
*

Mix Your Contexts Well
Opportunities Unleashed by Recent Advances in Scaling Context-Sensitivity

Manas Thakur1 and V. Krishna Nandivada2

CC 2020

1IIT Mandi, India 2IIT Madras, India

Feb 23, 2020

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 1 / 20



*

Context sensitivity
Your response should be sensitive to the context – Anonymous

A popular way to improve the precision of program analysis, specially
for OO programs.

Compared to context-insensitive analyses:

Usually more precise
Usually unscalable

A method may be analyzed multiple times

Once in each unique context from which it may be called.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 2 / 20



*

Context sensitivity
Your response should be sensitive to the context – Anonymous

A popular way to improve the precision of program analysis, specially
for OO programs.

Compared to context-insensitive analyses:

Usually more precise
Usually unscalable

A method may be analyzed multiple times

Once in each unique context from which it may be called.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 2 / 20



*

Many context abstractions
”What is right” depends on the context – Upanisheds

Several popular context abstractions in literature:
• Call-site sensitivity [Sharir & Pnueli 1978]
• Object-sensitivity [Milanova et al. 2005]
• Value contexts [Khedker & Karkare 2008]
• LSRV contexts [Thakur & Nandivada 2019]
• All above with heap cloning [Nystrom et al. 2004]

The choice of context abstraction plays an important role in
determining the precision and scalability of the analysis.

Relative advantages in terms of precision/scalability not well
established.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 3 / 20



*

Call-site sensitivity
1. class A {
2. A f1,f2;

3. void foo(){
4. A a,b,c,d;

...

5. c.bar(a);

6. d.bar(b);

7. }
8. void bar(A p){
9. A x = new A();

10. p.f1.f2 = x;

11. p.fb();

12. p.fb();

13. } }

// Assume fb doesn’t

// access caller’s heap

2 contexts for bar

foo 5

foo 6

4 contexts for fb

foo 5+bar 11

foo 5+bar 12

foo 6+bar 11

foo 6+bar 12

In case of recursion?

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 4 / 20



*

Value contexts [CC’08]
1. class A {
2. A f1,f2;

3. void foo(){
4. A a,b,c,d;

...

5. c.bar(a);

6. d.bar(b);

7. }
8. void bar(A p){
9. A x = new A();

10. p.f1.f2 = x;

11. p.fb();

12. p.fb();

13. } }

// Assume fb doesn’t

// access caller’s heap

Points-to graph

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

Om...
f2

f2

(Line 5)

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

O8

f2

f2

f2

f2
Om...

(Line 6)

Value-context

Oa

Oi

Oj

Oc Ol

p

this

f1

f1

f1

f1 Om...

(Line 5)

Ok
f1Obp

this

f2

f2Ol

f1 Om...

(Line 6)

bar: analyzed twice, but fb: only once; generally scales better.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 5 / 20



*

Recent advance: LSRV contexts [CC’19]
1. class A {
2. A f1,f2;

3. void foo(){
4. A a,b,c,d;

...

5. c.bar(a);

6. d.bar(b);

7. }
8. void bar(A p){
9. A x = new A();

10. p.f1.f2 = x;

11. p.fb();

12. p.fb();

13. } }

// Assume fb doesn’t

// access caller’s heap

(Level Summarized Relevant Value Contexts)

Line 5:

Oa

Oi

Oj

p
f1

f1

f1ODp OD

Relevant value-context LSRV context

Line 6:

Ob

Ok

Ol

p
f1

f1

f1ODp OD

Relevant value-context LSRV context

Result: bar and fb both analyzed only once!

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 6 / 20



*

Another popular choice: Object sensitivity
1. class A {
2. A f1,f2;

3. void foo(){
4. A a,b,c,d;

...

5. c.bar(a);

6. d.bar(b);

7. }
8. void bar(A p){
9. A x = new A();

10. p.f1.f2 = x;

11. p.fb();

12. p.fb();

13. } }

Points-to graph

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

Om...
f2

f2

(Line 5)

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

O8

f2

f2

f2

f2
Om...

(Line 6)

Object-sensitivity:
2 contexts for bar:

Line 5: Receiver Oc

Line 6: Receiver Ol

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 7 / 20



*

What we know
What I know is limited, what I don’t is unlimited! – Common folklore.

kobj

kobjH
kcs

= valcs
= lsrv

kcsH

call-string basedobject-sensitivity based

k-call-site-sensitive, value contexts and LSRV contexts have the same
precision [CC’08, CC’19].

Adding heap cloning improves the precision of call-site- as well as
object-sensitivity.

The relative precisions of object-sensitivity and
call-site/value-contextx/LSRV-contexts are incomparable.

Our Goal: Get the best of both worlds.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 8 / 20



*

What we know
What I know is limited, what I don’t is unlimited! – Common folklore.

kobj

kobjH
kcs

= valcs
= lsrv

kcsH

call-string basedobject-sensitivity based

k-call-site-sensitive, value contexts and LSRV contexts have the same
precision [CC’08, CC’19].

Adding heap cloning improves the precision of call-site- as well as
object-sensitivity.

The relative precisions of object-sensitivity and
call-site/value-contextx/LSRV-contexts are incomparable.

Our Goal: Get the best of both worlds.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 8 / 20



*

Adding heap cloning

Heap cloning:

Specializes objects (allocation sites) with the context in which they
are created.

Object allocated at line l in context c represented as Ol c .

Improves the partitioning efficacy of context-sensitivity.

Usually generates more optimization opportunities, but with an
increased analysis cost.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 9 / 20



*

Surprise #1 with heap cloning: kcsH vs valcsH
Expectations reduce the joy, surprise enhances joy! - Anonymous

1 class D {

2 void m1() {

3 P p = new P();

4 Q q1 = p.m2();

5 Q q2 = p.m2(); }

6 void m2() {

7 return new Q();

8 } /*m2*/

9 } /*class D*/

Recall: valcs ≡precision kcs

kcs: m2 is analyzed twice.

valcs: m2 is analyzed once.

Both report that q1 and q2

are aliases after line 5.

With heap-cloning:

kcs: q1 and q2 are not
aliases.
valcs: q1 and q2 are aliases.

valcsH ≤precision kcsH

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 10 / 20



*

Surprise #1 with heap cloning: kcsH vs valcsH
Expectations reduce the joy, surprise enhances joy! - Anonymous

1 class D {

2 void m1() {

3 P p = new P();

4 Q q1 = p.m2();

5 Q q2 = p.m2(); }

6 void m2() {

7 return new Q();

8 } /*m2*/

9 } /*class D*/

Recall: valcs ≡precision kcs

kcs: m2 is analyzed twice.

valcs: m2 is analyzed once.

Both report that q1 and q2

are aliases after line 5.

With heap-cloning:

kcs: q1 and q2 are not
aliases.
valcs: q1 and q2 are aliases.

valcsH ≤precision kcsH

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 10 / 20



*

Surprise #1 with heap cloning: kcsH vs valcsH
Expectations reduce the joy, surprise enhances joy! - Anonymous

1 class D {

2 void m1() {

3 P p = new P();

4 Q q1 = p.m2();

5 Q q2 = p.m2(); }

6 void m2() {

7 return new Q();

8 } /*m2*/

9 } /*class D*/

Recall: valcs ≡precision kcs

kcs: m2 is analyzed twice.

valcs: m2 is analyzed once.

Both report that q1 and q2

are aliases after line 5.

With heap-cloning:

kcs: q1 and q2 are not
aliases.
valcs: q1 and q2 are aliases.

valcsH ≤precision kcsH

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 10 / 20



*

Surprise #1 with heap cloning: kcsH vs valcsH
Expectations reduce the joy, surprise enhances joy! - Anonymous

1 class D {

2 void m1() {

3 P p = new P();

4 Q q1 = p.m2();

5 Q q2 = p.m2(); }

6 void m2() {

7 return new Q();

8 } /*m2*/

9 } /*class D*/

Recall: valcs ≡precision kcs

kcs: m2 is analyzed twice.

valcs: m2 is analyzed once.

Both report that q1 and q2

are aliases after line 5.

With heap-cloning:

kcs: q1 and q2 are not
aliases.
valcs: q1 and q2 are aliases.

valcsH ≤precision kcsH

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 10 / 20



*

Surprise #2 with heap cloning: lsrvH vs valcsH
I love surprises as long as I like the outcome! - Anonymous

Recall: lsrv ≡precision valcs

lsrvH ≤precision valcsH∗

≤precision kcsH

Moreover:

Recall: lsrv 6≡precision kobj

lsrvH 6≡precision kobjH∗ (incomparable).

∗Reasoning in the paper.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 11 / 20



*

Surprise #2 with heap cloning: lsrvH vs valcsH
I love surprises as long as I like the outcome! - Anonymous

Recall: lsrv ≡precision valcs

lsrvH ≤precision valcsH∗ ≤precision kcsH

Moreover:

Recall: lsrv 6≡precision kobj

lsrvH 6≡precision kobjH∗ (incomparable).

∗Reasoning in the paper.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 11 / 20



*

Surprise #2 with heap cloning: lsrvH vs valcsH
I love surprises as long as I like the outcome! - Anonymous

Recall: lsrv ≡precision valcs

lsrvH ≤precision valcsH∗ ≤precision kcsH

Moreover:

Recall: lsrv 6≡precision kobj

lsrvH 6≡precision kobjH∗ (incomparable).

∗Reasoning in the paper.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 11 / 20



*

Our idea: Mix the contexts
An insight has little value till it leads to a workable idea – Anonymous

Insight:

Heap cloning alters the precision relations quite a bit.

Existing context abstractions miss cases covered by each other

Some approaches (e.g., LSRV variants) scale very well.

Q: Why not use the abstractions together?

Idea:

Merge abstractions c1 and c2 to get c1•2 such that c1•2 covers the
optimization opportunities covered by both c1 and c2.

In the resultant version, a method is analyzed if any of c1 or c2 is
different from the previous contexts.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 12 / 20



*

Choosing the right mix
You can make a great fashion statement by doing the right mix and match – Anonymous

More different the abstractions are, better may be the precision of the
mix.
=⇒ Choose one approach each from call-site- and object-sensitive
approaches.

The combined approach needs to be scalable.
=⇒ Choose lsrvH from the call-site- group and kobjH from the
object-sensitive group.

Obtained mix: lsrvkobjH

; Implemented in the Soot framework.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 13 / 20



*

Choosing the right mix
You can make a great fashion statement by doing the right mix and match – Anonymous

More different the abstractions are, better may be the precision of the
mix.
=⇒ Choose one approach each from call-site- and object-sensitive
approaches.

The combined approach needs to be scalable.
=⇒ Choose lsrvH from the call-site- group and kobjH from the
object-sensitive group.

Obtained mix: lsrvkobjH; Implemented in the Soot framework.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 13 / 20



*

Evaluation results (Devirtualization)
I evaluate, therefore I am. – System designer’s mantra

#p
ol
yC
al
ls

0

20
00

40
00

60
00

80
00

av
ror
a

ba
tik

ec
lips
e

luin
de
x

lus
ea
rch

mo
ldy
n

mo
nte
ca
rlo pm

d

ray
tra
ce
r

su
nfl
ow

Ge
oM
ea
n

lsrv lsrvH
1objH lsrv1objH

lsrvkobjH resolves the least number of calls as polymorphic.

lsrvkobjH leads to the least number of call-graph edges.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 14 / 20



*

Evaluation results (Devirtualization)
I evaluate, therefore I am. – System designer’s mantra

#p
ol
yC
al
ls

0

20
00

40
00

60
00

80
00

av
ror
a

ba
tik

ec
lips
e

luin
de
x

lus
ea
rch

mo
ldy
n

mo
nte
ca
rlo pm

d

ray
tra
ce
r

su
nfl
ow

Ge
oM
ea
n

lsrv lsrvH
1objH lsrv1objH

lsrvkobjH resolves the least number of calls as polymorphic.

lsrvkobjH leads to the least number of call-graph edges.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 14 / 20



*

Evaluation results (Time taken)
I evaluate, therefore I am. – System designer’s mantra

Benchmark time % increase
lsrv (s) lsrvh

1objh lsrv1objh

avrora 55 24.5

646.2 26.5

batik 946 167.3

709.8 129.2

eclipse 988 224.0

- 225.9

luindex 46 38.5

653.9 23.3

lusearch 57 44.6

672.1 61.4

moldyn 53 85.3

448.5 83.6

montecarlo 53 58.3

474.3 67.2

pmd 108 44.8

587.3 2263.2

raytracer 53 62.1

452.6 68.7

sunflow 684 40.8

1097.1 53.2

GeoMean 130 62.3

- 93.6

lsrvkobjH scales well for all the benchmarks
(and improves precision as shown in the previous slides).

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 15 / 20



*

Evaluation results (Time taken)
I evaluate, therefore I am. – System designer’s mantra

Benchmark time % increase
lsrv (s) lsrvh 1objh lsrv1objh

avrora 55 24.5 646.2 26.5
batik 946 167.3 709.8 129.2
eclipse 988 224.0 - 225.9
luindex 46 38.5 653.9 23.3
lusearch 57 44.6 672.1 61.4
moldyn 53 85.3 448.5 83.6
montecarlo 53 58.3 474.3 67.2
pmd 108 44.8 587.3 2263.2
raytracer 53 62.1 452.6 68.7
sunflow 684 40.8 1097.1 53.2
GeoMean 130 62.3 - 93.6

lsrvkobjH scales well for all the benchmarks
(and improves precision as shown in the previous slides).

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 15 / 20



*

Updated world view
By the time you update your working space, it becomes outdated – Anonymous

kobj

kobjH kcs
= valcs
= lsrv

kcsH

call-string basedobject-sensitivity based

valcsH

lsrvkobjH

lsrvH

Newer variants find proper placement.

Effects of heap cloning incorporated.

lsrvkobjH connects the previously unconnected approaches!

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 16 / 20



*

In the paper
World is unlimited: talk → paper → matrix! – Anonymous

Insights on reducing the overheads of object-sensitivity.

3-stage efficient computation of lsrvkobjH contexts.

Theoretical and practical precisions of existing and recent approaches.

Correctness and termination discussions.

Study of the memory consumption of the various approaches.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 17 / 20



*

Representative related work
Learn from those who have trodden the path before. – Explorer Anonymous

Explaining abstractions:

Kanvar and Khedker (CS’16) survey heap abstractions and assert
their importance towards precision and scalability.

Smaragdakis et al. (POPL’11) clarify the definition of
object-sensitivity and propose type-sensitivity as a close sibling.

Combining analyses/abstractions:

Codish et al. (TOPLAS’95) perform multiple program analyses
together over a combined domain.

Kastrinis et al. (PLDI’13) propose hybrid context-sensitivity, but
conclude that combining call-site- and object-sensitivity is impractical.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 18 / 20



*

Conclusion and Future Work
Conclusion = What we could do. Future work = What we could not. –Anonymous

Clarified: relative precision of existing and recent context abstractions.

Demonstrated: heap cloning leads to surprising precision relations.

Introduced: novel idea of mixing abstractions to improve precision.

Showed: mixing offers the best precision-scalability trade-off

gives benefits of both call-site- and object-sensitive approaches.

Future Work:

Generalize mixing to multiple context abstractions and use it for
different analyses.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 19 / 20



*

Questions?

Expected answers are not guaranteed.

Clarified: relative precision of existing and recent context abstractions.

Demonstrated: heap cloning leads to surprising precision relations.

Introduced: novel idea of mixing abstractions to improve precision.

Showed: mixing offers the best precision-scalability trade-off

gives benefits over both call-site- and object-sensitive approaches.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 20 / 20



Backup



*

Incomparability of the two broad variants

1 class D {

2 ...

3 void foo() {

4 B x = new B();

5 Y y = new Y();

6 Z z = new Z();

7 x.m3(y);

8 x.m3(z);

9 }

10 B m3(B p) {

11 p.f = p;

12 }

13 }

O5y

O6z

f f

f

f

O5y

O6z

f

f

kobj kcs/valcs/lsrv

y.f and z.f are aliases in kobj (imprecise),
but not in kcs/valcs/lsrv (precise).

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 1 / 4



*

Incomparability of the two broad variants (Cont.)

1 class D {

2 ...

3 void bar() {

4 B r = new B();

5 B s = new B();

6 B t = * ? r : s;

7 t.m4();

8 }

9 B m4() {

10 this.f = this;

11 }

12 }

O4r

O5s

f

f

O4r

O5s

f f

f

f

kobj kcs/valcs/lsrv

r.f and s.f are aliases in kcs/valcs/lsrv
(imprecise) but not in kobj (precise).

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 2 / 4



*

Surprise #2 with heap cloning: lsrvH vs valcsH

1 class W {

2 X f;

3 W() { f = new X(); }

4 void setG(Y y) {

5 f.g = y; }

6 Y getG() {

7 return f.g; } }

8 class X { Y g; }

9 class Y {

10 void m() {...} }

11 class Z extends Y {

12 void m() {...} }

13 class D {

14 void bar() {

15 W w1 = new W();

16 Y y1 = new Y();

17 w1.setG(y1);

18 W w2 = new W();

19 Z z1 = new Z();

20 w2.setG(z1);

21 Y p = w1.getG();

22 p.m();

23 Y q = w2.getG();

24 q.m(); } }

valcsH re-analyzes W’s constructor and resolves the calls to m as
monomorphic (unlike lsrvH).

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 3 / 4



*

Surprise #3 with heap cloning: lsrvH vs kobjH

1 class W {

2 X f;

3 W() { f = new X(); }

4 void setG(Y y) {

5 f.g = y; }

6 Y getG() {

7 return f.g; } }

8 class X { Y g; }

9 class Y {

10 void m() {...} }

11 class Z extends Y {

12 void m() {...} }

13 class D {

14 void bar() {

15 W w1 = new W();

16 Y y1 = new Y();

17 w1.setG(y1);

18 W w2 = new W();

19 Z z1 = new Z();

20 w2.setG(z1);

21 Y p = w1.getG();

22 p.m();

23 Y q = w2.getG();

24 q.m(); } }

In lsrvH, W’s constructor is not re-analyzed at line 18, w1.f and w2.f

point to O3, w1.f.g and w2.f.g both point to {O16, O19}, and both
the calls to m are polymorphic.

Not so in kobjH.

V. Krishna Nandivada Mix Your Contexts Well Feb 23 2020 4 / 4


	Appendix

