponding to objects that are potential candidates
for stack allocation and adds them to a list called �0=3830C4B . These candidates are then evaluated
against a series of heuristics and validation checks to determine their eligibility for stack allocation,
primarily in an intraprocedural manner. Note that even though the analyzer can sometimes compute
interprocedural information at higher optimization levels (through “peeking” or method inlining),
these are limited by a budget that depends on several factors that traditionally limit the precision of
analysis during JIT compilation. Consequently, the current approach results in missed opportunities
for allocating objects on the stack.

2. Pro�le Info: The OpenJ9 VM also collects various types of pro�ling information, spanning from
basic invocation and loop iteration counts in the interpreter, to detailed pro�ling data in di�erent
levels of the JIT compiler. This pro�ling data includes branch information for conditional statements
and instanceof checks, type pro�les at type-cast statements and polymorphic callsites, and so on.
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The Testarossa JIT compiler retains this information as persistent data, ensuring the availability of
pro�ling insights across di�erent compilation levels.
3. Dynamic Class Hierarchy: OpenJ9 maintains a dynamic class-hierarchy table that tracks the

loaded subclasses of a given class at any point during execution. This dynamic hierarchy table
facilitates speculative optimizations based on type information, such as replacement of polymorphic
callsites with guarded direct jumps, and speculative method inlining.
4. Inlining Table: Method inlining is a very useful optimization but depends, similar to most

compilers, on several heuristics (including type pro�les). The OpenJ9 runtime maintains an inlining
table that records, for each call site in a method, the list of methods that got inlined during JIT
compilation (whether guarded or unguarded).

5.2 Speculative Stack Allocation in OpenJ9

We now explain how we utilize run-time information to resolve the statically generated speculative
conditions (of the three kinds described in Section 4), allowing us to mark more objects for stack
allocation than both a standard JIT and an unconditional static analysis can achieve. Algorithms 1
and 2 describe how we resolve speculative polymorphic and branch-execution conditions, and
speculative method-inline conditions, respectively.

5.2.1 Check if Stack Allocatable in Likely Callees at Polymorphic Callsites. In a method< being
JIT-compiled, for any object $ in the Candidates list of objects populated by the JIT compiler, the
process begins by checking if the object is marked as unconditionally non-escaping either by the
local JIT analyzer or by the static analysis, and if so then simply marking it for stack allocation
(lines 3-4, Algorithm 1). For other objects, we retrieve the set of speculative conditions generated
by our static analyzer ((�< [$]) and proceed as follows.
Recall that for each polymorphic callsite 2 through which the object escapes, our static ana-

lyzer generates a set of receiver types for which the object does not escape. We retrieve this list
((�< [$] [2]) and check if the set of actual types loaded until now (found by looking up the dynamic
class-hierarchy table,��<) is a subset of those types; if yes, we can be sure that the object does not
escape without checking any run-time pro�les. If not (as indicated by the condition at line 10), we
retrieve the frequency information of all the receiver types seen at 2 and analyze them as follows.
We compute the sum of frequencies of all statically marked types that permit stack allocation, and
if this sum exceeds a tunable speculation threshold (() ), we mark the object for speculative stack
allocation. In Algorithm 1, these steps are shown at lines 9-14.

For our motivating example from Figure 2, consider the speculative polymorphic-call condition
⟨I, {�}, [$5,$7]⟩ generated by our static analyzer for the objects passed at line 15. While JIT-
compiling foo, at line 15, if either the set of receiver types loaded dynamically is found to be
just {�}, or if the receiver type pro�le suggests that B’s frequency is higher than the speculation
threshold, our scheme would mark both $5 and $7 for stack allocation.

5.2.2 Check if Stack Allocatable in Some Branches. The next check involves determining whether
an object $ from the �0=3830C4B list can be allocated on the stack based on the resolved values of
the statically computed speculative branch-execution conditions. In Algorithm 1, if the analysis
until now has classi�ed $ within method< as escaping (i.e. ¬2>=38C8>=0;�;;>20C8>=), the process
resumes by retrieving the speculative branch-execution conditions for $ (in (�< [$]). These
conditions, as explained in Section 4.2, indicate whether the object remains non-escaping in certain
targets of a conditional in<. We next retrieve the run-time pro�le information corresponding to
each conditional in the current method (i.e. �%<), and compute the cumulative sum of execution
frequencies for branches of that conditional that have been identi�ed as safe for stack allocation
by the static analysis. If this aggregated sum exceeds our speculation threshold (() ), we mark $
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Algorithm 1: Stack allocation based on speculative polymorphic-call and speculative branch-

execution conditions.

Data: (�< : Map from objects to speculative conditions generated by Static Analysis for<.

��< : Run-time class hierarchy for all callsites in<.

�%<: Run-time pro�le information for all callsites in<.

�%<: Run-time pro�le information for all branch instructions in<.

() : Speculation threshold.

Result: List of additional BCIs for stack allocation.

1 �0=3830C4B<= Set of all objects identi�ed by JIT in method m.

2 foreach $ ∈ �0=3830C4B< do

3 if $ is unconditionally non-escaping then

4 Mark the object $ for stack allocation.

5 else

6 markedNonEscaping = false.

7 conditionalAllocation = true.

8 if $ ∈ (�< then

// 1. Check if $ is likely to escape at polymorphic callsite.

9 foreach Callsite 2 ∈ (�< [$] do

10 if ��< [2] ⊈ (�< [$] [2] then

11 if
∑

∀C ∈(�< [$ ] [2 ]

(�%< (C) ≤ () ) then

12 conditionalAllocation = false. // break

13 if conditionalAllocation then

14 Mark the object $ for stack allocation.

15 markedNonEscaping = true.

// 2. Check if $ is likely to escape in branches.

16 if ¬conditionalAllocation then

17 conditionalAllocation = true.

18 foreach Branchresult 1A ∈ (�< [$] do

19 if
∑

∀1∈(�< [$ ] [1A ]

(�%< (1) ≤ () ) then

20 conditionalAllocation = false. // break

21 if conditionalAllocation then

22 Mark the object $ for stack allocation.

as suitable for speculative stack allocation (lines 14-15). This ensures that the decision is guided
by empirical execution trends, allowing the stack allocation of objects that might predominantly
remain on stack. In Algorithm 1, these steps are shown at lines 16-22.

For our motivating example from Figure 2, consider the speculative branch-execution condition
⟨{9}, [$6]⟩ generated by our static analyzer to indicate that the object $6 does not escape if the
branch at line 9 is taken. While JIT-compiling foo, at line 9, if the branch pro�le suggests that
the branch-taken frequency is higher than the speculation threshold, our scheme would mark the
object $6 for stack allocation.

5.2.3 Check if Stack Allocatable Due to Method Inlining. In addition to the previously discussed
speculative stack allocation scenarios, which attempt to allocate caller objects on the stack based

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 371. Publication date: October 2025.



CoSSJIT: Combining Static Analysis and Speculation in JIT Compilers 371:15

Algorithm 2: Stack allocation based on speculative method-inline conditions.

Data: (�< : Map from objects to speculative conditions generated by Static Analysis for<.

�)< : Inlining table for method<.

Result: List of additional BCIs for stack allocation.

// Check for inlining in method m.

1 foreach 2 ∈ �0;;(8C4< do

2 Let �0;;4AB2 be the set of callers listed in (�< .

3 if ∃= s.t. = ∈ �)< [2] and = ∈ �0;;4AB2 then

4 $BC0C82 = Get the list of all statically marked objects for<.

5 Mark all the objects in $BC0C82 for stack allocation.

on dynamic class-hierarchy and/or run-time pro�le information, we further extend stack allocation
to callee objects when their enclosing method is inlined at speci�c call sites (where the caller is
known not to let the object escape further). To achieve this, we �rst retrieve the inlining table
maintained by the OpenJ9 runtime for the current method< (represented as �)< in Algorithm 2).
This table provides information on which methods have been inlined at various call sites within<.
Next, we obtain the list of speculative branch-execution conditions (from (�<) for the method<
(as described in Section 4.3), which lists the objects that can be stack-allocated in each caller of<,
as determined by the static analyzer. If, for any call site, the statically determined condition aligns
with the run-time inlining data (see line 3), all objects in the callee method that were statically
identi�ed as eligible for stack allocation are marked for stack allocation in the caller (lines 4-5).
Note that this not only leads to the stack allocation of all local (unconditionally non-escaping)
callee objects, but also of those that were escaping from the callee only because they were made
reachable in the callee from a parameter �eld or because they were returned to the caller.
For our motivating example from Figure 2, consider the speculative method-inline condition

⟨15, � 10A (?1), [$22]⟩ generated by our static analyzer for objects in bar that can be stack allocated
in the caller if it is inlined at line 15. While JIT-compiling foo, if B’s bar is found to be inlined at
line 15, our scheme would mark the object $22 for stack allocation.

5.3 Discussion

There are a few ways our static analysis can be made even more precise (albeit with a high cost),
and there are a few subtle scenarios where our static analysis does something more precise than
apparent. Say a method< calls another method = at a call site 2 , and that the runtime inlines = at 2 .
Here, based on our speculative method-inlining conditions while JIT-compiling<, if we obtain the
list of stack-allocatable objects from = by considering its inlineability only in<, we may miss =’s
objects that escaped further up from< (e.g. via return x.n();). However, we have chosen to limit
our analysis to consider only the immediate caller (i.e. one level of context sensitivity) because
otherwise we may have an exponential number of possibilities to consider. An example of such
a possibility check would be: While JIT-compiling a caller ; of<, determine if< got inlined at
a callsite 21 while inside< check if = got inlined at a callsite 22. Apart from cost, note that JIT
compilation and inlining often happen in non-deterministic orders, which means it is not necessary
that we have even JIT-compiled an inlining-enabled version of< while JIT-compiling ; .

As an example of a scenario where our static-analysis based approach leads to higher precision
than trivially apparent, consider that a method = got inlined into a caller < and that the JIT
compiler performed a typical intraprocedural analysis of<. One may think that this may already
lead to the stack allocation of all those objects from = that we would identify with our complex
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approach. However, in order to do so, the JIT would have to analyze the �ows of those objects more
deeply than an intraprocedural analysis. An example is an object allocated in =, which though now
potentially stack allocatable in<’s frame, is passed by< to other methods at latter call sites. Our
interprocedural static analysis would have analyzed such �ows beforehand, which is much more
precise than what a typical JIT compiler would be able to achieve even after method inlining.

6 Evaluation

We now evaluate our presented approach by measuring the improvements imparted by using
CoSSJIT over the baseline OpenJ9 VM, across its default tiered infrastructure, for a variety of
benchmark programs. We aim to answer the following research questions:

• RQ1: How many additional objects, and how much extra memory, can be allocated on stack
based on our approach?

• RQ2:What are the contributions of di�erent types of speculative conditions in increasing the
amount of stack allocation?

• RQ3:What is the impact of additional stack allocation on overall program performance?
• RQ4: Is the overhead of resolving speculative conditions during JIT compilation reasonable
compared to the performance improvements it leads to?

6.1 Experimental Setup and Benchmarks

Our static analysis is implemented on top of the Soot framework version 3.1 [28], with TamiFlex
version 2.0.3 [9] used to populate call graphs in presence of re�ection. Our run-time components
are implemented on a recent version of the OpenJ9 VM (openj9 commit b4cc246 and OMR commit
162e6f7), built alongside Java Class Libraries (JCL commit 2a5e268) version 8. We had to choose an
older version of class libraries because Soot and TamiFlex are not capable of analyzing programs
that use more modern Java features. However, note that this does not mean our VM version is
stale; the OpenJ9 and OMR repositories evolve independent of JCL, and each of their commits can
be built with any supported JCL version. In the subsequent subsections, we call the existing VM
without our changes BaseLine, and the one with our approach CoSSJIT. Our experiments have
been performed on a 12th Gen Intel(R) Core i7-12700 system with 20 cores and 16 GB RAM, with
Ubuntu 22.04.1 LTS being the operating system. As achieving consistent performance results on
JVMs is di�cult, we pin the java process to a speci�c CPU core (out of the available 20) using
taskset, isolate CPUs using cpuset, and do not have frequency scaling enabled on our machine. We
also disable shared-class cache in OpenJ9 (a feature that saves+loads pre-compiled code) in order
to keep di�erent runs of a program consistent.

We have measured the impact of our proposed techniques on various benchmark programs from
the latest DaCapo 23.11 chopin suite [6] as well as from SPECjvm2008 [24]. We skipped those
programs from these suites that could not be analyzed either by Soot or TamiFlex (known issues on
their GitHub repositories). However, for some of the unsupported DaCapo benchmarks, we found
that we could successfully analyze and execute their older versions from the DaCapo 9.12-MRI
suite [7], and hence we added them as corresponding replacements. The �rst column of Table 1
shows the �nal set of benchmarks used in our evaluation, partitioned based on the suite they were
picked from (DaCapo 23.11, DaCapo 9.12, and SPECjvm2008, respectively).

We now present a detailed evaluation to answer the research questions listed above. Section 6.2
answers RQ1 and RQ2, Section 6.3 answers RQ3, and Section 6.4 answers RQ4.
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Table 1. Stack allocation statistics for various benchmarks with BaseLine and CoSSJIT schemes. The first

nine benchmarks (avrora–zxing) are from DaCapo 23.11-chopin, the next four (eclipse–lusearch) are from

DaCapo 9.12-MRI, and the last eight (compiler–signverify) are from SPECjvm 2008.

Base Scheme Conditional Scheme

Bench Static Dynamic Stack Static Dynamic Stack Heapify

mark Counts Counts Bytes Counts Counts Bytes Counts

avrora 12 104.2M (38.0%) 3335MB 14 106.5M (39.3%) 3391.4MB 0.4M

fop 19 0.67M (0.04%) 15.7MB 152 1.8M (0.10%) 48.2MB 0.2M

graphchi 12 349M (5.20%) 8327MB 109 1041.1M (14.2%) 20020.6MB 0.006M

jme 2 31M (6.50%) 759MB 15 32.1M (6.67%) 769MB 0M

kafka 42 106M (2.13%) 5730MB 67 112M (2.26%) 5933MB 0.04M

pmd 24 1762M (9.80%) 42295MB 92 1835M (10.2%) 43468MB 0.2M

sun�ow 100 1077M (20.0%) 27577MB 243 2286M (34.7%) 56042MB 0.19M

xalan 81 135.8M (2.52%) 5186MB 168 162.4M (3.02%) 6356.6MB 0.7M

zxing 82 24.2M (2.61%) 987.6MB 347 153.9M (16.4%) 52796.7MB 0.4M

eclipse 7 8.9M (1.06%) 214MB 47 10.1M (1.20%) 257MB 0.008M

h2 61 33M (1.02%) 579MB 129 525M (16.2%) 12749MB 6M

luindex 30 4.9M (3.16%) 137MB 84 24.2M (15.4%) 746MB 0.06M

lusearch 53 18M (2.04%) 452MB 118 53.1M (5.80%) 1271MB 0.3M

aes 8 0.01M (2.79%) 0.3MB 21 0.02M (2.90%) 0.6MB 0M

compiler 93 94M (5.50%) 1720MB 254 129M (5.60%) 2644MB 1.6M

compress 8 0.01M (3.29%) 0.2MB 18 0.093M (15.5%) 2.75MB 0M

�t 3 12 (0.01%) 0.0002MB 11 253 (0.22%) 0.006MB 0M

lu 6 85 (0.08%) 0.002MB 11 389 (0.30%) 0.009MB 0M

montecarlo 9 0.0026M (2.02%) 0.09MB 11 0.006M (4.48%) 0.4MB 0M

rsa 16 0.1M (1.10%) 46MB 48 16.17M (4.46%) 449MB 3.1M

signverify 15 0.24M (0.86%) 6.8MB 40 3.25M (6.34%) 102.2MB 0.5M

Overall 571 3749.0M 36469.7MB 1999 5491.7M 207047MB 14.7M

6.2 Increase in Stack Allocation

6.2.1 Number of Objects and Bytes Allocated on Stack. In order to measure the number of objects
marked for stack allocation during JIT compilation, we added a counter in the routine that processes
the �0=3830C4B list in the escape analyzer (which was described in Section 5). We increment this
counter whenever the JIT marks an object for stack allocation (note that there are some kinds
of objects – such as unknown-sized arrays – that are never marked for stack allocation). Table 1
reports the value of this counter for both BaseLine and CoSSJIT under the column “Static Counts”,
for all the benchmarks under consideration. We see that CoSSJIT marks a signi�cantly higher
number of objects for stack allocation (overall 3.5×). On some benchmarks this improvement is
manifold, for example graphchi (109 instead of 12) and zxing (347 instead of 82). This clearly shows
that there are several allocation sites that a JIT analysis would miss, but a static analyzer such as
ours would be able to identify as non-escaping, even if under speculative conditions.
In order to measure the actual number of run-time objects that get stack-allocated with our

scheme, we instrumented the JIT-compiled code to count object allocations on stack (OpenJ9
provides a mechanism to attach counters with nodes of its intermediate representation, which
are translated to assembly code during code generation); the values of these counters for both the
schemes are shown under the columns “Dynamic Counters” in Table 1. In addition, we instrumented
the heapi�cation code in OpenJ9 to determine howmany of the stack-allocated objects got heapi�ed
due to failed speculation (column labeled “Heapify Counts”). The di�erence between these two
counters (numbers are in millions) gives a measure of how successful CoSSJIT was in allocating
additional objects on stack. Furthermore, as the sizes of di�erent class instances in Java may vary
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Fig. 7. Number of stack allocations and heapifications (in millions) at di�erent values of ST (Speculation

Threshold) for the benchmark h2.

signi�cantly, in order to estimate actual improvement in stack memory (and consequently, the
reduction in used heap memory), we also multiplied each object with its size to obtain the number
of “Stack Bytes” using both BaseLine and CoSSJIT, again shown in Table 1.

We notice a signi�cant increase in the number of run-time objects (1.47×) as well as the number
of bytes allocated on stack (5.7×), with our scheme CoSSJIT compared to BaseLine, across all
the benchmarks. For a few benchmarks this increase is very pronounced, such as graphchi for
which the memory allocated on stack (across all the iterations of the benchmark) increased from
8 GB to 20 GB, and sun�ow for which the dynamic percentage of stack-allocated objects rose from
20% to 34.75%. This testi�es the increased precision with our approach, and establishes it as a
promising way of improving stack allocation in a managed runtime. We discuss the performance
improvements imparted by this additional stack allocation in Section 6.3.

Value of speculation threshold. Recall from Section 5 that part of the logic for resolving speculative
polymorphic-call conditions, as well as the resolution of speculative branch-execution conditions,
depends on the value of the speculation threshold (ST). Our initial hypothesis for determining a
good threshold was that non-escaping paths that are taken reasonably higher than 50% of times
(to be even bene�cial) would be good to perform stack allocation speculatively. Based on this, we
set the speculation threshold to 70% while performing our experiments (shown in Table 1) and
observed very few heapi�cations (i.e. failed speculations) for most of the benchmarks.
To estimate how many heapi�cations should cause us to worry, and consequently to �nd what

value of ST may be good, we designed small programs focused solely on triggering heapi�cations
and found that about 1,000,000 heapi�cations caused a slowdown of nearly 0.1 second. As each
iteration of typical DaCapo benchmarks takes at least a few seconds, we decided to play with the
value of ST for benchmarks in which we observed more than a million heapi�cations; Figure 7
shows the results of this experiment for the benchmark h2 (in whose code we found a relevant
ladder of if-else conditions). We can observe that lowering the value of ST to 60% increases the
amount of stack allocation (blue bars) as well as the number of heapi�cations (short red bars at
the bottom), by similar amounts. Whereas, going in the other direction (ST values from 80-100%)
reduces the number of heapi�cations and also the amount of stack allocation, with reduction in the
latter being much higher than the former. Thus, though this threshold can be changed, we believe
anything around 70% represents a reasonable trade-o� in delivering enhanced stack allocations.

6.2.2 Contributions of Di�erent Speculative Conditions. While determining objects for stack alloca-
tion with CoSSJIT, there are three kinds of analyses in play. Firstly, there is the existing JIT analysis
(we leave it on because though it is imprecise, it uses def-use information that is already available,
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Fig. 8. Distribution of the contributions made by di�erent speculative conditions, in terms of the number of

objects marked for stack allocation during JIT compilation.

and is very fast). Second, in the static-analysis results, there are objects that can unconditionally
be allocated on stack. Finally, there are three kinds of speculative stack allocations that are our
primary contribution. In order to determine the e�ect of each of these categories, we measured
the number of stack allocations in �ve di�erent modes: the existing analyzer (BaseLine), only
unconditional results supplied from static analysis (Unconditional), and only one kind of speculative
conditions supplied over unconditional ones (PolyCall, Inlining, Branching). Figure 8 shows the
static counts for each of these modes, totaling to the count reported under CoSSJIT in Table 1, for
nine benchmarks that had high improvements in static and dynamic counts using CoSSJIT.
We observe that di�erent speculative conditions lead to varying amounts of improvements

over di�erent benchmarks, which is expected as each condition exploits a particular program
behavior. It is apparent that the highest improvement is achieved using speculative method-inlining
conditions (see the yellow portions in the stacked bar charts in Figure 8). For example, as many
as 105 out of the total 243 objects marked for stack allocation in sun�ow are obtained because
of these conditions; zxing and compiler are two more examples. However, there are benchmarks
where branching conditions (see the orange portions) play a signi�cant role too (e.g. fop and zxing).
Similarly, for benchmarks such as graphchi, sun�ow and zxing, even polymorphic-call conditions
(purple portions) lead to a decent number of objects getting marked for stack allocation.

In order to further study the contributions of speculative conditions and correlate our observations
with benchmark codes, we computed the correspondence between static counts and dynamic ones
for a few benchmarks, and manually mapped the stack-allocated objects back to their source
code. We found several interesting scenarios where each of the speculative conditions was useful.
For example, in the class DataMatrixReader of the benchmark zxing, we found an object of type
List<ResultPoint> being returned from a method detect, that gets allocated on the stack of its caller
decode when detect gets inlined during JIT compilation. Similarly, in the benchmark graphchi, we
found an object of type VertexData in the GraphchiEngine class, which escapes only in one branch
of an if-else ladder and gets stack allocated in all others.
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Fig. 9. Performance comparison between BaseLine and CoSSJIT; lower the be�er. For DaCapo benchmarks

the y-axis is time (in milli sec) and for SPECjvm benchmarks it is the normalized reciprocal of ops/sec.

6.3 Impact of Stack Allocation

6.3.1 Impact on Performance. Given the importance of stack allocation in reducing object allocation
and access times, as well as garbage collection, wemeasured the impact of additional stack allocation
achieved by CoSSJIT, over the baseline OpenJ9 VM. While measuring performances in JITted
systems can be non-trivial (variations due to non-determinism in order and number of compilations,
method inlines, etc), we tried our best to obtain statistically reliable numbers. For each benchmark
in the DaCapo suite (where the performance metric is time), we performed enough warm-up
(number of iterations taken from prior work [21] for DaCapo 9.12-MRI and �xed at 100 for DaCapo
23.11-chopin based on approximations done by [1]) and then repeated ten iterations at steady state.
Similarly, for each benchmark in the SPECjvm suite (where the performance metric is throughput),
we ran the standard warmup of 120 seconds and then repeated ten iterations (standard 240 seconds)
at steady state. Figure 9 uses box plots to report the performance2 for the nine benchmarks with high
stack allocation from Section 6.2 (the performance metric is normalized across the two benchmark
suites). For space, the results for the remaining benchmarks are added to Appendix A [3].
We can observe noticeable performance improvements for all the benchmarks where CoSSJIT

improved the amount of stack allocation (the benchmark fop initially surprised us, but then we
observed that the time di�erence across its runs is just 1-2 milliseconds and that it had multiple

2For drawing box plots, we use multiple iterations at the approximated steady state within a given run, instead of picking a

particular iteration from multiple runs. As we pin the programs to speci�c cores and run with a constant workload, we do

not observe any noticeable di�erence in the range of performance metrics obtained using either of the approaches.
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Fig. 10. Number of GC cycles with varied heap sizes (X, 2X, 3X and default heap memory); lower the be�er.

outlier outcomes, which makes it statistically insigni�cant). In particular, we note pronounced
performance improvements in large benchmarks such as graphchi, h2, sun�ow and zxing, and an
overall improvement of 6.7% across all the benchmarks in Figure 9. Given that these improvements
are observed amidst a plethora of other optimizations performed by the JVM, and noting how
even single-digit improvements are considered signi�cant in the Java community, we believe these
results speak for themselves and show the tremendous potential held by innovative amalgams of
static and dynamic analyses, for enabling aggressive optimizations in JIT compilers.

6.3.2 Impact on Garbage Collection. One of the major consequences of stack allocation is reduced
heap allocation, which positively a�ects the number of garbage-collection (GC) cycles required
to manage the run-time heap. This should be particularly useful for systems with lower available
heap memories, where spending time in GC may show pronounced adverse e�ects on program
performance. To study this in detail, we measured the impact of our approach on the number of
GC cycles for the programs under consideration. Here, we calculated the minimum heap size (X)
required to execute each benchmark and then counted the number of GC cycles used by the VM in
BaseLine and CoSSJIT settings, by restricting the maximum heap memory available to the JVM to
X, 2X (moderate heap) and 3X (generous heap), as well as the default heap size (DEF), which is 4 GB
for our machine. Note that lower heap sizes can also serve as a proxy for environments where even
with higher amount of available memory, the GC overhead is signi�cant (because the program was
fundamentally memory intensive). See Figure 10 for the results of this experiment.
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Table 2. Static and JIT overheads of CoSSJIT. Improvement column is dashed out for SPECjvm benchmarks

because the iteration duration for them is fixed.

Bench Static .class .res Total Improve JIT

-mark Time (s) size (MB) size (MB) ET (s) -ment (s) Overhead (s)

avrora 92 8.7 0.29 294 1.6 0.2

fop 735 27 1.40 264 1.0 0.9

graphchi 105 9.8 0.34 2524 325.3 0.2

jme 271 17 0.57 691 0.1 0.3

kafka 1930 62 1.60 582 1.0 1.1

pmd 277 27 0.67 570 41.0 0.8

sun�ow 131 11 0.37 448 4.1 0.08

xalan 113 11 0.38 415 6.0 0.7

zxing 157 11 0.45 1298 20.2 0.5

eclipse 665 10 1.50 400 5.0 0.2

h2 160 2.2 0.35 173 4.0 0.06

luindex 90 1.3 0.28 165 6.0 0.7

lusearch 85 1.2 0.27 115 4.5 0.01

aes 270 2.1 0.75 2540 - 0.5

compiler 472 2.1 0.79 2540 - 4.2

compress 390 2.1 0.76 2540 - 0.5

�t 301 2.1 0.77 2540 - 0.2

lu 316 2.1 0.84 2540 - 0.02

montecarlo 310 2.1 0.74 2540 - 0.2

rsa 398 2.1 0.77 2540 - 0.1

signverify 399 2.1 0.76 2540 - 0.8

Average 365.1 10.3 0.70 1285.9 - 0.47

We observe a consistent drop in the number of GC cycles required in a VM that uses CoSSJIT
compared to BaseLine. We also see that this di�erence increases at lower heap sizes, which implies
that our approach might be even more useful on such machines; see for example compiler, where at
the minimum heap size X, we observe a 35% reduction in the number of GC cycles required during
its execution (1767 instead of 2753). Noticeable drops can also be seen for benchmarks such as h2,
which are known to have high allocation rates (and consequently, frequent GCs if the available
memory is less). Essentially, this means that using CoSSJIT, one may be able to execute these
benchmarks on machines with reasonably modest memory con�gurations than required otherwise.

We also measured performance improvements using our approach on lower heap con�gurations
and found them, expectedly, to be more pronounced than the ones reported in Figure 9. For
completion, we have added the corresponding charts to Appendix B [3].

6.4 Additional Overheads

6.4.1 Static Overheads. We measured the time taken by the static-analysis component of our
approach, for all the benchmarks under consideration; see “Static Time” in Table 2. As can be seen,
it ranges in the order of a few minutes, and usually grows with the size of the benchmark (see the
column “.class size”). As an example, for the small DaCapo benchmark lusearch the analysis time
was 85 seconds and for the large benchmark kafka it was 1930 seconds. Overall, as this analysis
is performed o�ine, we believe the time taken is reasonable. Note that the reported time also
includes the time taken by Soot (our underlying static-analysis framework) to create a call graph
and control-�ow graphs for each method being analyzed.

We also measured the sizes of our static-analysis result �les, and compare them side-by-side with
the sizes of the class �les of the benchmarks in Table 2 (see “.res size” and “.class size”, respectively).
We observe that the �les carrying our results to the VM are typically less than one MB. The average
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storage overhead they represent over class �les is 6.8%, which arguably is quite small. This shows
the impact of some of the ideas we discussed in Section 4.4 in keeping the storage overheads
minimal. Note that the results contained in these �les can also be added as annotations in class
�les themselves (using the code-attribute section in Java classes), without any loss of generality.

6.4.2 Run-Time Overheads. We also determined the JIT overhead of our approach by measuring
the di�erence between the total time spent in JIT compilation between BaseLine and CoSSJIT;
see column “JIT Overhead” in Table 2. Note that this number is obtained across the execution of a
program, and includes warm-up as well as steady-state. Hence for perspective, we also report the
total execution time of each benchmark with BaseLine (“Total ET”) and the delta with CoSSJIT

(“Improvement”). We can observe that compared to the amount of improvement in overall execution
time imparted by CoSSJIT, the JIT overhead – essentially for reading static-analysis results and
resolving speculative conditions – is very low (for SPECjvm benchmarks there is a dash against
Improvement because their iteration duration is �xed). Even for benchmarks such as kafka where
the performance did not vary much between BaseLine and CoSSJIT, we can see that the JIT
overhead did not really contribute much. In fact, there are examples where a small increase in
JIT-compilation time led to magnitudes of improvement in the execution time of the program (e.g.
graphchi), which as observed earlier is a consequence of the enhancement in stack allocation.
Overall, we note that our novel integration of static analysis and JIT speculation leads to a

signi�cant improvement in stack allocation, with negligible run-time overhead. The enhanced stack
allocation in turn leads to decent improvements in performance for several real-world benchmarks,
along with a reduction in the amount of required garbage collection.

In a nutshell, we believe our work exempli�es a sweet spot by combining the precision-e�ciency
trade-o�s of a static analyzer with those of a JIT compiler, harnessing the best that both have
on o�er. Our approach is implemented on a production Java runtime, drives an impactful and
non-trivial OO optimization, and our ideas are generic enough to be applied to other optimizations,
particularly those that depend on the precision of pointer analysis (e.g. synchronization elision,
null-check elimination, scalar replacement, alias-analysis based loop optimizations, and so on)3.

6.4.3 Comparison with HotSpot VM. In order to understand possibilities of improvements that
can be brought by our approach in other JVMs, we also measured the impact of escape analysis in
Oracle’s HotSpot VM (JDK 25) and compared it with our approach in OpenJ9. Note that HotSpot’s
C2 JIT compiler uses an aggressive escape analysis to replace object allocations on the heap with
scalar �elds (an optimization called scalar replacement), whereas OpenJ9 uses escape analysis to
perform stack allocation (targeted by CoSSJIT) in addition to scalar replacement. In this section, to
compare the two VMs side-by-side, we count the number of heap allocations elided using either of
the optimizations in both HotSpot and OpenJ9. As the compilation and escape-analysis heuristics for
both the VMs are di�erent, we compute this number by JIT-compiling all the methods and enabling
escape analysis on their �rst invocation (-Xcomp and -XX:-TieredCompilation for HotSpot, and
-Xjit:count=1 and initialOptLevel=hot for OpenJ9). We carried out this evaluation on the
benchmarks from Table 1 that are compatible with the JDK 25 version of HotSpot (eclipse and
kafka threw null-pointer exceptions, while SPECjvm benchmarks require JDK 8 for execution).
Figure 11 shows the number of allocation sites marked to be elided from the heap for HotSpot,

OpenJ9 (BaseLine), and CoSSJIT. For HotSpot, we did this using the �ags PrintEscapeAnalysis
and PrintEliminateAllocations; and for OpenJ9, we added compile-time counters similar to
the manner described in Section 6.2. We can see that by default, both HotSpot and OpenJ9 mark a

3If an optimization does not come paired with an inbuilt speculation-repair technique like heapi�cation, one could still

hook on to the managed runtime’s deoptimization infrastructure and recompile a�ected methods on speculation failure.
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Fig. 11. Number of heap allocations removed in HotSpot VM, OpenJ9 (BaseLine) and OpenJ9 (CoSSJIT)

similar number of objects for elision from the heap (149 and 105, respectively, on average), whereas
CoSSJIT takes this number up to 451 (on average over all the benchmarks). This result not only
illustrates that OpenJ9 and HotSpot are not too far apart by default, but also that our approach
can likely be used to improve the resultant optimizations in HotSpot as well. For completion, we
also measured the performance of the two VMs, and found them to be very comparable (modulo
the di�erences in their mode of operation such as the heuristics used for compiling a method, the
optimizations at di�erent compilation levels, and so on); see Appendix C [3] for details.

7 Related Work

In general, we are not aware of any practical attempts that combine the best of AOT static analysis
and JIT speculation. However, challenges in imparting e�ciency to precise JIT analyses are well
known and a good chunk of recent research has focussed on mitigating them. In this section,
we present related work on this topic, with respect to approaches that range from partial to
feedback-driven static analysis, to incremental and o�ine analysis of JITted code.
Since the introduction of JIT-based runtimes for popular programming languages, the de-facto

approach of program translation has been to only achieve platform independence statically (e.g.
by generating Java Bytecode or .NET CIL), and to perform optimizations exclusively in the JIT.
However, acknowledging the limitations of resources available to a JIT, and the absence of a bridge
to take advancements in static analyses to the JIT world, recent works proposed the usage of partial
program analysis [12] to statically generate conditional data�ow values that can be resolved during
JIT compilation [4, 27]. Our notion of speculative conditions can be seen as extending the kinds of
conditions a static analyzer could generate, though the reason prior works introduced such values
was completely di�erent – unavailability of parts of a program during static analysis.

In recent years, building systems that can use o�ine analysis has picked up a lot of interest, par-
ticularly with the introduction of AOT compilers in HotSpot and OpenJ9 VMs, and the development
of Native Image in GraalVM [31]. The former approach allows specializing portions of programs
beforehand, aimed primarily at reducing warmup times, but fails to deliver peak performance due
to absence of JIT speculation. Whereas though the latter approach allows o�ine analysis of code
produced in JITted executions (e.g. [10]), it restricts the enabled optimizations to a closed-world
assumption. A recent work proposed a two-level dispatcher that uses previously compiled JIT code
and allows program to change in future executions, in context of the R programming language [20].
We believe such approaches can be extended with the o�ine analysis attempts made on Native
Image, and mark this as a promising direction for future.
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While AOT analyses can be used to drive aggressive optimizations, a major challenge is to either
ensure safety before using their results, or to detect violations and ensure functional correctness
during execution. We are aware of two recent attempts on solving this problem, one from each
category. Akin to bytecode veri�cation in JVMs, a recent work proposed fast in-VM veri�cation
of static-analysis results, and used them to eliminate guards associated with virtual calls [16].
Similarly, another work proposed timely detection and repair of incorrect stack allocations during
execution [1]. In this paper, we chose to demonstrate our novel approach of integrating static
(AOT) analysis with JIT speculation for stack allocation itself, and hence used the publicly available
implementation of the latter idea. However, for enabling other optimizations using our approach,
one could use the ideas proposed in the former as well.
Though we have primarily restricted our discussion here to works that use AOT information

in JIT compilers, there have been relevant within-JIT attempts to increase precision too. As an
example, a close cousin of speculative stack allocation is the notion of decomposing objects ini-
tially and materializing them later in paths where they escape – called partial-escape analysis in
GraalVM [25] and cold-block heapi�cation in OpenJ9. While these ideas are also a�ected by the
standard interprocedural limitations of JIT analysis, we mark a detailed empirical comparison (and
possible static-analysis versions of these ideas) as interesting future work.

Recognizing that many static analyses written for modern programming languages fail to handle
dynamic features (or handle them incorrectly [19]), a recent work proposed the notion of eventual
soundness, which iteratively obtains sound results for Java pointer analysis [5]. Such feedback-
driven ideas are gaining traction in the JavaScript community as well [15], where it is di�cult (or
extremely imprecise) to statically model the shapes of objects and consequently enable well-known
AOT analyses and optimizations. We believe interesting fusions of our idea with these approaches
would be a promising direction to explore, and may lead to notions of eventual precision that could
push JIT optimizations in dynamic languages to the next level.

8 Conclusion

In this paper, we proposed an approach to combine the best parts of statically performed AOT
analysis and dynamically performed JIT analysis. The hypothesis was that both have their bene�ts
– static analyses have resources to be more intricate and JIT analyses have information about the
run-time behavior – and that it is possible to perform the former while leaving holes that can be
�lled in during the latter, essentially generating performant compiled code in a managed runtime.

To present a concrete demonstration of our hypothesis, we identi�ed the sources of imprecision
in static escape analysis that can be enhanced with run-time information, and then made the
static analysis aware of those with the notion of speculative conditions. These conditions captured
the possibility of enhancing the precision of statically generated results using the speculation
performed during JIT compilation, with respect to polymorphic callsites, method inlines, and
branch executions. We added the resolution of these conditions in the JIT compiler of a production
VM – using various run-time structures such as the dynamic class-hierarchy table, the inlining
table, and receiver-type and branch pro�les – and then used them to perform aggressive stack
allocation. We measured the enhancement in stack allocation as well as its impact on performance,
and found them to be signi�cantly higher than the state-of-the-art.
Our implementation is deployment ready and we are working on bringing it to production in

future versions of the OpenJ9 runtime. Furthermore, with the recent advent of more systems that
facilitate AOT analysis for JIT compilers (for Java as well as other dynamic languages), we believe
that interesting applications and avatars of our approach could lead to novel optimizations being
aggressively performed, for other Java runtimes as well as for more programming languages.
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