ScalaF: Functional Refactoring Suggestions for Scala

Shiv Kiran Bagathi
II'T Bombay, India
shivk121617@gmail.com

Dasari Gnana Heemmanshuu
1T Bombay, India
gnanaheemmanshuu@gmail.com

Abstract

Scala supports both object-oriented and functional program-
ming styles. Yet many developers, especially those from im-
perative backgrounds, write Scala code in an OO style, miss-
ing benefits such as immutability, conciseness, and effortless
parallelization.

We present ScalaF, a VSCode plugin with a Scala backend
that helps bridge this gap. ScalaF detects non-idiomatic pat-
terns and suggests semantics-preserving refactorings, trans-
forming loops and conditionals into higher-order functions
and pattern matches. It scales to files up to 5k LoC in under
3 seconds, making it suitable for real-time IDE usage.

By reducing technical debt and surfacing functional best
practices in the developer’s workflow, ScalaF lowers the
barrier to writing idiomatic functional Scala, and serves as
both a productivity aid and an educational resource.

1 Introduction

Refactoring is the process of restructuring code to improve its
design, readability, and maintainability without altering its
external behavior. It plays a crucial role in long-term software
quality, especially in large-scale systems where code evolves
frequently. In Scala - a hybrid OO-functional language -
refactoring can help shift codebases from imperative patterns
to idiomatic functional styles that emphasize immutability,
declarative logic, conciseness, and easy parallelization.
Many Scala developers, especially those new to the lan-
guage or transitioning from object-oriented paradigms, tend
to write verbose or imperative code that underutilizes the
expressive constructs Scala offers. Idiomatic Scala leverages
first-class functions, pattern matching, higher-order func-
tions, and immutability to write elegant and efficient code.
This project targets the transformation of such non-idiomatic
code by building a practical and extensible tool that detects
and suggests refactorings aligned with these idioms.
ScalaF integrates directly into the VSCode development
environment and uses a Scala-based backend for static pro-
gram analysis. It identifies patterns such as loop constructs
and conditional expressions, analyzes them via syntax trees,
and proposes functional replacements—e.g., replacing loops
with map, filter, or fold, and nested if-else chains with
match expressions. A particular benefit of these constructs,

Shrikha Mahanty
IIT Mandi, India
helloshrikha@gmail.com

Manas Thakur
IIT Bombay, India
manas@cse.iitb.ac.in

apart from conciseness, is that they tend to have easily par-
allelizable versions available commonly as libraries.

Unlike existing tools such as IDE-based linters or command-
line frameworks [4], our tool emphasizes live feedback in
the editor and offers an extensible framework for adding
more transformations. The backend uses Scalameta [5] and
quasiquotes to parse, analyze, and reconstruct Scala syntax
trees, enabling accurate and idiomatic rewrites. Designed as
a modular and language-aware system, it provides practical
value to developers while laying the groundwork for future
enhancements.

2 System Architecture and Features

Source Code

— scalaMeta = Syntax Tree — Traverserobj
from Codebase J 1

Traverse Tree &
Identify Patterns

Transformed
Syntax Tree

Generate new
Source Code

Identify Conditional and J
Loop Patterns

Figure 1. ScalaF: Refactoring workflow.

ScalaF is composed of two components:

e Static Analysis Backend: Written in Scala, this backend
performs tree traversal and pattern matching over source
code using Scalameta [5]. It identifies constructs such as
loops (for, while) and conditionals (if-else, else-if)
and refactors them into functional equivalents like map,
filter, and pattern matching. The backend source code
is available as a GitHub repository [1].

e VSCode Plugin: Built with JavaScript and the VSCode
Extension API, it communicates with the backend, parses
results, and visually annotates the source file. The plu-
gin handles whole-file refactoring, provides hover-based
tips, and enables selective application through a dedicated
sidebar interface. The plugin source code is available as a
GitHub repository [2].

The complete refactoring workflow of ScalaF, as shown
in Figure 1, is summarized below:



Shiv Kiran Bagathi, Shrikha Mahanty, Dasari Gnana Heemmanshuu, and Manas Thakur

Based on enumerator

Index-Based Non-Indicial

Based on loop body

While Loop

Based on loop body

Multiple Loops

Statement

Conditional
Statement

{ Assignment

Conditional
Statement

Another
For Loop

Assignment
Statement

Based on loop body

Conditional Assignment
Statement Statement

filter&variants,
count,

lastindexOf, flatMap, flatten

lastindexWhere

contains,distinct

reduce, map,

forAll,
lastindexOf,

takeWhile,
find, indexOf,

foreach dropWhile

lastindexWhere

indexWhere

Figure 2. Decision tree for loop refactoring.

1. Parsing Scala source code into an abstract syntax tree
(AST) using Scalameta.

2. Traversing the AST to detect imperative patterns such
as loops and conditionals.

3. Reconstructing transformed trees using quasiquotes to
generate functional alternatives.

4. Displaying suggestions in the editor via hovers, side-
bars, and code actions.

2.1 Loop Refactorings

ScalaF categorizes loops based on structure (e.g., index-based,
condition-based, nested) and maps them to corresponding
Scala collection methods, often leveraging parallel collec-
tions for performance improvements. Figure 2 gives illus-
trates the decision logic we use for loop refactorings. Exam-
ples of these refactorings are given in Appendix A.

2.2 Conditional Refactorings

ScalaF also transforms nested if-else and if-else-if lad-
ders into idiomatic match expressions or pattern-matched
functional constructs. Parallelism is included when map/filter
transformations are applied over collections. Examples of
these refactorings are given in Appendix A.

2.3 Parallelization-Aware Refactorings

In addition to transforming control-flow structures into func-
tional equivalents, ScalaF also detects opportunities for par-
allel execution using Scala’s parallel collections [3]. These
refactorings improve performance for CPU-bound tasks, es-
pecially when element-wise operations are independent and
order-insensitive.

Scala supports parallel execution via collections under the
scala.collection.parallel package, such as ParVector,
ParArray, and ParSet. Any standard collection can be par-
allelized using the . par conversion. For example:

val nums = (1 to 1_000_000).tolList
val sum = nums.par.reduce(_ + _)

ScalaF statically detects such cases and recommends . par
transformation when applicable. These refactorings are es-
pecially beneficial in multi-threaded or compute-intensive
applications, enabling better CPU utilization with minimal
code changes. Because parallel collections use the fork/join
framework underneath, they abstract away thread manage-
ment and promote safe, functional concurrency.

3 VSCode Plugin Implementation

The frontend plugin is developed using TypeScript and the
VSCode Extension APL It provides real-time integration with
the Scala backend, automatically detecting and suggesting
refactorings as developers write or modify code.

In particular, the plugin invokes a local backend JAR via
Node’s child_process. spawn, feeding the active file con-
tent through stdin. The backend returns a structured JSON
containing a list of suggestions, each with original code loca-
tion, transformed output, and corresponding Scala method.
The plugin then registers a HoverProvider that surfaces
suggestions when the user hovers over refactorable code. It
also registers a CodeActionProvider which enables users
to apply refactorings interactively. Finally, we created a ded-
icated SidebarViewProvider to list all refactorable entries
in the file; developers can preview, copy, or apply suggestions
directly from this sidebar.



ScalaF: Functional Refactoring Suggestions for Scala

We have also implemented performance optimizations
including memoization for repeated analysis, and bundling
the backend as a fat JAR using sbt-assembly, to reduce
startup latency and to avoid repeated compilation.

We summarize the features of the VSCode Plugin below:
o Live developer feedback. Continuous background analysis

integrates with the VSCode UI to highlight actionable

refactorings without interrupting development.

e Idiomatic Scala suggestions. The tool identifies common
imperative constructs and recommends concise, functional
alternatives such as map, filter, and match.

e Modular and extensible design. Both frontend and backend
are modular. New analysis rules or refactoring templates
can be added without affecting existing features.

o Interactive sidebar interface. Developers can browse, pre-
view, and apply refactorings from a custom sidebar panel,
improving accessibility.

e Open source and portable. The plugin and backend are
open-source, platform-independent, and can be extended
to support other editors or languages with minimal effort.

3.1 Developer Experience

While this paper focuses on the architecture and design of
ScalaF, the accompanying talk will illustrate the developer
experience. Specifically, we will show how the plugin high-
lights refactorable code, surfaces hover-based suggestions,
provides sidebar navigation, and supports preview-before-
apply workflows with concrete examples.

4 FEvaluation

We evaluated ScalaF on synthetic Scala programs ranging
from 100 to 5000 lines of code, executed on a Core i7 machine
with 8GB RAM. The focus was on measuring refactoring
throughput and responsiveness.

Accuracy of Transformations. ScalaF prioritizes pre-
cision by surfacing only semantics-preserving refactorings.
Recall may be lower since the tool is conservative in hybrid
codebases, ensuring correctness even if some opportunities
are missed.

Performance Benchmark. Refactoring loops into func-
tional constructs such as par.reduce enables parallel exe-
cution, which can improve runtime on multi-core machines
with minimal code changes.

Table 1 reports average times (in seconds) for tree con-
struction and loop/conditional refactorings. The tool scales
well, completing all transformations under 3 seconds for 5k
LoC.

Most time is spent in backend syntax tree generation.
We mitigate this via backend packaging and parallelized
refactorings using . par, enabling fast, scalable suggestions
for functional code improvements.

Table 1. Refactoring Time vs Code Size

LoC Tree Cond. Loop

100 0.61 0.14 0.40
1k 1.66 0.66 1.05
5k 2.73 1.18 2.10

5 Limitations

ScalaF applies only semantics-preserving transformations
and avoids trivial rewrites. In hybrid codebases mixing muta-
ble and immutable constructs, it is conservative, sometimes
leaving constructs unrefactored to ensure correctness. Purity
and side-effect analysis are not yet integrated.

6 Conclusion and Future Work

In this proposal, we described a practical and extensible sys-
tem called ScalaF for assisting Scala developers in writing
idiomatic, functional code through automated refactoring
suggestions. By bridging static code analysis with interactive
editor integration, ScalaF encourages better coding practices
without disrupting developer workflow. ScalaF’s modular
design, real-time feedback, and open-source availability posi-
tion it as both a productivity aid and an educational resource.
As we expand ScalaF’s capabilities, our goal remains to make
functional programming in Scala more intuitive, accessible,
and part of the everyday development experience.

In future, we plan to expand ScalaF’s capabilities in both
depth and usability. On the refactoring front, upcoming en-
hancements include support for advanced functional pat-
terns such as currying, partial application, and function com-
position. We also aim to integrate automatic, version-aware
rewrites that adapt to language-level changes. On the user
experience side, future iterations of the plugin might support
inline previews using VSCode CodeLens, custom rule sup-
port, and IDE portability using a language server protocol
(LSP) implementation.

A Appendix: Refactoring Examples

This appendix presents representative refactorings detected
and suggested by ScalaF across a wide range of control-
flow constructs. The examples are grouped into conditional
refactorings (below) and loop refactorings (Table 2), show-
ing original imperative code and its functional counterpart
obtained using ScalaF.
Original:
for (x <- xs) {

if (x == 1) result += f(x+1)

else if (x == 2) result += f(x+2)

else result += f(x+3)

3
Refactored:



Shiv Kiran Bagathi, Shrikha Mahanty, Dasari Gnana Heemmanshuu, and Manas Thakur

Table 2. Examples of loop refactorings suggested by ScalaF.

Original Code Snippet

Refactored Output

Used Scala Methods

for (x <- xs) sum += x

XS.

par.

reduce((x, y) => x +y) reduce + par

for (x <= xs) println(x) xs.par.foreach(println) foreach + par
for (x <- xs) list += g(x) xs.par.map(g) map + par
for (x <= xs) if (h(x)) list += g(x) xs.par.filter(h).map(g) filter + map + par
while (h(xs(i))) { list += xs(i); i += 1 } xs.par.takeWhile(h) takeWhile + par
while (i < xs.length && xs(i) != x) i +=1 xs.par.indexWhere(_ == x) indexWhere + par
for (x <= xs; i <= x) ans += i xs.par.flatten flatten + par
for (x <= xs) if (!l.contains(x)) 1 += x xs.par.distinct distinct + par
result = xs.par.map { case false => println("Invalid")
case 1 => f(x+1) }
case 2 => f(x+2)
case _ => f(x+3) References
} [1] CompL. 2025. ScalaF BackEnd: Part of the ScalaF Refactoring Framework.
Original: https://github.com/CompL-Research/ScalaF-Backend
if (password == enteredPassword) [2] CompL. 2025. Scalalj“ VSCode Plugin: Part of the ScalaF Refactoring
. " . " Framework. https://github.com/CompL-Research/ScalaF-VSCode
println("Authenticated”) [3] Scala Documentation. 2025. Parallel Collections in Scala. https://docs.
else scala-lang.org/overviews/parallel-collections/overview.html. Accessed:
println("Invalid") 2025-07-19.
Refactored: [4] Namrata Malkani and Manas Thakur. 2021. Refactoring Scala Pro-
(password == enteredPassword) match { grams to Promote Functional Design Patterns. https://www.cse.iitb.ac.

case true => println("Authenticated")

(5]

in/~manas/docs/posters/ecoop21-a.pdf
Scalameta. 2025. Scalameta: Library to Read, Analyze, Transform and
Generate Scala Programs. https://scalameta.org


https://github.com/CompL-Research/ScalaF-Backend
https://github.com/CompL-Research/ScalaF-VSCode
https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://www.cse.iitb.ac.in/~manas/docs/posters/ecoop21-a.pdf
https://www.cse.iitb.ac.in/~manas/docs/posters/ecoop21-a.pdf
https://scalameta.org

	Abstract
	1 Introduction
	2 System Architecture and Features
	2.1 Loop Refactorings
	2.2 Conditional Refactorings
	2.3 Parallelization-Aware Refactorings

	3 VSCode Plugin Implementation
	3.1 Developer Experience

	4 Evaluation
	5 Limitations
	6 Conclusion and Future Work
	A Appendix: Refactoring Examples
	References

