
Compiling	Code,	Just	in	Time
IITB CSE Research Symposium

Manas	Thakur

March 26th, 2023



Superfast	Java
➤ Wait! What? Isn’t Java supposed to be (super) slow?


➤ Are Java programs interpreted or compiled?


➤ Java bytecodes are compiled just in time, making modern Java programs run (very) fast.

2Manas	Thakur



The	Java	Compilation+Execution	Model

3

Just-In-Time	(JIT)	Compilers
Manas	Thakur



Tiered	Interpretation	and	Compilation
➤ 0: Interpreter with some profiling


➤ 1: Pure C1


➤ 2: C1 with invocation and backedge counting


➤ 3: C1 with full profiling


➤ 4: C2

4Manas	Thakur



JIT	Compilation	in	the	HotSpot	VM
➤ Starts off with interpretation of bytecodes


➤ Hot spots get identified by profiling:


➤ Method invocation counts


➤ Backedge counts


➤ Identified code regions are inserted into a compilation queue


➤ Compiler threads compile methods in the background, while bytecode interpretation continues


➤ Entry points of methods changed dynamically


➤ Hot loops are replaced on-the-stack


➤ called On-Stack Replacement (OSR)


➤ FFT: What all might OSR involve?

5Manas	Thakur



JIT	in	HotSpot	Revisited
➤ 0: Interpreter with some profiling


➤ 1: Pure C1


➤ 2: C1 with invocation and backedge counting


➤ 3: C1 with full profiling


➤ 4: C2

6Manas	Thakur



Speculative	Optimizations
➤ Why not profile more than just methods calls and backedges?


➤ Speculation based on live runtime profile


➤ Examples:


➤ Branch prediction


➤ Implicit null checks


➤ Monomorphization


➤ Method inlining


➤ Even newer optimizations!

7Manas	Thakur



Specialization	using	Speculation

➤ We compile and create a specialized binary under certain assumptions; what if the 
assumptions fail in a subsequent run?

8Manas	Thakur

Equivalent 
Binary

Constant

Propagation

Method

Inlining

Constant

Propagation



Speculation	and	Deoptimization
➤ When a profile-guided assumption fails, the compiled method is invalidated, 

and the execution falls back to a safe path.


➤ Which one?


➤ Interpretation!


➤ Compiled method states:

➤ in use, not entrant, zombie, unloaded

9Manas	Thakur



JIT	Research	Directions
➤ JIT compilers are heavily resource constrained; how can we make them obtain 

precise program analysis results without affecting the compilation time?


➤ How can we reduce


➤ the cost of deoptimization?


➤ the frequency of deoptimization?


➤ How can we save compilation effort if the program behavior doesn’t change (much) 
within and even across VM instances?

10Manas	Thakur



Question	of	the	Symposium
➤ Which programs are the fastest?


➤ Python


➤ C


➤ C++


➤ Java

11

It’s	the	compiler	that

makes	programs	fast.

Manas	Thakur



Research	@	CompL,	IITB
➤ Precise yet efficient program analysis for languages like Java with staged compilation


➤ Performing more aggressive optimizations in JITs using static analysis


➤ Discovering new optimizations for upcoming features such as value types


➤ Saving compilation effort by recording dynamism in languages like R and Python


➤ Implementation in industry compilers, in collaboration with flagship companies


➤ Publications at top venues (TOPLAS, OOPSLA, SAS, ECOOP, CC, et cetera)

12Manas	Thakur

https://www.cse.iitb.ac.in/~manas

➤ Do you want to be the next COMPLER improving real COMPILERS?

➤Join us!


