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Who cares about OO languages?
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Source: PYPL Index, Jan’24.

Manas Thakur 2




What is special about OO languages?
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—
olymorphism
ymorp / Encapsulation

Object Oriented Managed runtimes additionally
Programming

ofter Garbage Collection.
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Let's summarize the costs (say for Java)
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» Field access through objects (Abstraction & Encapsulation) involves indirection |Costly

» Also adds to the memory footprint
» Method overloading (Inheritance & Polymorphism) complicates virtual calls

» Type safety (Classes and Objects) requires run-time checks
» Collecting garbage requires run-time analysis
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But OO programs run fast enough!
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» OO languages dominate the software-development industry.
» OO code is written for everything ranging from satellites to handheld devices.

» People are even writing virtual machines and kernels using OO languages!

» What (all) brings performance to OO programs?

» Worth learning how the food you eat is cooked!
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|Spring24| I taught a COOOL course

» Fundamentals (OO abstraction; memory organization).

» Heap analysis (points-to information; field- and flow-sensitivity; intra- and inter-procedural
analysis; alias analysis; heap cloning).

» | Optimizations involving allocation, field access and deallocation (pointer and escape analysis;
stack allocation; scalar replacement; field privatization; value types and object inlining; object
colocation; control-sensitive analysis; garbage collection).

» Optimizations involving method dispatch (class hierarchy analysis; rapid type analysis; context-
insensitive analysis; object- and type-sensitive analysis).

» Speculative optimizations (speculative type resolution; speculative method inlining and
polymorphic inline caching; code versioning; deoptimization overheads).

» Recent developments (closed-world assumption; dynamic features; mixing AOT and JIT).
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Object allocation

» Objects allocated using new in Java are stored on the heap.

» The only way of allocating objects in Java is using new.

Object layout:

OFF SZ TYPE DESCRIPTION
O 8 (object header: mark)
Java code: 8 4 (object header: class)
_ . . 12 4 int AbstractList.modCount
X = new ArraylList<T>(); 16 4 int ArraylList.size

20 4 java.lang.Object[] ArraylList.elementData
Instance size: 24 bytes

Bytecode:

O: new #7 // class java/util/ArraylList

3: dup

4: invokespecial #9 // Method java/util/ArraylList."<init>":()V
/: astore_1
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Field access
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» Each field access requires a memory load.
» Field accesses are often wrapped inside getter calls.

» Reference fields may load objects from different parts of the heap, not necessarily

resident in the same cache block. Je o
. —T T Xy:b*‘
\,\)wr 7L |

class T { int y; ...} K= .

See +Q\DMD@_ ';/'

X = new ArrayList<T>(); -

int y = ((T) x.get(k)).getY(); SMX . i
& —\_ G\jo\&

» Three memory loads (cache misses) if different objects are on different pages (blocks).
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Garbage collection

a =new T(); // 01
a.f = new T(); // 02
foo(a);

a.f = b;

// Can we now collect 01 and/or 0,7

» [f an object is not reachable from any reference any more, then yes.
» Even if it is reachable but the reference is not used, then yes.

» Knowing this requires:

Lesser the work the GC

» Maintaining reachability at run-time.
5 4 has to do, the better.

» Liveness analysis.

» Interprocedural analysis (because foo may create newer references to 01 and/or 0;).

» Even concurrent GCs snatch resources from the program.
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Can we the compiler get rid of objects?

» Replace an object by scalar variables representing its constituents, and use them
instead of its fields:

class T {
izi i;i int x f1, x f2;
ablic T() { T X = new IO f2 - 20
P 1 10 ﬁ X 2 = 20;
£ - 202 z = X.f1 + x.f2; ¢« o
} = ’ z = x_t1 + x_f2;
}

» An optimization called SCALAR REPLACEMENT.
» Gets rid of object allocations altogether, and just adds local variables on stack.

» Constant offsets from stack pointer, better cache locality, no garbage collection.
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When can we not scalar-replace an object?

» What if we actually needed the object?
T x = new T(); T x = new T();
F00(X); if (x == y) {...}

» What if somebody else could modify the object’s fields?

static T global;
T x = new T();
global = x;

» Scalar replacement is good, but several highly used Java constructs disallow object
decomposition.

Thomas Kotzmann and Hanspeter Mossenbock. “Escape Analysis in the
Context of Dynamic Compilation and Deoptimization”. VEE 2005.
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Can we scalar-replace an object in some paths?

» Many objects cannot be scalarized only in cold code branches. Scalarize them in the
beginning, and rematerialize them when needed:

T x = new T(10, 20); 12E i_ii : %83

if (%) { if (%) { |

} foo(x); —l foo(new T(10, 20));
t

// Local field accesses // Local field accesses

» Rematerialization requires maintaining a run-time map from scalarized objects to
the values of their fields.

Lukas Stadler, Thomas Wiirthinger, and Hanspeter Mossenbock. “Partial Escape Analysis and Scalar Replacement for Java”. CGO 2014.
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Can we scalar-replace an object temporarily?

» [f the object has not escaped yet, scalarize (or privatize) its field(s) locally where they
are accessed frequently:

t t = x.T;

T x = new T(); Lt '
while (+) { while (x)

z = X.f; -

X.'F:y; } t=y;
}

Xx.f = t;

global = Xx; global = x;

» An optimization called FIELD PRIVATIZATION.

) o Gets I'ld Qf Ob] ects inside lOOpS. Vijay Sundaresan, Daryl Maier, Kri.shn.a Nandivada Venkata,
and Manas Thakur. “Split-Scalarization of Thread-Local

- Objects in Optimized Object Code”. (Filed) US Patent, 2023.
> A smarter cousin: SPLIT SCALARIZATION,  [22ccts In Opamized Object Code”. (Fled) US Paten
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Can we allocate objects on the stack itself?
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» An optimization called STACK ALLOCATION.

» Object components still allocated contiguously, and hence available as an object.

» Constant offsets from stack pointer, better cache locality, free garbage collection.
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When can we not allocate an object on stack?

» Objects that outlive their allocating method cannot be allocated on the stack-frame
of that method:

;‘ Clasi E,{ S » 04 and Os are not accessible beyond the life-
" SCtal1lC ’ .
3. void f00(§' { time of foo, and hence are stack allocatable.
g B ); : Ega ;E ; :%8: » Os (and any objects reachable from Oe) may
6: x.f = new D();//0¢ outlive foo, and hence aren’t stack allocatable.
7: bar(x);

. » Requires performing points-to analysis across
Sf \}/oi 4 bar(d p) 1 procedure boundaries, and then checking
10 - g = p.f; reachability.
11: }
12:} » Popularly called ESCAPE ANALYSIS.

13:class D { D f; }

Manas Thakur 15




Escape analysis

» Tries to classify the (abstract) objects in a program into one of 3 states:

» DoesNotEscape Can be scalar replaced.
Can be stack allocated.

» GlobalEscape  Need to remain on heap.

» Known to be one of the most impactful analyses in terms of improving the
performance of OO programs.

» In managed runtimes (e.g. JVMs and .NET), performed typically by their JIT
compilers.

» Sufters from the imprecision of resource-constrained JIT analyses.
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Escape analysis in JIT compilers

» Typical JITs perform complex program analyses only

at higher optimization levels (hot methods). 1: class C 1
2 static D g;
: : . 3: void foo() {
>
Certamly‘no budget for mterprocec?ur.aloanalysm. . b x = new D()://0.
(Speculative profile-based method inlining gives 5: Dy = new D();//0s
some improvements.) S E;(;)r}ew b();//0s
> e.g., the JIT compiler of OpenJ9 can stack allocate 05 . L
only at hot+ levels of compilation, and 04 only when 9:  void bar(D p) {
] : . . ] 10: = p.T;
the runtime is able to inline (or peek into) bar. 11: 1} 5 =P
: : . 12:}
» Static analysis, on the other hand, is extremely 13:class D { D f; }

conservative in presence of calls to library methods.
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PEA In PYE

Source machine Target machine

|
|
! JVM
.java» Java | ! JIT compiler . o @
floa | compiler .Elass: - . Highly optimized code Program
€S
+ — > ast, precise —— > output >
Partial | analyzer Very tfast compilation @
analyzer files I
I
_____________ I
One-time L<ib?ry es || Manas Thakur and V. Krishna Nandivada. “PYE: A Framework for

library

. results | files Precise-Yet-Efficient Analysis of Java Programs”.
analysis

TOPLAS 2019, OOPSLA 20109.

~_

» Analyze applications and libraries independently, while remembering the dependencies.
» Resolve the dependencies during JIT compilation.

» Advantage: Results of precise analyses can be obtained to enable sophisticated
optimizations in the JVM, without much JIT cost.
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[s the story over for non-stack-allocatable objects?

» An object that is often accessed through a field of a “container”, can be allocated
inside the container:

TransactionInfo AccountDetails TransactionInfo
—
Header Header Header
After Inlining :
creditAccount accountID |:> transactionlD |
debitA ' creditAccount
ebitAccoun
AccountDetails accountID |
transaction]D ‘ debitAccount
accountID

—> Header

accountID

» An optimization called OBJECT INLINING.

» Reduces memory footprint, field indirections, improves cache locality.
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When can we (not) inline an object?

» When there are mutable references to the object from outside the container in which
it is inlined.
» Unless we update those references to point inside the container ==> complicated

and risky (may have to tweak with accessibility of the container, as well as disable
the possibility of its stack allocation!).

» Java proposes inlining objects of immutable value types (an upcoming feature)

» All objects of value-type classes would be inlined inside all their containers, subject
to a user-defined size threshold, during JIT compilation.
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When should we not an inline an object?

» When an inlined value-type object is needed in its entirety, it has to be recreated:

TransactionInfo

Accountdetails al, a2; Accountdetails al, a2;
Header

transactionlD | tyn = pew TransactionInfo(al,a2); ﬁ trn = new TransactionInfo(al,a2);

creditAccount
accountID

debitAccount
accountID

foo(trn.creditAccount); foo(new AccountDetails(trn.accountID));

» Use escape analysis and identify inlined objects that need to be recreated more often
than being accessed through container fields!

Arjun Harikumar, Lorenzo Prosch, and Manas Thakur. WIP.
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So sometimes we won't inline an object, but...

» The essential problem with inlining objects is that it destroys their header.
» The benefits included reduced memory, fewer indirections, and better cache locality.
=
& @9
o

> But we can still achieve the last two without destroying the header!

» We can allocate a value-type object near (or next to) its container.

» An optimization called OBJECT COLOCATION.

Rodrigo Bruno, Vojin Jovanovic, Christian Wimmer, and Gustavo Alonso.
“Compiler-Assisted Object Inlining with Value Fields”. PLDI 2021.
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We won't rest yet

» Can we aggressively allocate objects on stack based on a precise static escape
analysis and move them to the heap, if needed (WHEN?), dynamically?

More to come in the afternoon! GEN -
Organization Attending Schedule

Optimizations for Object Oriented Programs
Manas Thakur &

CoS-SSA: SSA for Context-Sensitive Interprocedural Analysis
Pritam Gharat, Uday P. Khedker &, Alan Mycroft, Supriya Bhide and Aditya Pradhan ¢

10:00 - 10:20

A Correspondence Between ¢-function Placement in SSA and Reaching Definitions
10:20 - 10:40 Analysis
Supriya Bhide, Uday Khedker & and Pritam Gharat

pliron: An Extensible IR Framework in Rust
10:40 - 11:00
Vaivaswatha Nagaraj &

11:00 - 11:30 Tea break

SLIM: A High-Level Abstraction on LLVM IR Suitable for Program Analysis
Aditi Raste, Aditya Pradhan ¢, Akshat Oke and Uday Khedker

11:30-11:50

Why generating Three Address Code for Javascript is hard

Aditya Anand, Solai Adithya, Swapnil Rustagi, Priyam Seth, OO oo Kalpesh Mohta |
Vijay Sundaresan, Daryl Maier, V. Krishna Nandivada, and Manas Thakur. | .~ —
“Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes”. \
PLDI 2024. o Engincering behind OCamls Effect handlers |

Manas Jayanth &

Program Analysis for Managed Runtimes in Presence of Dynamic Features
Aditya Anand &

12:10-12:30
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And not even after that...

» Can we allocate objects on caller’s stack when they cannot be allocated on the
allocating method’s stack?

» Can we refactor programs to enable more scalar replacement and more object
inlining?

» Can we improve partially computed static-analysis results with speculation performed
during JIT compilation?

» Can we optimize across language boundaries in polyglot programs?

» Can we use static (offline) analysis to improve JIT decisions in dynamically typed
languages such as R and JavaScript?

Meetesh Mehta, Sebastian Krynski, Hugo Gualandi, Manas Thakur, and Jan Vitek.
“Reusing Just-In-Time Compiled Code”. OOPSLA 2023.
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My torch bearers at IICT
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