I Can Capture You:
Optimizing Object-Oriented Programs

HHCT 2024

Manas Thakur

September 29th, 2024

Who cares about OO languages?

000

Rank Language Share
1 28.2 %
2 15.73 %
3 JavaScript 8.91 % P"“ n" lnvn
. —— 5.8 % e W i |
5 6.67 % j/ }/
8 TypeScript 2.92 %
9 2.77 %
10 2.34 %

Source: PYPL Index, Jan’24.

Manas Thakur 2

What is special about OO languages?

000

—
olymorphism
ymorp / Encapsulation

Object Oriented Managed runtimes additionally
Programming

ofter Garbage Collection.

Manas Thakur 3

Let's summarize the costs (say for Java)

000

» Field access through objects (Abstraction & Encapsulation) involves indirection |Costly

» Also adds to the memory footprint
» Method overloading (Inheritance & Polymorphism) complicates virtual calls

» Type safety (Classes and Objects) requires run-time checks
» Collecting garbage requires run-time analysis

Manas Thakur 4

But OO programs run fast enough!

000

» OO languages dominate the software-development industry.
» OO code is written for everything ranging from satellites to handheld devices.

» People are even writing virtual machines and kernels using OO languages!

» What (all) brings performance to OO programs?

» Worth learning how the food you eat is cooked!

Manas Thakur 5

|Spring24| I taught a COOOL course

» Fundamentals (OO abstraction; memory organization).

» Heap analysis (points-to information; field- and flow-sensitivity; intra- and inter-procedural
analysis; alias analysis; heap cloning).

» | Optimizations involving allocation, field access and deallocation (pointer and escape analysis;
stack allocation; scalar replacement; field privatization; value types and object inlining; object
colocation; control-sensitive analysis; garbage collection).

» Optimizations involving method dispatch (class hierarchy analysis; rapid type analysis; context-
insensitive analysis; object- and type-sensitive analysis).

» Speculative optimizations (speculative type resolution; speculative method inlining and
polymorphic inline caching; code versioning; deoptimization overheads).

» Recent developments (closed-world assumption; dynamic features; mixing AOT and JIT).

Manas Thakur 6

Object allocation

» Objects allocated using new in Java are stored on the heap.

» The only way of allocating objects in Java is using new.

Object layout:

OFF SZ TYPE DESCRIPTION
O 8 (object header: mark)
Java code: 8 4 (object header: class)
_ . . 12 4 int AbstractList.modCount
X = new ArraylList<T>(); 16 4 int ArraylList.size

20 4 java.lang.Object[] ArraylList.elementData
Instance size: 24 bytes

Bytecode:

O: new #7 // class java/util/ArraylList

3: dup

4: invokespecial #9 // Method java/util/ArraylList."<init>":()V
/: astore_1

Manas Thakur 7

Field access

000

» Each field access requires a memory load.
» Field accesses are often wrapped inside getter calls.

» Reference fields may load objects from different parts of the heap, not necessarily

resident in the same cache block. Je o
. —T T Xy:b*‘
\,\)wr 7L |

class T { int y; ...} K= .

See +Q\DMD@_ ';/'

X = new ArrayList<T>(); -

int y = ((T) x.get(k)).getY(); SMX . i
& —_ G\jo\&

» Three memory loads (cache misses) if different objects are on different pages (blocks).

Manas Thakur 8

Garbage collection

a =new T(); // 01
a.f = new T(); // 02
foo(a);

a.f = b;

// Can we now collect 01 and/or 0,7

» [f an object is not reachable from any reference any more, then yes.
» Even if it is reachable but the reference is not used, then yes.

» Knowing this requires:

Lesser the work the GC

» Maintaining reachability at run-time.
5 4 has to do, the better.

» Liveness analysis.

» Interprocedural analysis (because foo may create newer references to 01 and/or 0;).

» Even concurrent GCs snatch resources from the program.

Manas Thakur 9

Can we the compiler get rid of objects?

» Replace an object by scalar variables representing its constituents, and use them
instead of its fields:

class T {
izi i;i int x f1, x f2;
ablic T() { T X = new IO f2 - 20
P 1 10 ﬁ X 2 = 20;
£ - 202 z = X.f1 + x.f2; ¢« o
} = ’ z = x_t1 + x_f2;
}

» An optimization called SCALAR REPLACEMENT.
» Gets rid of object allocations altogether, and just adds local variables on stack.

» Constant offsets from stack pointer, better cache locality, no garbage collection.

Manas Thakur 10

When can we not scalar-replace an object?

» What if we actually needed the object?
T x = new T(); T x = new T();
F00(X); if (x == y) {...}

» What if somebody else could modify the object’s fields?

static T global;
T x = new T();
global = x;

» Scalar replacement is good, but several highly used Java constructs disallow object
decomposition.

Thomas Kotzmann and Hanspeter Mossenbock. “Escape Analysis in the
Context of Dynamic Compilation and Deoptimization”. VEE 2005.

Manas Thakur 11

Can we scalar-replace an object in some paths?

» Many objects cannot be scalarized only in cold code branches. Scalarize them in the
beginning, and rematerialize them when needed:

T x = new T(10, 20); 12E i_ii : %83

if (%) { if (%) { |

} foo(x); —l foo(new T(10, 20));
t

// Local field accesses // Local field accesses

» Rematerialization requires maintaining a run-time map from scalarized objects to
the values of their fields.

Lukas Stadler, Thomas Wiirthinger, and Hanspeter Mossenbock. “Partial Escape Analysis and Scalar Replacement for Java”. CGO 2014.

Manas Thakur 12

Can we scalar-replace an object temporarily?

» [f the object has not escaped yet, scalarize (or privatize) its field(s) locally where they
are accessed frequently:

t t = x.T;

T x = new T(); Lt '
while (+) { while (x)

z = X.f; -

X.'F:y; } t=y;
}

Xx.f = t;

global = Xx; global = x;

» An optimization called FIELD PRIVATIZATION.

) o Gets I'ld Qf Ob] ects inside lOOpS. Vijay Sundaresan, Daryl Maier, Kri.shn.a Nandivada Venkata,
and Manas Thakur. “Split-Scalarization of Thread-Local

- Objects in Optimized Object Code”. (Filed) US Patent, 2023.
> A smarter cousin: SPLIT SCALARIZATION, [22ccts In Opamized Object Code”. (Fled) US Paten

Manas Thakur 13

Can we allocate objects on the stack itself?

000

| / |
rFQO 7~ OZ L’l-—ibDL (fbm
4{
S el eap ——

» An optimization called STACK ALLOCATION.

» Object components still allocated contiguously, and hence available as an object.

» Constant offsets from stack pointer, better cache locality, free garbage collection.

Manas Thakur 14

When can we not allocate an object on stack?

» Objects that outlive their allocating method cannot be allocated on the stack-frame
of that method:

;‘ Clasi E,{ S » 04 and Os are not accessible beyond the life-
" SCtal1lC ’ .
3. void f00(§' { time of foo, and hence are stack allocatable.
g B); : Ega ;E ; :%8: » Os (and any objects reachable from Oe) may
6: x.f = new D();//0¢ outlive foo, and hence aren’t stack allocatable.
7: bar(x);

. » Requires performing points-to analysis across
Sf \}/oi 4 bar(d p) 1 procedure boundaries, and then checking
10 - g = p.f; reachability.
11: }
12:} » Popularly called ESCAPE ANALYSIS.

13:class D { D f; }

Manas Thakur 15

Escape analysis

» Tries to classify the (abstract) objects in a program into one of 3 states:

» DoesNotEscape Can be scalar replaced.
Can be stack allocated.

» GlobalEscape Need to remain on heap.

» Known to be one of the most impactful analyses in terms of improving the
performance of OO programs.

» In managed runtimes (e.g. JVMs and .NET), performed typically by their JIT
compilers.

» Sufters from the imprecision of resource-constrained JIT analyses.

Manas Thakur 16

Escape analysis in JIT compilers

» Typical JITs perform complex program analyses only

at higher optimization levels (hot methods). 1: class C 1
2 static D g;
: : . 3: void foo() {
>
Certamly‘no budget for mterprocec?ur.aloanalysm. . b x = new D()://0.
(Speculative profile-based method inlining gives 5: Dy = new D();//0s
some improvements.) S E;(;)r}ew b();//0s
> e.g., the JIT compiler of OpenJ9 can stack allocate 05 . L
only at hot+ levels of compilation, and 04 only when 9: void bar(D p) {
] : . .] 10: = p.T;
the runtime is able to inline (or peek into) bar. 11: 1} 5 =P
: : . 12:}
» Static analysis, on the other hand, is extremely 13:class D { D f; }

conservative in presence of calls to library methods.

Manas Thakur 17

PEA In PYE

Source machine Target machine

|
|
! JVM
.java» Java | ! JIT compiler . o @
floa | compiler .Elass: - . Highly optimized code Program
€S
+ — > ast, precise —— > output >
Partial | analyzer Very tfast compilation @
analyzer files I
I
_____________ I
One-time L<ib?ry es || Manas Thakur and V. Krishna Nandivada. “PYE: A Framework for

library

. results | files Precise-Yet-Efficient Analysis of Java Programs”.
analysis

TOPLAS 2019, OOPSLA 20109.

~_

» Analyze applications and libraries independently, while remembering the dependencies.
» Resolve the dependencies during JIT compilation.

» Advantage: Results of precise analyses can be obtained to enable sophisticated
optimizations in the JVM, without much JIT cost.

Manas Thakur 18

[s the story over for non-stack-allocatable objects?

» An object that is often accessed through a field of a “container”, can be allocated
inside the container:

TransactionInfo AccountDetails TransactionInfo
—
Header Header Header
After Inlining :
creditAccount accountID |:> transactionlD |
debitA ' creditAccount
ebitAccoun
AccountDetails accountID |
transaction]D ‘ debitAccount
accountID

—> Header

accountID

» An optimization called OBJECT INLINING.

» Reduces memory footprint, field indirections, improves cache locality.

Manas Thakur 19

When can we (not) inline an object?

» When there are mutable references to the object from outside the container in which
it is inlined.
» Unless we update those references to point inside the container ==> complicated

and risky (may have to tweak with accessibility of the container, as well as disable
the possibility of its stack allocation!).

» Java proposes inlining objects of immutable value types (an upcoming feature)

» All objects of value-type classes would be inlined inside all their containers, subject
to a user-defined size threshold, during JIT compilation.

Manas Thakur 20

When should we not an inline an object?

» When an inlined value-type object is needed in its entirety, it has to be recreated:

TransactionInfo

Accountdetails al, a2; Accountdetails al, a2;
Header

transactionlD | tyn = pew TransactionInfo(al,a2); ﬁ trn = new TransactionInfo(al,a2);

creditAccount
accountID

debitAccount
accountID

foo(trn.creditAccount); foo(new AccountDetails(trn.accountID));

» Use escape analysis and identify inlined objects that need to be recreated more often
than being accessed through container fields!

Arjun Harikumar, Lorenzo Prosch, and Manas Thakur. WIP.

Manas Thakur 21

So sometimes we won't inline an object, but...

» The essential problem with inlining objects is that it destroys their header.
» The benefits included reduced memory, fewer indirections, and better cache locality.
=
& @9
o

> But we can still achieve the last two without destroying the header!

» We can allocate a value-type object near (or next to) its container.

» An optimization called OBJECT COLOCATION.

Rodrigo Bruno, Vojin Jovanovic, Christian Wimmer, and Gustavo Alonso.
“Compiler-Assisted Object Inlining with Value Fields”. PLDI 2021.

Manas Thakur 22

We won't rest yet

» Can we aggressively allocate objects on stack based on a precise static escape
analysis and move them to the heap, if needed (WHEN?), dynamically?

More to come in the afternoon! GEN -
Organization Attending Schedule

Optimizations for Object Oriented Programs
Manas Thakur &

CoS-SSA: SSA for Context-Sensitive Interprocedural Analysis
Pritam Gharat, Uday P. Khedker &, Alan Mycroft, Supriya Bhide and Aditya Pradhan ¢

10:00 - 10:20

A Correspondence Between ¢-function Placement in SSA and Reaching Definitions
10:20 - 10:40 Analysis
Supriya Bhide, Uday Khedker & and Pritam Gharat

pliron: An Extensible IR Framework in Rust
10:40 - 11:00
Vaivaswatha Nagaraj &

11:00 - 11:30 Tea break

SLIM: A High-Level Abstraction on LLVM IR Suitable for Program Analysis
Aditi Raste, Aditya Pradhan ¢, Akshat Oke and Uday Khedker

11:30-11:50

Why generating Three Address Code for Javascript is hard

Aditya Anand, Solai Adithya, Swapnil Rustagi, Priyam Seth, OO oo Kalpesh Mohta |
Vijay Sundaresan, Daryl Maier, V. Krishna Nandivada, and Manas Thakur. | .~ —
“Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes”. \
PLDI 2024. o Engincering behind OCamls Effect handlers |

Manas Jayanth &

Program Analysis for Managed Runtimes in Presence of Dynamic Features
Aditya Anand &

12:10-12:30

Manas Thakur 23

And not even after that...

» Can we allocate objects on caller’s stack when they cannot be allocated on the
allocating method’s stack?

» Can we refactor programs to enable more scalar replacement and more object
inlining?

» Can we improve partially computed static-analysis results with speculation performed
during JIT compilation?

» Can we optimize across language boundaries in polyglot programs?

» Can we use static (offline) analysis to improve JIT decisions in dynamically typed
languages such as R and JavaScript?

Meetesh Mehta, Sebastian Krynski, Hugo Gualandi, Manas Thakur, and Jan Vitek.
“Reusing Just-In-Time Compiled Code”. OOPSLA 2023.

Manas Thakur 24

My torch bearers at IICT

k7 ’ E & / - =
B . " 4 S NG 3 / v S - i
. 3 e e '. - 7 . e\ {ost
iy Vs . - |
. o X =/ i - n \V4
G e L2 o #)/] 3 v 7 B (A8 L4 L =& ¢ !0 [
a — S -he s)
" | y s 4 258 \ ¢ "
‘ A - N = [
©
{ she
3 "]
. . B @ |
LN R]
"R B aln 1

Preet Soni lai Adithya

? — A’@ g — ; 4 | . . v'.- ' \-'. ry “egyt
Rohit Yada
Arjun H Kumar

Manas Thakur 25

