
I Can Capture You:	
Optimizing Object-Oriented Programs

IICT 2024

Manas Thakur

September 29th, 2024

Source: PYPL Index, Jan’24.

Who cares about OO languages?

2Manas Thakur

What is special about OO languages?

3Manas Thakur

Managed runtimes additionally
offer Garbage Collection.

Let’s summarize the costs (say for Java)

4Manas Thakur

➤ Field access through objects (Abstraction & Encapsulation) involves indirection

➤ Also adds to the memory footprint

➤ Method overloading (Inheritance & Polymorphism) complicates virtual calls

➤ Type safety (Classes and Objects) requires run-time checks

➤ Collecting garbage requires run-time analysis

Costly

Costly

Costly

Costly

Costly

But OO programs run fast enough!

5Manas Thakur

➤ OO languages dominate the software-development industry.

➤ OO code is written for everything ranging from satellites to handheld devices.

➤ People are even writing virtual machines and kernels using OO languages!

➤ What (all) brings performance to OO programs?

➤ Worth learning how the food you eat is cooked!

➤ Fundamentals (OO abstraction; memory organization).

➤ Heap analysis (points-to information; field- and flow-sensitivity; intra- and inter-procedural
analysis; alias analysis; heap cloning).

➤ Optimizations involving allocation, field access and deallocation (pointer and escape analysis;
stack allocation; scalar replacement; field privatization; value types and object inlining; object
colocation; control-sensitive analysis; garbage collection).

➤ Optimizations involving method dispatch (class hierarchy analysis; rapid type analysis; context-
insensitive analysis; object- and type-sensitive analysis).

➤ Speculative optimizations (speculative type resolution; speculative method inlining and
polymorphic inline caching; code versioning; deoptimization overheads).

➤ Recent developments (closed-world assumption; dynamic features; mixing AOT and JIT).

[Spring24] I taught a COOOL course

6Manas Thakur

Object allocation

7Manas Thakur

➤ Objects allocated using new in Java are stored on the heap.

➤ The only way of allocating objects in Java is using new.

Bytecode:

Object layout:

x = new ArrayList<T>();
Java code:

Field access

8Manas Thakur

➤ Each field access requires a memory load.

➤ Field accesses are often wrapped inside getter calls.

➤ Reference fields may load objects from different parts of the heap, not necessarily
resident in the same cache block.

➤ Three memory loads (cache misses) if different objects are on different pages (blocks).

class T { int y; ...}
...
x = new ArrayList<T>();
...
int y = ((T) x.get(k)).getY();

Garbage collection

9Manas Thakur

➤ If an object is not reachable from any reference any more, then yes.

➤ Even if it is reachable but the reference is not used, then yes.

➤ Knowing this requires:
➤ Maintaining reachability at run-time.

➤ Liveness analysis.

➤ Interprocedural analysis (because foo may create newer references to O1 and/or O2).

➤ Even concurrent GCs snatch resources from the program.

a = new T(); // O1
a.f = new T(); // O2
foo(a);
a.f = b;
// Can we now collect O1 and/or O2?

Lesser the work the GC
has to do, the better.

Can we the compiler get rid of objects?

10Manas Thakur

➤ Replace an object by scalar variables representing its constituents, and use them
instead of its fields:

➤ An optimization called SCALAR REPLACEMENT.

➤ Gets rid of object allocations altogether, and just adds local variables on stack.

➤ Constant offsets from stack pointer, better cache locality, no garbage collection.

T x = new T();
...
z = x.f1 + x.f2;

class T {
 int f1;
 int f2;
 public T() {
 f1 = 10;
 f2 = 20;
 }
}

int x_f1, x_f2;
x_f1 = 10;
x_f2 = 20;
...
z = x_f1 + x_f2;

When can we not scalar-replace an object?

11Manas Thakur

➤ What if we actually needed the object?

➤ What if somebody else could modify the object’s fields?

➤ Scalar replacement is good, but several highly used Java constructs disallow object
decomposition.

T x = new T();
...
foo(x);

T x = new T();
...
if (x == y) {...}

static T global;
...
T x = new T();
global = x;

Thomas Kotzmann and Hanspeter Mössenböck. “Escape Analysis in the
Context of Dynamic Compilation and Deoptimization”. VEE 2005.

Can we scalar-replace an object in some paths?

12Manas Thakur

➤ Many objects cannot be scalarized only in cold code branches. Scalarize them in the
beginning, and rematerialize them when needed:

➤ Rematerialization requires maintaining a run-time map from scalarized objects to
the values of their fields.

T x = new T(10, 20);
if (*) {
 foo(x);
}
// Local field accesses

int x_f1 = 10;
int x_f2 = 20;
if (*) {
 foo(new T(10, 20));
}
// Local field accesses

Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. “Partial Escape Analysis and Scalar Replacement for Java”. CGO 2014.

Can we scalar-replace an object temporarily?

13Manas Thakur

➤ If the object has not escaped yet, scalarize (or privatize) its field(s) locally where they
are accessed frequently:

➤ An optimization called FIELD PRIVATIZATION.

➤ Gets rid of objects inside loops.

➤ A smarter cousin: SPLIT SCALARIZATION.

T x = new T();
while (*) {
 z = x.f;
 ...
 x.f = y;
}
global = x;

int t = x.f;
while (*) {
 z = t;
 ...
 t = y;
}
x.f = t;
global = x;

Vijay Sundaresan, Daryl Maier, Krishna Nandivada Venkata,
and Manas Thakur. “Split-Scalarization of Thread-Local

Objects in Optimized Object Code”. (Filed) US Patent, 2023.

➤ Allocate an object on the stack of its allocating method instead of on the heap:

➤ An optimization called STACK ALLOCATION.

➤ Object components still allocated contiguously, and hence available as an object.

➤ Constant offsets from stack pointer, better cache locality, free garbage collection.

Can we allocate objects on the stack itself?

14Manas Thakur

When can we not allocate an object on stack?

15Manas Thakur

➤ Objects that outlive their allocating method cannot be allocated on the stack-frame
of that method:

1: class C {
2: static D g;
3: void foo() {
4: D x = new D();//O4
5: D y = new D();//O5
6: x.f = new D();//O6
7: bar(x);
 ...
8: }
9: void bar(D p) {
10: g = p.f;
11: }
12:}
13:class D { D f; }

➤ O4 and O5 are not accessible beyond the life-
time of foo, and hence are stack allocatable.

➤ O6 (and any objects reachable from O6) may
outlive foo, and hence aren’t stack allocatable.

➤ Requires performing points-to analysis across
procedure boundaries, and then checking
reachability.

➤ Popularly called ESCAPE ANALYSIS.

Escape analysis

16Manas Thakur

➤ Tries to classify the (abstract) objects in a program into one of 3 states:
➤ DoesNotEscape

➤ MethodEscape

➤ GlobalEscape

➤ Known to be one of the most impactful analyses in terms of improving the
performance of OO programs.

➤ In managed runtimes (e.g. JVMs and .NET), performed typically by their JIT
compilers.

➤ Suffers from the imprecision of resource-constrained JIT analyses.

Can be scalar replaced.

Can be stack allocated.

Need to remain on heap.

Escape analysis in JIT compilers

17Manas Thakur

➤ Typical JITs perform complex program analyses only
at higher optimization levels (hot methods).

➤ Certainly no budget for interprocedural analysis.
(Speculative profile-based method inlining gives
some improvements.)

➤ e.g., the JIT compiler of OpenJ9 can stack allocate O5
only at hot+ levels of compilation, and O4 only when
the runtime is able to inline (or peek into) bar.

➤ Static analysis, on the other hand, is extremely
conservative in presence of calls to library methods.

1: class C {
2: static D g;
3: void foo() {
4: D x = new D();//O4
5: D y = new D();//O5
6: x.f = new D();//O6
7: bar(x);
 ...
8: }
9: void bar(D p) {
10: g = p.f;
11: }
12:}
13:class D { D f; }

PEA in PYE

18Manas Thakur

➤ Analyze applications and libraries independently, while remembering the dependencies.

➤ Resolve the dependencies during JIT compilation.

➤ Advantage: Results of precise analyses can be obtained to enable sophisticated
optimizations in the JVM, without much JIT cost.

JIT compiler

Fast, precise

analyzer

Highly optimized code

Very fast compilation

JVM

Program

output

Java

compiler

.java

files
+

One-time

library

analysis

Library

results

Source machine Target machine

.class
files
.res
files

.res
files

Partial
analyzer

Manas Thakur and V. Krishna Nandivada. “PYE: A Framework for
Precise-Yet-Efficient Analysis of Java Programs”.

TOPLAS 2019, OOPSLA 2019.

Is the story over for non-stack-allocatable objects?

19Manas Thakur

➤ An object that is often accessed through a field of a “container”, can be allocated
inside the container:

➤ An optimization called OBJECT INLINING.

➤ Reduces memory footprint, field indirections, improves cache locality.

When can we (not) inline an object?

20Manas Thakur

➤ When there are mutable references to the object from outside the container in which
it is inlined.

➤ Unless we update those references to point inside the container ==> complicated
and risky (may have to tweak with accessibility of the container, as well as disable
the possibility of its stack allocation!).

➤ Java proposes inlining objects of immutable value types (an upcoming feature)
➤ All objects of value-type classes would be inlined inside all their containers, subject

to a user-defined size threshold, during JIT compilation.

When should we not an inline an object?

21Manas Thakur

➤ When an inlined value-type object is needed in its entirety, it has to be recreated:

➤ Use escape analysis and identify inlined objects that need to be recreated more often
than being accessed through container fields!

Accountdetails a1, a2;
...
trn = new TransactionInfo(a1,a2);
...
foo(trn.creditAccount);

Arjun Harikumar, Lorenzo Prosch, and Manas Thakur. WIP.

Accountdetails a1, a2;
...
trn = new TransactionInfo(a1,a2);
...
foo(new AccountDetails(trn.accountID));

So sometimes we won’t inline an object, but…

22Manas Thakur

➤ The essential problem with inlining objects is that it destroys their header.

➤ The benefits included reduced memory, fewer indirections, and better cache locality.

➤ But we can still achieve the last two without destroying the header!

➤ We can allocate a value-type object near (or next to) its container.

➤ An optimization called OBJECT COLOCATION.

Rodrigo Bruno, Vojin Jovanovic, Christian Wimmer, and Gustavo Alonso.
“Compiler-Assisted Object Inlining with Value Fields”. PLDI 2021.

We won’t rest yet

23Manas Thakur

➤ Can we aggressively allocate objects on stack based on a precise static escape
analysis and move them to the heap, if needed (WHEN?), dynamically?

Aditya Anand, Solai Adithya, Swapnil Rustagi, Priyam Seth,
Vijay Sundaresan, Daryl Maier, V. Krishna Nandivada, and Manas Thakur.

“Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes”.
PLDI 2024.

More to come in the afternoon!

And not even after that…

24Manas Thakur

➤ Can we allocate objects on caller’s stack when they cannot be allocated on the
allocating method’s stack?

➤ Can we refactor programs to enable more scalar replacement and more object
inlining?

➤ Can we improve partially computed static-analysis results with speculation performed
during JIT compilation?

➤ Can we optimize across language boundaries in polyglot programs?

➤ Can we use static (offline) analysis to improve JIT decisions in dynamically typed
languages such as R and JavaScript?

Meetesh Mehta, Sebastian Krynski, Hugo Gualandi, Manas Thakur, and Jan Vitek.
“Reusing Just-In-Time Compiled Code”. OOPSLA 2023.

My torch bearers at IICT

25Manas Thakur

Aditya Anand

Manas Thakur

Meetesh Mehta

Rohit Yadav

CompL@CSEIITB

Anadi Mitra
Arjun H Kumar

Preet Soni

Lorenzo Prösch

Solai Adithya

(+more)

