
Debugging Dynamic Language Features in a Multi-tier
Virtual Machine

Anmolpreet Singh
b19070@students.iitmandi.ac.in

IIT Mandi
India

Aayush Sharma
b19229@students.iitmandi.ac.in

IIT Mandi
India

Meetesh Kalpesh Mehta
meeteshmehta4@gmail.com

IIT Bombay
India

Manas Thakur
manas@cse.iitb.ac.in

IIT Bombay
India

Abstract
Multi-tiered virtual-machine (VM) environments with Just-
In-Time (JIT) compilers are essential for optimizing dynamic
language program performance, but comprehending and de-
bugging them is challenging. In this paper, we introduce
Derir; a novel tool for tackling this issue in the context of Ř,
a JIT compiler for R. Derir demystifies Ř, catering to both
beginners and experts. It allows users to inspect the sys-
tem’s runtime state, make modifications, and visualize con-
textual specializations. With a user-friendly interface and
visualization features,Derir empowers developers to explore,
experiment, and gain insights into the inner workings of a
specializing JIT system. We evaluate the effectiveness and
usability of our tool through real-world use cases, demon-
strating its benefits in learning as well as debugging scenar-
ios. We believe that our tool holds promise for enhancing
the understanding and debugging of complex VMs.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Dynamic analysis.

Keywords: Virtual Machines, Dynamic Languages.

ACM Reference Format:
Anmolpreet Singh, Aayush Sharma,Meetesh KalpeshMehta, andManas
Thakur. 2023. Debugging Dynamic Language Features in a Multi-
tier Virtual Machine. In Proceedings of the 15th ACM SIGPLAN Inter-
national Workshop on Virtual Machines and Intermediate Languages
(VMIL ’23), October 23, 2023, Cascais, Portugal. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3623507.3623549

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’23, October 23, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0401-7/23/10. . . $15.00
https://doi.org/10.1145/3623507.3623549

1 Introduction
R is a powerful dynamically typed programming language
known for its unique features, including first-class muta-
ble environments, call-by-need evaluation, and first-class
closures. However, though its language capabilities such
as polymorphism, late binding, reflection, promises, lazy
evaluation, and randomized order/overflow of arguments
contribute significantly towards expressive power, they also
lead to a complex and hard to debug runtime.
In presence of dynamic features such as the ones listed

above, it is nearly impossible to impart performance through
static compilation. Hence, typical runtimes for dynamic lan-
guages, including R, employ a JIT compiler to optimize code
for performance. The JIT specializes the program to a particu-
lar execution instance, based on profile-guided assumptions.
These assumptions could be used to create versions specific
to the types of arguments supplied to a procedure, which
could be selected and dispatched to based on actual argu-
ments supplied therein. Further, in order to handle wrong
assumptions at future call sites, many such runtimes em-
ploy multiple tiers: a lower “safe” tier can be used in case of
failures of higher tier assumptions. Over the years, many al-
ternative implementations have been developed to improve
the performance of R [9, 11, 16, 17].

Introduction of a VM environment and complex JIT opti-
mizations on a language is often daunting and a bug-prone
task. Prima facie, a VM is a complex system, making the
discovery and thorough investigation behind buggy cases
hard. This often means that, even though most programs
work completely fine, there may be cases where some unex-
pected behaviour is observed. The people who observe such
behaviours are not often the maintainers of such a VM and
people who actually work on the VM may not fall under the
use case that triggers the bug. This highlights a major prob-
lem: the behaviour of typical multi-tier VMs presents itself
as a black box to its users. Further, as we demonstrate in this
paper with several examples, some of these behaviours are
hard to comprehend and debug even for the VM developers.
To summarize, for end users, a VM is a magic box where

they submit their programs and obtain the desired output

18

https://orcid.org/0009-0007-4313-5262
https://orcid.org/0009-0001-3344-6522
https://orcid.org/0009-0004-1371-5483
https://orcid.org/0000-0002-0740-9701
https://doi.org/10.1145/3623507.3623549
https://doi.org/10.1145/3623507.3623549

VMIL ’23, October 23, 2023, Cascais, Portugal A. Singh, A. Sharma, M. K. Mehta, and M. Thakur

coupled with enhanced performance. On the other hand, for
developers, a VM represents a complex set of technologies
that can be further enhanced to improve performance and
functionality. In this paper, we presentDerir,1 a visualization-
cum-debugging tool aimed at bridging the gap between these
two perspectives.Derir is designed for individuals with some
programming knowledge who struggle to gain intuition be-
hind the workings of a complex VM. It serves as both a
learning resource and a visualization tool for features such
as contextual dispatch [7], call-graph generation, as well as
modification of various aspects of the runtime state. This
combination of capabilities enables beginners to learn about
VM internals while providing developers with a means to
debug complex scenarios.

As our test bed we chose the Ř [6], a JIT-based VM that can
achieve several times faster execution than standard GNU-R.
Ř specializes R functions by compiling them using features
such as speculation, type feedback, and contextual dispatch.
The VM itself uses multiple intermediate representations for
its functioning and performs a wide range of optimizations
both in terms of compilation and dispatching. Thus, the
practical objective of our work is to provide a peek into the
Ř VM and its inner workings, while providing a simple and
intuitive interface that anyone can use and extend for even
other programming languages and virtual machines.

2 Background and Preliminaries
Developed in the early 1990s, R has gained popularity among
statisticians, data scientists, and researchers due to its ex-
tensive range of statistical and graphical techniques, as well
as its flexibility and extensibility through packages. R’s rich
set of dynamic language features make it possible to use it
under various paradigms and target diverse workloads.
During execution, R code is first converted into an ab-

stract syntax tree (AST), which is then evaluated recursively;
notably, this can be a very slow process [17]. To speed up
R’s performance, GNU introduced a bytecode interpreter.
This bytecode interpreter compiles the ASTs into bytecode
sequences, which can be interpreted much faster. This is the
current implementation that the standard GNUR implemen-
tation provides to its users. However, this implementation
still leaves scope for performance improvement for a dy-
namic language, and in recent years, there have been a num-
ber of projects that have further improved the performance
of R using various techniques [9, 11, 16]. One such project
is Ř [6], which is a virtual machine (VM) that JIT compiles
R code on the fly and has been shown to achieve signifi-
cant performance improvements over GNUR for a series of
real-world programs.

1Pronounced as de-rear.

Figure 1. Graphical representation of the Ř compilation
pipeline.

2.1 The Ř VM
The Ř VM (shown in Figure 1), like many other VMs [9],
translates the source code into an intermediate representa-
tion called rir, which is a bytecode that can be interpreted by
the Ř VM. During bytecode execution, the runtime performs
profiling and collects useful contextual cues for the various
called functions. The contextual cues are stored inside inline
caches in the bytecode itself and are instrumental to gener-
ating optimized code. When code regions become hot (i.e.
deemed suitable for compilation), they are further optimized
in the pipeline and compiled into native code. This process in-
volves converting rir into pir, which is a register based static
single assignment IR used for performing high-level opti-
mizations. The final optimized pir code is then translated into
LLVM IR, which is used to perform low-level optimizations.
The final code is then compiled into a executable system
native binary.

Like most VMs, Ř also optimizes non-code-related aspects
of the R implementation. For instance, in R, each function
call generates a new evaluation environment initiated by
the caller and passed to the callee. 2 In contrast, when Ř
compiled code needs to be evaluated, the runtime delegates
the creation of the evaluation environment to the callee; en-
abling it to forgo environment creation when it’s not needed.
Additionally, Ř also supports stub environments (faster im-
plementations of hashmaps that can be materialized as R
environments on demand), implementing fast cases for com-
mon operations, and so on.

2.2 Contextual Dispatch
Unlike many traditional JIT systems, Ř is capable of compil-
ing and dispatching to multiple versions of functions dynam-
ically during runtime using contextual dispatch [7]. Con-
textual dispatch allows Ř to maintain various specialized
(optimized) versions of a single function under different con-
texts. A context is computed dynamically during runtime
using the arguments provided to a function at the call site.
The contexts represent a set of predicates that must be true

2An environment in R stores bindings from symbols to values, along with a
pointer to the parent environment.

19

Debugging Dynamic Language Features in a Multi-tier Virtual Machine VMIL ’23, October 23, 2023, Cascais, Portugal

C1 :< any, any >

C2 :< int(vector), any >

C3 :< any, int(vector) >

C4 :< int(scalar), any >

C5 :< int(scalar), int(scalar) >

Figure 2. Lattice of contexts in Ř.

for a compiled function to be compatible for use at a given
call site. 3
Figure 2 shows an example context lattice created by Ř

during runtime. The baseline context is𝐶1which does not as-
sume anything about the arguments and serves as a fallback
if no specialized version exists; this is the largest context as
it allows for all valid invocations to be executed. Context 𝐶2
is said to be smaller than 𝐶1 because it asserts the type of
the first argument to be an integer vector. 𝐶4 asserts even
stronger property on the first argument, asserting that the
type must be a vector of size one i.e. a scalar.4
In implementation, the set of predicates include features

such as the type and the shape of the parameters, the num-
ber of arguments provided, information about missing argu-
ments, order of arguments, as well as their types. Every time
a function is invoked, the dispatcher picks the version that
is closest to the calling context.

3 Motivation
One of the primary goals of a JIT-based VM is to provide its
users with an environment that executes code faster than
plain interpretation. This involves tasks such as profiling of
the runtime environment, speculating on collected informa-
tion, and establishing fallback mechanisms when things go
wrong. Further, programs in R can modify the stack frames
at runtime (allowing its users to write dynamically scoped
code), runtime reification of environments means the reach-
ing stores to a variable cannot be determined statically, side
effects stemming from lazily forced promises can create com-
plex control flows leading to hard to debug code, and many
more. This presents two interesting challenges. Firstly, the
progression of system state in presence of dynamic language
features is difficult to comprehend statically. Secondly, what
a VM actually does behind the scenes that leads to real-world

3In Ř, contexts are a set of preconditions that decide if a piece of compiled
code is sound to execute.
4In R, scalars are treated as vectors of size one.

!a + a

!

+

a a

INT

BOOL

load a

load a

not
add

return

[feedback]

[feedback]

[feedback]

Dispatcher

load a

not

return

load a
shift left 1

return
not

Compiled

assert{a: INT}
Compiled

assert{a: BOOL}

Frontend

Backend

VM

Output

Figure 3. An example to show an interesting scenario while
parsing expressions in R.

performance benefits, is completely hidden from the user.
Let us examine the problems in more detail.
I. Consider Figure 3, where the input to the VM is the

expression !a + a. In boolean algebra, this expression repre-
sents an unconditional true and it can generally be expected
that this code must return unconditional true values when
provided with any boolean. This, however, is not true in
case of R (where evaluation of plus precedes the negation
operation). When provided with boolean values, it acts as
a logical negation (not gate) and returns an unconditional
false for all non-zero integers. This behavior is a result of the
way R parses expressions; it is not an ambiguous term in R
but a behaviour that is designed to work a certain way. The
information about the specifics of how such expressions are
evaluated by R is hidden away from the users. In the figure
we can clearly see the formation of the AST and the order in
which operations are going to be performed. Being able to
see some part of the internals can provide users with not only
the implementation specifics but also as a learning tool to
understand how the language actually works. Interestingly,
the story does not end there.
Upon examining the VM’s backend, specifically a dis-

patcher that is responsible for selecting versions of code
most suited for a use case, it is easy to determine what this

20

VMIL ’23, October 23, 2023, Cascais, Portugal A. Singh, A. Sharma, M. K. Mehta, and M. Thakur

1 g <- function(b) { a <- b; print("g called"); }

2 f <- function(a) {

3 print("f called"); g(a);

4 print("f call end");

5 }

6 foo <- function() {

7 for (i in 1:20) {

8 if (i == 5) {

9 f(break)

10 }

11 print(i)

12 }

13 }

14 foo()

Figure 4. An example to show complex control flows in R.

code does. JIT compilers in VMs also employ various analy-
ses and optimizations to reduce trivial work. In this case, the
JIT compiles two optimized code versions: when the type
of a is an integer, the final result can be calculated quickly
by just left shifting the value and negating it; and the other
optimized case in which the type is a boolean, simply negat-
ing the value is enough. Both these versions get rid of load
operations that involve expensive lookup into the environ-
ment and also do less computation, thus saving execution
time. Being able to see these two versions and how they
are generated can provide developers useful insights about
when the underlying JIT can optimize code more, and how.

II. Determining the behaviour of programs in presence of
dynamic language features can obscure understanding and
debugging, even in seemingly simple code. For example, in
the code snippet in Figure 4, function foo() iterates over
the variable i from one to twenty and prints its value at
each interation. If the condition on line 8 is satisfied, the
function f is invoked, which prints "f called", followed by an
invocation of g. Inside g, the argument passed to it is assigned
to a local variable a followed by printing "g called". After this
call completes, "f call end" is printed and the control returns
back to the for loop.
We would expect the previously discussed code to print

“1 2 3 4 f called g called f call end 5 6...”, but that is not what
happens. The output stops at "1 2 3 4 f called"; if we follow
the execution and examine the program state at each line,
we observe that the break statement is executed when the
expression a <- b is evaluated (despite arguments being
lazy in R, the assignment operation always ends up forcing
the argument). This behavior involves two key factors: lazy
evaluation and premature collapsing of the stack frame of
the function f. As a consequence of the break statement’s
execution, the stack frames of both g and f collapse, and
control directly exits the for loop.
By examining such scenarios, we find that having some

mechanism to clearly visualize the runtime state of a VM

can serve as a learning aid for its users while also providing
a handy tool for the experienced developers to quickly ex-
periment with the system. Derir focuses on the following
aspects of a VM:
1. Clearly presenting the internal state of the system.
2. Allowing users to modify and experiment with the run-

time state.
3. Basic set of tools such as the ability to step into and

step over interpreted code.
4. Visual representation of the contextual dispatch system.
The aim of Derir is to enhance the understanding and

debugging capabilities of users, facilitating both learning
and development in the context of complex VMs.

4 System Model and Functionalities
The implementation of R is heavily inspired by the LISP
programming language. Everything in R, either a function
or an object, is stored as an SEXP (S-Expression). This is
implemented as a C struct, where a tag field determines the
type of the object. Directly interacting with these objects
in C++, though possible, makes the experience more cum-
bersome. To build Derir, we handle and encode these SEXP
objects into JSON and transmit them over sockets between
the backend and the frontend. The runtime is instrumented
at various program points and allows the user to view and
modify the program state at these points.
Figure 5 shows the flowchart of Derir. The application

uses an event loop to exchange data between frontend, mid-
dleware and backend. The data is requested by the frontend
through the middleware and upon receiving the request, the
backend sends the data back to the frontend as a JSON string
which is then parsed by the frontend; this parsing is done
with a JavaScript program utilizing the React Framework.

The execution pauses at the current offset of the bytecode
and waits for the user input before proceeding to the next in-
struction in the bytecode. During this step, the backend sends
a SYN request that contains information about the program
counter and the code object being executed. The frontend,
upon receiving the request can choose to request the data
that it does not have. It emits multiple data requests with
different tags; these tags include bytecode, feedback slot in-
formation, source code, runtime environment, runtime stack
and contextual dispatcher information. The frontend decides
to cache things like the source code and the bytecode so that
it does not need to be fetched again in future. Whenever the
user presses the next/step button, the execution continues
until the next program counter or next step, respectively.
The debugger also allows the user to manipulate the envi-
ronment as well as type feedback. The update request is sent
to the backend where we have written a custom class to
manipulate the current environment bindings, and update
the flags of the type feedback as received from the user. In
order to ensure consistency between the different tiers, the

21

Debugging Dynamic Language Features in a Multi-tier Virtual Machine VMIL ’23, October 23, 2023, Cascais, Portugal

Program at i-th line of
bytecode

Compiler makes
modification in the

state of the program

Compiler sends Syn request to frontend
 with code Object address and offset

Pause_for_viz()
function pausing the

program User presses the
step or next

button

Advance
program
counter

by one step

Advance program counter
until the function at current
line completely executes

Fronted requests data
like stack, code,
environment etc

User makes
data modification

request

Sent to compiler
User inputs the
new data to be

modified

User gets the data

Start

Compiler collects
required

information

Data fetch requests to compiler

Step

No

Yes

Next

Sends to frontend

Send new state info to frontend

Figure 5. Figure showing the flow of information through Derir.

frontend keeps track of the sending/receiving of data so that
no requests are made in between the transfers. The data is
updated each time the user does a step or next.
As can be seen, the above model allowed us to create

a debugging and visualization framework that is not only
simple to work with, but as later shown in Section 5, is also
extensible to new features by just adding more information
as part of the saved JSON objects.
Figure 6 shows a part of Derir in action. The GUI has

been written in React, which allows us to create generic
components that can be reused for future implementations.
The different components, annotated one through six, are
laid out in a grid and allow the user to simply drag and drop to
customize the layout. The right end of the top bar shows the
execution state of the program and the buttons next to it are
used for restarting the connection and triggering dark mode,
respectively. When execution starts, a synchronize packet
is sent between the backend and the GUI; this is handled
though an intermediate middleware server that only serves
as a forwarding server in our implementation. The various
components of Derir are detailed as follows.

4.1 Bytecode Stepper
The text on the top part of the component displays the cur-
rent synchronization status, which details the memory ad-
dress of the code being executed and the type of object (byte-
code or native code). If the frontend has not previously exe-
cuted the function it requests the bytecode from the backend
and caches the result to avoid requesting the same data again.
The center portion of this component displays the byte-

code being executed and highlights the current program
counter (PC) offset in blue. The values shown in the blue
outlined button represent inline caches/feedback slots used
for profiling in Ř. When clicked, these boxes open a popup
that can be used to modify the state of the system feedback
at that point (discussed in the following sections).

The bottom portion is used for navigation and stepping
through the bytecode. For large bytecode sequences the user
may scroll though the code and lose track of the current
instruction, hence the scroll button allows scrolling the cur-
rent instruction into the view. The next button is used for
stepping over instructions and the step button is used to step
into instructions. The checkbox “Keep Bytecode Sync” can be
selected to immediately update the feedback slots when they
are updated; this may be disabled if the user is not concerned
with the profiling information, thus improving performance.

4.1.1 Type Feedback. The rir bytecode has some empty
slots reserved for type feedback. Type feedback records in-
formation about function calls and variables. For variables,
it records all the types of bindings it has stored in the past.
Derir allows the user to view/modify the state of the type
feedback of the system using the GUI. The compiler uses this
information during profiling and then uses this information
to make decisions about optimizations. We have allowed
the user to modify the type feedback to play with the op-
timizations or avoid deoptimizations. Figure 7 shows the
type-feedback slot modification panel in Derir.

4.2 Source Code
This component simply displays R’s interpretation of the
source code. When source code is parsed, the resultant ASTs
follow a certain order of operations. The source code dis-
played in this component during interpretation makes the
exact order of evaluation of expressions explicit.

4.3 Environment
This component contains all the bindings between symbols
and their values in the current evaluation environment. The
user has an option to modify the bindings from the frontend
using the dropdown and the text boxes. Currently the debug-
ger/visualizer is able to handle conversion to four datatypes:

22

VMIL ’23, October 23, 2023, Cascais, Portugal A. Singh, A. Sharma, M. K. Mehta, and M. Thakur

Rsh Dynamic Visualizer and Debugger Program is Running

Current Syn: Code: 0x561eab3b2030, Type: BC

At function : "foo"

0 ldvar_cached_a{0}

9

14 ldvar_cached_a{0}

23

28 add_

29

Keep bytecode sync

[DOUBLE,INTEGER()|PROMISE]

[DOUBLE,INTEGER(S)|EVALUATEDPROMISE]

[DOUBLE,INTEGER(S)]

STEPNEXTSCROLL

Source Code of current closure

(!(+(a, a)))

Environment

Key Value DataType
Modify

DataType
Modify Value

a

<real

[1] 1 2

3

real Real <real [1]

UPDATE ENVIRONMENT

Value

Stack

<real [1] 1 2 3>

<real [1] 1 2 3>

<prom val=<real [1] 1 2 3> <bc (rir::Code*)0x5|...

function(a) <(rir::DispatchTable*)0x561eabbdc380>

Lattice of ContextsCall Graph

execute

foo

React App http://localhost:3000/

1 of 1 24/07/23, 16:01

1

2

3 4

5 6

Figure 6. Figure showing the different components of Derir.

integer, real, logical and string; we hope to extend support
to arbitrary assignments using eval in the future.

4.4 Stack
After each step, the backend sends the runtime stack to the
frontend. Our frontend prints the entire stack frame (note
that the stack grows from bottom-to-top). If the stack frame
consists of INTSXP, LGLSXP or REALSXP, then we print
their actual values, otherwise we print the default value as
it is received.

4.5 Callgraph
The callgraph displays the order in which functions get
called. This is done by building a DOT file (format used
by GraphViz [5]) at the backend. This DOT file is sent to
the frontend as a string, which is then converted to a graph
using the graph-viz library [14] of npm.

4.6 Contexts
Each time a function call is made, a doCall method is in-
voked in Ř. This method takes care of all the function calls,
including the deoptimzations/recompilations, and has access
to the dispatch table of the called closure. The dispatch table
contains all the versions of the called functions compiled un-
der different assumptions. We keep track of all the contexts
under which the given closure was compiled and the number

of times each compilation was invoked. In order to build the
contextual lattice, we needed to compare the contexts (which
follow a partial order). Note that a function specialization
can be invoked only if its context is greater than or equal to
the current context. Thus, the contexts that are comparable
are connected to each other in the lattice.

As there is a partial order between the contexts of a func-
tion, we construct the context lattice from the array of con-
texts at the frontend. Firstly, we build an inclusion array to
include all the contexts that can be a child of a given context
or its assumptions are a subset of the context’s assumptions.
Then we generate level data by starting from leaves and
deleting links to their immediate parents iteratively until
there are no nodes left. The baseline context is the parent of
all contexts. Then we generate edges by linking all the nodes
in the previous level that contain the contexts of the nodes
to the nodes in the next level. Finally, we have a lattice dis-
played in the frontend with a ToolTip displaying the context
of a particular node, and a number in the node represents the
number of runs with specialized function for that context.

5 Case Studies
Derir aims to be useful in two ways. First, it is designed to
make learning about the virtual machine easy for beginners.
It presents visualization of complex compiler concepts in

23

Debugging Dynamic Language Features in a Multi-tier Virtual Machine VMIL ’23, October 23, 2023, Cascais, Portugal

Figure 7. Figure showing the type-feedback modification
panel of Derir.

a simple and understandable manner. Second, it provides
advanced features for experienced developers to debug the
system effectively. By offering both simplicity for learners
and depth for experts, Derir becomes valuable to users at all
levels, and helps them work with as well as for a dynamic
language as sophisticated as R.

5.1 As a Learning Tool
As a learning tool, it is interesting to see the kinds of small
intricacies and optimizations that happen in the runtime.
This involves looking at how different components of the
JIT work in tandem to collect profiling data and optimize for
specific cases.
Consider the code snippet in Figure 8. Line 1 is used to

connect to the frontend visualizer. Function f is then called
using different call-site contexts (line 3- 6); integer, vector
of integers, integer and a boolean respectively. It may seem
inconsequential, but behind the scenes the VM performs a
bunch of different tasks. Figure 9 shows the impact of these
different calling contexts on the state of the system.

1 rir.viz("http://127.0.0.1:3011")

2 f <- function(a) { !a + a; }

3 f(1L)

4 f(c(1L,2L,3L))

5 f(1L)

6 f(FALSE)

Figure 8. Code snippet in R where function f is called under
different calling contexts.

Under the first calling context (line 3), notice that the feed-
back slot (shown in state one of Figure 9) holds integer(s)
| evaluatedPromise in its feedback for loading the argu-
ment a. This is highly irregular if one thinks about it, because
as per R semantics all arguments must be passed as promises
and be evaluated only when they are forced but in case of R,
the feedback says the promise was already evaluated before;
when did this happen?. The underlying reason is that Ř de-
cides to optimize call sites by eagerly evaluating promises
that are safe (in this case, a promise holding a scalar integer
is free of any side effects implying it is safe to be passed
eagerly instead of lazily).
Under the second calling context (line 4), a vector of in-

tegers is passed to the function. In Figure 9 state two, we
can see that Ř cannot eagerly evaluate the argument hence
the feedback is more generalized. Notice that the ‘s’ indicat-
ing scalar also gets removed. The new feedback integer()
| promise is modified in place. This shows the generaliza-
tion of feedback as time progresses; which means that code
compiled later in the runtime is likely to be less specialized.

Under the third calling context (line 5), a previously seen
context (the one created at line 3) is called again. In Figure 9
state three, the runtime decides to JIT compile a version of f
that is specialized to handle integer inputs (the new version
is the one with green color and an integer inside showing the
number of calls to this version, which is 1 in this case) This
is depicted as a new node in the context lattice, representing
a specialized version of f.
Under the fourth calling context (line 5), a new argu-

ment type is seen (a logical value). In Figure 9 state four,
we see that the previously compiled version of f was not
dispatched; instead, the runtime dispatches to the interpreter
version of f. Also notice that the feedback is further gen-
eralized to handle both integers and logical values, seen as
integer,logical() | promise.
Derir makes understanding this evolution of contexts

across call sites of interpreted as well as compiled functions
extremely simple, and helps users visualize interesting stages
their code goes through, in the underlying multi-tiered VM.

5.2 As a Debugging Tool
Compiler developers often have a set of test cases and bench-
marks that they run to verify the system. These test cases are

24

VMIL ’23, October 23, 2023, Cascais, Portugal A. Singh, A. Sharma, M. K. Mehta, and M. Thakur

Figure 9. Figure showing the progression of states for f under different call-site contexts.

Normal Scenario

f

call g() g

call h() h

[record h]

[record g]

Using code cache for g

f

call g() g’ h

[record g]

feedback for g is empty

Figure 10. Figure showing the new state reached when using
a code cache.

seldom functionally complete; as new functionality and op-
timizations are added, there is always a possibility that new
bugs get added to the system. Sometimes when major revi-
sions happen to the underlying language implementation, it
is possible that the intermediate languages that worked fine
before now generate erroneous code for specific use cases.
On the other hand, sometimes even non-functional changes
(such as introduction of a code cache to promote code reuse
under lazy evaluation) result in behavioural changes that can
reveal hidden semantic problems that were never triggered
before. We found few such interesting cases using Derir.

5.2.1 Debugging and reproducing bugs. Ř JIT compiler
is known to produce performant code, but this often comes at
a substantial cost in the form of compilation time.We decided
to implement a code cache mechanism that would save code
to disk and reuse it in future executions for faster warmups.
This change seemingly should be error free, provided that
the implementation takes care of handling all the references
correctly. However, in our implementation, we found a bug
that would happen when a code cache was used; essentially,
we observed that during code reuse, the system could reach

a previously unreachable state in terms of type-feedback
collection.
Figure 10 shows an abstracted out scenario that gets in-

troduced when using a code cache. Here, f is a function that
calls g (a generic function that decides the final function
to call based on the class of the arguments), which in turn
calls h, the final target. In Ř, a prominent pass responsible for
performant code is the inlining pass. Under normal execu-
tion, when f calls g, it records the information about which
function was called at the call site. Similarly, when g calls h,
it records the information about h as before. When the JIT
decides to compile f, g gets inlined into the body of f (in
this example, both g and h are monomorphic call targets at
their respective call sites).

When we introduce a code cache, first call from f to g ends
up actually calling g’ (a precompiled version of g from the
code cache). Under normal scenario, the first call would al-
ways result in interpretation of g. If g is never interpreted, no
feedback gets collected and all the slots are therefore empty.
Now when the JIT decides to compile f an interesting run-
time state is reached. The following, previously impossible
condition, is possible now: “f inlines g as it is a monomorphic
call target from f, but all type feedback inside g is empty,
suggesting that the body of g was never called previously”.
What happens above is that the body of g gets inlined

into f as before. However, after the inlining pass, another
pass that is responsible for removing previously unexecuted
branches comes into picture. This pass removes part of the
inlined code that calls h and replaces it with a dead call (an
unconditional deoptimization point). We found that when
this deoptimization actually occured, control transfers back
to interpretation of g, which then calls h. The called func-
tion h then throws an unexpected error indicating that no
arguments were supplied to it. This was because generics
has a much different calling convention that other functions
in R, if some specific flags and pointers in the calling context

25

Debugging Dynamic Language Features in a Multi-tier Virtual Machine VMIL ’23, October 23, 2023, Cascais, Portugal

Figure 11. Figure showing the generation of redundant re-
turn statements in rir bytecode.

are not set correctly the called function may fail to find the
supplied arguments. In Ř, the environments were not set
correctly for some inlined generics; leading to JIT compiled
code sometimes failing to execute correctly when a code
cache was introduced.

Though this is a very specific case, the main problem is the
difficulty in debugging and creating small reproducible exam-
ples. Using Derir, it is possible to simply clear the feedback
slots of g and easily reproduce the problem, while having a
clear picture of the runtime state.

5.2.2 Redundancy in the runtime. In Figure 11, we see
the generated bytecode for function f (annotation one). This
function evaluates the expression !a + a (as discussed pre-
viously in Section 3). When running the function f using
the visualizer we notice something strange. There were two
return instructions in the generated bytecode (annotation
three); the second return is unreachable. The second return
was added as a fallback in case no return statement was
present; as all R functions implicitly return the last evaluated
expression. This indicates that there are cases where the rir
bytecode generation could be further improved. Such code
generation will not lead to any crashes or any unexpected
behaviour, it simply takes more memory than it should. It
still interesting to see that such a thing can go unnoticed,
as developers seldom actually look into these parts of the
runtime until things start to break.

5.2.3 Redundancy in specialization. Sometimes a func-
tion may get specialized again and again, but it may not be
useful for it to be even compiled. Imagine compiling a piece
of code under tens of different contexts when all it does is
simply pass all the incoming arguments to an external func-
tion. For instance, consider the function match shown in
Figure 12. In this case, we compile seven different contexts
for match despite the fact that its specialization is unlikely
to provide any further benefit; see Figure 13. While looking
at functions using the logging capabilities of Derir, we found
this to be the case for many inbuilt functions. These func-
tions are very generic and take many conditional arguments
as input and they simply pass it forward to a precompiled
piece of C code for execution. Using this observation, we

1 match <- function (x, table, nomatch = NA_integer_,

incomparables = NULL) {

2 .Internal(match(x, table, nomatch, incomparables))

3 }

Figure 12. Code snippet to explain a common regression
scenario for contextual specialization.

Figure 13. Figure showing the contextual dispatch lattice
for function match. This illustrates a case where redundant
contextual specializations may be created in Ř even when
they yield no performance benefit.

can create heuristics that restrict such functions from being
overspecialized.

The above case studies and example scenarios just showed
the benefits a powerful visualization and debugging tool like
ours could help impart to a powerful and complex runtime;
we believe the use cases will grow as we continue using
Derir for Ř and as such tools get developed for and adapted
to more number of dynamic language runtimes.

6 Discussion
6.1 Extensibility to New Features
Derir uses JSON as the only format for data transfer between
the frontend and the backend. The frontend is free to request
any new data from the backend using a data request. For
example, currently it requests stack data, code, and more
(as discussed in Section 4), which can be easily extended by
adding more data handling classes to the backend. In the
backend, a special callback is invoked when a data request
is received from the frontend. This callback can be easily
customized with a custom class to suit user needs. The class
can simply modify the state of the system and send back the
updated state, or set predicates to control debugger-flow. As
an instance, a module can be added to pause the execution
only when a specific criteria is met or to visualize more
aspects of the runtime; e.g. pausing during nth invocation of

26

VMIL ’23, October 23, 2023, Cascais, Portugal A. Singh, A. Sharma, M. K. Mehta, and M. Thakur

a function, sending argument information for all invocations
of a function, pausing execution when a compilation takes
more than a threshold time, and so on.

6.2 Limitations
In the current implementation of Derir we have not imple-
mented features like hot-code replacement or direct modifi-
cations to the generated bytecode. One of our main focus was
to limit the user interface options to a minimum, allowing
beginners to get an understanding of the underlying system
without having to worry about various options/configura-
tions. Though this may appear to hamper the debugging
capability for more advanced users, such features can be
easily implemented and integrated as need arises. One limi-
tation of Derir is that it does not integrate with the garbage
collector. We believe that future integration of this feature
would improve Derir by allowing users to see allocation and
deallocation of objects in memory and also understand how
the underlying garbage collector works.

7 Related Work
Understanding and debugging multi-tiered virtual-machine
(VM) environments with Just-In-Time (JIT) compilers has
been a subject of interest in the field of dynamic languages
optimization. Several research efforts have been made to ad-
dress the challenges associated with comprehending and de-
bugging the internal workings of such systems. Tools like JS-
Explain [2] present reference interpreters that closely follow
language specifications and produce execution traces. These
traces offer insight into the behavior of JIT-compiled pro-
grams and aid in identifying and resolving bugs. Würthinger
et al. [19] discuss the challenges of debugging meta-circular
VMs and the need for tools that provide access to both
platform-independent and platform-specific details. Luxton-
Reilly et al. [10] present Ladebug, an online tool designed to
scaffold the learning of debugging skills for novice program-
mers, encouraging them to investigate runtime states. Derir
complements this approach by providing users with a deeper
understanding of a real-world specializing JIT system, Ř, and
its optimizations, empowering them with insights into the
VM’s runtime state and the ability to make modifications.
Wuerthinger [18] implemented a visualizer for the ideal IR,
which is a graph based IR used when compiling Java byte-
codes into machine code. A frontend visulaizer created by
Miller [12] for the YJIT [3] allows for visualization of dy-
namic runtime specialization features of the JIT. Similar to Ř,
YJIT supports runtime specialization based on profiling, but
unlike the contextual dispatch system of Ř YJIT employs a
lazy basic block versioning scheme to specialize code at run-
time. An article by Bolz-Tereick [1] talks about the different
ways PyPy uses GraphViz [5]; even in this work wemake use
of GraphViz for visualization of different runtime states. The
widely popular python code execution tool by Guo [8] has

over the years been extended to languages such as Javascript,
C, C++ and Java. The tool is popular among beginners, who
can use the tool for debugging and understanding code exe-
cution.
Visualization has proven to be a powerful approach for

understanding complex systems, including VMs. Previous
works [4, 13, 15] have introduced visualization techniques
that help developers gain insights into the behavior of these
systems. These visualizations often show the execution flow,
profiling information, and the impact of different optimiza-
tions on program performance. However, while visualization
capabilities have been discussed in previous works, Derir
aims to provide a novel and user-friendly interface specifi-
cally for understanding and visualizing the contextual spe-
cializations in a JIT-based VM.

8 Conclusion
The onus of imparting performance to programs written in
modern dynamic languages is often on a managed virtual-
machine that uses JIT compilation to generate specialized
machine code. Such systems almost always perform spec-
ulation and hence are coupled with fallback options in the
form of an interpreter or a baseline compiler. Notwithstand-
ing the advantages, it is not easy for compiler designers to
understand these complex multi-tiered systems: the stages
the code travels through, the various intermediate forms, the
optimizations that depend heavily on live profile, and so on.
In this paper, we introduced a visualizer-cum-debugger

called Derir for an optimizing VM runtime, for the R pro-
gramming language. Derir facilitates visualization of the
runtime state and allows changing values as well as feed-
back information to comprehend their effects. Specifically,
we support stepping through the intermediate language rir
of the Ř JIT compiler, updating interesting data structures
related to its optimization passes, and illustrating the con-
textual lattice and the runtime call-graph. We also allow
tweaking the runtime environment and the type-feedback
profile while updating all these components. We also high-
light interesting use cases of the tool, both as a user and as a
developer, and show how they could be used to understand
language features as well as identify compiler bugs or scopes
for improvement. Finally, Derir is open source and designed
modularly using latest technologies to support extensibility.

In future, we believe our tool would help promulgate the
idea of “helping compiler developers” and consequently, pull
in more experimenters, engineers and researchers alike to ex-
plore the nuances of wonderful tiered runtimes, for dynamic
languages including R and beyond.

References
[1] Carl Friedrich Bolz-Tereick. 2021. Some way that PyPy uses Graphviz.

https://github.com/jimmyhmiller/PlayGround.
[2] Arthur Charguéraud, Alan Schmitt, and Thomas Wood. 2018. JSEx-

plain: A Double Debugger for JavaScript. In Companion Proceedings

27

https://github.com/jimmyhmiller/PlayGround

Debugging Dynamic Language Features in a Multi-tier Virtual Machine VMIL ’23, October 23, 2023, Cascais, Portugal

of the The Web Conference 2018 (Lyon, France) (WWW ’18). Interna-
tional World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, CHE, 691–699. https://doi.org/10.1145/3184558.
3185969

[3] Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan)
Wu, Aaron Patterson, Kevin Newton, and John Hawthorn. 2021. YJIT:
A Basic Block Versioning JIT Compiler for CRuby. In Proceedings of the
13th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (Chicago, IL, USA) (VMIL 2021). Association
for Computing Machinery, New York, NY, USA, 25–32. https://doi.
org/10.1145/3486606.3486781

[4] Marcus Ciolkowski, Simon Faber, and Sebastian von Mammen. 2017.
3-D Visualization of Dynamic Runtime Structures. In Proceedings of
the 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement
(Gothenburg, Sweden) (IWSMMensura ’17). Association for Computing
Machinery, New York, NY, USA, 189–198. https://doi.org/10.1145/
3143434.3143435

[5] Peter Eades. 2023. Graphviz. https://graphviz.org/
[6] Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob Hain,

and Jan Vitek. 2019. RMelts Brains: An IR for First-Class Environments
and Lazy Effectful Arguments. In Proceedings of the 15th ACM SIGPLAN
International Symposium on Dynamic Languages (Athens, Greece) (DLS
2019). Association for Computing Machinery, New York, NY, USA,
55–66. https://doi.org/10.1145/3359619.3359744

[7] Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Ječmen, Jakob Hain,
and Jan Vitek. 2020. Contextual Dispatch for Function Specialization.
Proc. ACM Program. Lang. 4, OOPSLA (2020). https://doi.org/10.1145/
3428288

[8] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based
Program Visualization for Cs Education. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). Association for Computing Machinery, New York,
NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

[9] Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. 2014. A
Fast Abstract Syntax Tree Interpreter for R. SIGPLAN Not. 49, 7 (mar

2014), 89–102. https://doi.org/10.1145/2674025.2576205
[10] Andrew Luxton-Reilly, Emma McMillan, Elizabeth Stevenson, Ewan

Tempero, and Paul Denny. 2018. Ladebug: An Online Tool to Help
Novice Programmers Improve Their Debugging Skills. In Proceedings
of the 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018). As-
sociation for Computing Machinery, New York, NY, USA, 159–164.
https://doi.org/10.1145/3197091.3197098

[11] Microsoft R Open. 2015. Microsoft R Open. https://github.com/
microsoft/microsoft-r-open

[12] Jimmy Miller. 2022. YJIT visualizer frontend. https://github.com/
jimmyhmiller/PlayGround.

[13] Oracle Corporation. 2023. Java VisualVM. Retrieved 2023-07-24 from
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/

[14] Dominic Parfitt. 2022. graphviz-react. https://github.com/DomParfitt/
graphviz-react

[15] Jeremy Singer and Chris Kirkham. 2006. Visualized Adaptive Runtime
Subsystems. In Proceedings of the 2006 ACM Symposium on Software
Visualization (Brighton, United Kingdom) (SoftVis ’06). Association for
Computing Machinery, New York, NY, USA, 195–196. https://doi.org/
10.1145/1148493.1148541

[16] Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016.
Optimizing R Language Execution via Aggressive Speculation. SIG-
PLAN Not. 52, 2 (nov 2016), 84–95. https://doi.org/10.1145/3093334.
2989236

[17] Luke Tierney. 2019. A Byte Code Compiler for R. http://www.stat.
uiowa.edu/~luke/R/compiler/compiler.pdf

[18] Thomas Wuerthinger. 2007. Ideal Graph visualizer. https://ssw.jku.at/
General/Staff/TW/igv.html.

[19] Thomas Würthinger, Michael L. Van De Vanter, and Doug Simon.
2010. Multi-level Virtual Machine Debugging Using the Java Platform
Debugger Architecture. In Perspectives of Systems Informatics, Amir
Pnueli, Irina Virbitskaite, and Andrei Voronkov (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 401–412. https://doi.org/10.1007/978-
3-642-11486-1_34

Received 2023-07-23; accepted 2023-08-28

28

https://doi.org/10.1145/3184558.3185969
https://doi.org/10.1145/3184558.3185969
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3143434.3143435
https://doi.org/10.1145/3143434.3143435
https://graphviz.org/
https://doi.org/10.1145/3359619.3359744
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2674025.2576205
https://doi.org/10.1145/3197091.3197098
https://github.com/microsoft/microsoft-r-open
https://github.com/microsoft/microsoft-r-open
https://github.com/jimmyhmiller/PlayGround
https://github.com/jimmyhmiller/PlayGround
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://github.com/DomParfitt/graphviz-react
https://github.com/DomParfitt/graphviz-react
https://doi.org/10.1145/1148493.1148541
https://doi.org/10.1145/1148493.1148541
https://doi.org/10.1145/3093334.2989236
https://doi.org/10.1145/3093334.2989236
http://www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf
http://www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf
https://ssw.jku.at/General/Staff/TW/igv.html
https://ssw.jku.at/General/Staff/TW/igv.html
https://doi.org/10.1007/978-3-642-11486-1_34
https://doi.org/10.1007/978-3-642-11486-1_34

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 The Ř VM
	2.2 Contextual Dispatch

	3 Motivation
	4 System Model and Functionalities
	4.1 Bytecode Stepper
	4.2 Source Code
	4.3 Environment
	4.4 Stack
	4.5 Callgraph
	4.6 Contexts

	5 Case Studies
	5.1 As a Learning Tool
	5.2 As a Debugging Tool

	6 Discussion
	6.1 Extensibility to New Features
	6.2 Limitations

	7 Related Work
	8 Conclusion
	References

