Compiling Code, Just in Time
IITB CSE Research Symposium

Manas Thakur

March 26th, 2023

Supertfast Java

e\

jemo time

» Are Java programs interpreted or compiled?

» Java bytecodes are compiled just in time, making modern Java programs run (very) fast.

Manas Thakur 2

The Java Compilation+Execution Model

000

Machine 1 Machine 2

Java Virtual Machine
(java)

Interpreter

Hello. Java Compiler Hello.
java (javac) class

Compiler1 Compiler 2

Just-In-Time (JIT) Compilers

Manas Thakur 3

Tiered Interpretation and Compilation

000

» 0O: Interpreter with some profiling
» 1: Pure C1

» 2: C1 with invocation and backedge counting
» 3: C1 with full profiling
> 4. C2

--.7

DBIIIII time

Manas Thakur 4

JIT Compilation in the HotSpot VM

» Starts oftf with interpretation of bytecodes
» Hot spots get identified by profiling:
» Method invocation counts
» Backedge counts
» Identified code regions are inserted into a compilation queue
» Compiler threads compile methods in the background, while bytecode interpretation continues
» Entry points of methods changed dynamically
» Hot loops are replaced on-the-stack
» called On-Stack Replacement (OSR)
» FFT: What all might OSR involve?

Manas Thakur 5

JIT in HotSpot Revisited

» 0O: Interpreter with some profiling

» 1: Pure Cl1

» 2: C1 with invocation and backedge counting
» 3: C1 with full profiling

» 4. C2

Manas Thakur 6

Speculative Optimizations

» Why not profile more than just methods calls and backedges?
» Speculation based on live runtime profile
» Examples:

» Branch prediction

» Implicit null checks

» Monomorphization

» Method inlining

» Even newer optimizations!

Manas Thakur 7

Specialization using Speculation

)id foo(int a, X o) {
nt b =a + 10;
nt ¢c=b * o.bar();

d foo(int a, X o) { d foo(int a, X 0) {

return c;

Methoo nt ¢ = 20 * 2;
Inlining

Constant
Propagation

nt ¢ = 20 * o.bar();
return c;

I3
X <-- Y <--/

X.bar() { return 5; }
Y.bar() { return 2; }
/.bar() { return 10; }

return c,;

¥

¥

Constant
foo(int a, X o) { Propagation

Equivalent
Binary return 40;

¥

» We compile and create a specialized binary under certain assumptions; what if the
assumptions fail in a subsequent run?

Manas Thakur 8

Speculation and Deoptimization

000

» When a profile-guided assumption fails, the compiled method is invalidated,
and the execution falls back to a safe path.

» Which one?
» Interpretation!

» Compiled method states:

» 1n use, not entrant, zombie, unloaded

)
)
“7,

. .
n t-

Manas Thakur 9

JIT Research Directions

» JIT compilers are heavily resource constrained; how can we make them obtain
precise program analysis results without affecting the compilation time?

» How can we reduce
» the cost of deoptimization?

» the frequency of deoptimization?

» How can we save compilation effort if the program behavior doesn’t change (much)
within and even across VM instances?

Manas Thakur 10

Question of the Symposium

» Which programs are the fastest?

» Python
i ; It's the compiler that
> Java makes programs fast.

Manas Thakur 11

Research @ ComplL, IITB

000

> Precise yet eflicient program analysis for languages like Java with staged compilation
| ~— >»Jomnus! |

» Performing more aggressive optimigations in JITs using static analysis

» Discovering new optimizations for upcoming features such as value types

» Saving compilation effort by recording dvnamism in languages like R and Python

https://www.cse.litb.ac.in/~manas

» Implementation in industry compilers, in collaboration with flagship companies

» Publications at top venues (TOPLAS, OOPSLA, SAS, ECOOB CC, et cetera)

» Do you want to be the next COMPLER improving real COMPILERS?

Manas Thakur 12

