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Abstract

Games are increasingly used to model open systems in both timed and untimed settings.
The kind of game chosen depends directly to the system under consideration and the kind
of question to be answered. The existence of determinacy, strategies for the players, the
memory requirements of these strategies, the complexity of solving the game are some
of the most sought after questions for untimed games. While for timed games there are
additional concerns of time divergence, robustness, infinite memory requirements due to
precise clocks and so on.

This report is to serve as a concise literature survey. We shall study basic notions of
games, algorithms for untimed parity games and region based solutions of timed games.
The focus shall be on the formulation of a game, the main result for that kind of game,
interesting algorithms to solve the game and the complexity of solving it.
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Chapter 1

Introduction

Verification has gathered a lot of importance in the past few decades owing to the need
to be 100% correct in safety critical as well as mission critical systems. There are sev-
eral techniques already in use and several more currently underway. Typically to verify
a system, a formal model of the system and its specification are given and we are re-
quired to check whether the system meets its specification. Some of the most studied
verification techniques include model checking wherein the system is given as a model
while the specification is given as a logical formula, proof-based verification wherein both
are described as formulae, asking simple analysis questions on the model of the system
such as language emptiness, reachability, safety when a state-based model is used for the
system. Several factors determine what kind of verification method we would choose for
a problem at hand such as the kind of the system (open vs closed), kind of specification
(full vs singular properties), complexity of the verification itself and so on.

Closed systems as the name suggests are independent entities not requiring regular
interactions with their environments. On the other hand, open systems interact heavily
with the environment. One would be quick to suggest considering the environment as a
module of the system and consider it as a closed one but the spirit of the environment is
very different from that of other modules. While the modules of the system co-operate to
achieve a goal the same can not be extended to the loyalty of the environment towards
the system. Hence, the kind of verification performed differs in spirit for closed and open
systems. Model checking, simple language theoretic analysis questions might suffice for
closed systems but for open systems we need to take into account the independence and
the important role of environment. A very natural way to look at this setting would be
as a game considering the system and the environment as two individual players in a game.

Games are becoming increasingly popular as a modeling paradigm for open systems
in verification. Open system scenario arises very often in the synthesis of controllers due
to the nature of the problem itself [44], [45]. Depending on the kind of verification to be
performed, the game chosen could have finite or infinite plays, zero-sum or non-zero sum
winning, strictly completive or coalitional interaction between the players, turn based or
concurrently proposing their moves, perfection or imperfect information of the play avail-
able to the players and so on. The arena on which the game is played depends on the
system under consideration such as timed or untimed, finite or infinite number of states
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and so on.

Research in untimed games involves objectives such as reachability, safety, Büchi, Ra-
bin, Streett and parity conditions over a graph arena. However, parity is the canonical
form of expressing all the ω− regular acceptance conditions [2]. Also Rabin and Streett
can be expressed as disjunctions and conjunctions of several parity conditions [20]. These
results have led to parity games gaining a lot dedication from several researchers. The
stage was set early on with [4] in ’95 which gives a simple and elegant solution for parity
games and proves positional determinacy. Another reason for the popularity of parity
games is that they lie in the NP ∩ Co-NP bracket [23] with the existence of a polynomial
algorithm for parity games being a long standing open problem. Attempts to improve the
exponential algorithm given by [11] have resulted in numerous interesting ways of solving
the problem. However, unfortunately the problem remains open with the best known
algorithm having sub-exponential complexity [6].

Frequently asked questions in an untimed game setting include determinacy, improv-
ing the kind of strategies, improving the complexity of building a strategy with the latter
gaining a lot of attention due to their coveted position in NP ∩ Co-NP bracket. The other
dimension of growth here is exploring different kind of games like concurrent games with
the same objectives, stochastic games, Borel games, priced games, mean-payoff games,
mean-payoff parity games and so on. The missing concept of Nash-equilibrium in graph
games is now gaining momentum with the notions of secure equilibrium [46], sub-game
perfect equilibrium [47] being introduced.

The need for games in computer science research especially in the field of verification
derives from the close relation between games and controller synthesis problems. With
the introduction of timed automata [1] in ’94 there has been an upsurge in the research
of timed systems. Timed automata provide a very neat model which captures all the es-
sential features at the same time maintaining the simplicity of semantics provide a finite
syntax for the infinite systems. Closely following the introduction [35], [37] dealing with
controller synthesis paved the for timed automata as arena for timed games. The recent
researchers take a clearer approach to games on timed automata posing the well-known
untimed ω−regular conditions for timed automata as well. Apart from these there are
average timed games played on timed automata which use time as a metric, average re-
ward time games, priced games played on the weighted counterpart of timed automata
[28].

The kind of answers sought in timed games differ little from those in untimed games.
Due to the time dimension there are additional concerns of time divergence, robustness in
strategies, dense time requirements in goals as opposed to the currently studied location-
based ω−regular goals, achieving true concurrency in a timed setting and so on. Though
there has been some research to reduce the complexity of strategy building algorithms, it
has not really gained much attention as most of the solutions rely on the untimed coun-
terparts via classical region equivalence [1]. The complexity continues to be high due to
the complexity of both region-based reduction to the untimed game and the complexity
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of solving the untimed game itself. While this on one hand is a sad state of affairs, main-
taining precise clocks to keep track of time by the strategies (typically implemented as
controllers) results in infinite memory. Most objectives that enjoy positional memoryless
determinacy in the untimed setting can get only as far as determinacy and at best finite
memory determinacy if randomization is brought in to trade with infinite memory. There
have been very few attempts, if any to solve a timed game at the timed level itself.

In this report, we shall study a handful of papers for both untimed and timed games to
get ourselves familiar with the scenario in games. Chapter 2 introduces the basic concepts
for games, some important results regarding two player zero-sum turn based games. For
untimed games, we shall concentrate on parity games with 2 players, finite arena, infinite
plays formed in a turn based fashion in the Chapter 3. As mentioned earlier, there have
been several attempts at improving the complexity and we shall look at a few recent in-
teresting ways of solving parity games. Timed games are explored in Chapter 4 where we
look at timed parity games and a few alternate ways of solving them. We shall peek into
both concurrent and turn based games to understand that concurrency can be removed in
timed games [29]. In timed games, as most of them do not solve the timed game itself but
aim for a result-preserving reduction, we will not have many strategy building algorithms
to discuss. Hence, the focus is on the different kinds of games and their formulations with
a brief idea about how they are solved. In both the chapter dealing with untimed games,
we shall present the game, the algorithm to solve it and a brief calculation of complexity.
In the timed games however, as we do not solve the timed game per-say, less emphasis
is laid on the algorithm or the calculation of the complexity. We give a briefing of the
algorithm and merely mention the complexity which is mainly dependent on the region
automata size. We shall conclude in Chapter 5 with a few open problems derived from
the games we have studied in the earlier chapters.
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Chapter 2

Building blocks

Let S be a set. Let S∗, Sω denote the set of finite and infinite words over S. If w is a
word over S then | w | denotes the length of the word. S+ denotes all the finite words of
non-zero length.

Graph

We adopt the usual notations for graphs. A graph G is denoted as G = (V,E) where V
is the set of vertices and E ⊆ V × V is the set of edges. These two sets V , E can be
either finite or infinite. If both of them are finite then the graph is called a finite graph.
A path π in a graph G is a sequence of vertices π = v0v1v2 · · · vn · · · such that ∀i, vi ∈ V
and ∀i, (vi, vi+1) ∈ E. A path is either finite π ∈ V ∗ or infinite π ∈ V ω depending on the
length. G is referred to as a directed graph if the edge set E is considered as an ordered
pairs of vertices otherwise it is called an undirected graph.

For a vertex v ∈ V , the set of its successors denoted as vE is {u | (v, u) ∈ E}. A
vertex v with no successors vE = ∅ is called a deadend. Given a path π = v0v1 · · · vi · · · ,
the ith vertex is denoted as πi while the prefix π until πi is denoted as π[0− i]. For a path
π = v0v1 · · · vn · · · , Occ(π) = {v | ∃i, πi = v} is the set of vertices visited. For an infinite
path π = v0v1 · · · vi · · · , Inf(π) = {v | ∀i, ∃j > i, πj = v} is the set of vertices visited
infinitely often.

For the remainder of the report, we consider only finite graphs with infinite paths in
them. However some of paths might be finite if they encounter a deadend. Vertices are
alternately referred to as states and edges as transitions. Unless specified otherwise, this
study pertains to undirected graphs.

2.1 Graph Games

A graph game G consist of a graph along with objectives for the players (> 1) of the
game. The vertices are partitioned among the players who push a conceptual token when
it is on their vertex along one of the outgoing edges to form an infinite path. Such an
infinite path is called a play of the game. The formal definition is given below.

Definition 2.1. A graph game is G = (V,E, P, {Vi}i∈P , {Oi}i∈P ) wherein
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1. V is the finite set of vertices,

2. E ⊆ V × V is the finite set of edges,

3. P is the finite set of players,

4. Vi ⊆ V is the set of vertices of player i. Note that the set V is partitioned among
the players i.e; ∀i, j, Vi ∩ Vj = ∅ while

⋃

i Vi = V .

5. Oi ⊆ V ω is the winning objective for the player i described as the set of plays which
are favorable to her.

Let Π denote the set of all plays in a game. In a play, current state is the vertex on
which the token is at present. For simplicity of notation, we shall refer to the graph of a
game as its arena denoted as A. A vertex v ∈ Vi is said to be a deadend for a player i if
there is no outgoing edge i.e; vE = ∅.

Given a game G, an Initialized game is a tuple (G, v) where v ∈ V . It takes into
consideration all the plays which start from v.

Winning Objectives for players

A winning objective Oi for a player i is the set of plays that i considers favorable. Alter-
nately they are also called as winning conditions. The different kinds of objectives studied
in literature are given below.

We denote by Fi ⊆ V (Fi ⊆ PV ) the set (family of sets) of states desirable to i. A
play π = v0v1v2 . . . is said to be in Oi

• Reachability - iff ∃i, vi ∈ Fi i.e; atleast one of the desired states is visited during the
play.

• Safety - iff ∀i, vi ∈ Fi i.e; all the states visited are desirable.

• Büchi - iff Inf(π) ∩ Fi 6= φ i.e; atleast one of the desired states is visited infinitely
often.

• Muller condition - iff Inf(π) ∈ Fi i.e; the set of states visited infinitely often is one
of the desired sets.

• Parity - a coloring function is defined as χ : V −→ C where C is a set of priorities
(which are usually integers) assigned to states of V . A play is in Oi iff the maximum
(or minimum in some studies) priority in Inf(π) is even.

A player loses a play π 6∈ Oi if the play ends in a deadend v ∈ Vi.
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Strategy for a player

There are several techniques for a player to ensure that the play is favorable to her. A
strategy for a player is a guiding light for her which tells at each step which vertex to
choose next so as to turn the play favorable. A strategy might require a lot memory to
remember every move since the start or might be able to pick the next vertex considering
just the current state.

Definition 2.2. • A strategy for player i is σi : V ∗Vi → V . Given a finite prefix of a
play ending in a vertex belonging to player i, σi suggests the next vertex to be chosen
so that the play turns out to be favorable to her.

• A strategy for player i is said to be winning in a vertex v ∈ V if any play starting
at v agreeing with σi is in Oi irrespective of the actions of the other players.

• A set Wi ⊆ V is called the Winning set (or winning region) for player i if she has
a winning strategy in all the vertices of Wi.

We denote by Σi the set of all strategies for player i. If player i decided to use strategy
σi ∈ Σi, the resulting play starting at state sv is represented as outcome(v, σ0, σ1, · · · ).
Hence σi is winning for i from state v iff outcome(v, σ0, σ1, · · · ) ⊆ Oi for all σj , j 6 i.

There are different kinds of strategies. A strategy σi is called

1. memoryless strategy iff σi(wv) = σi(w
′v) where w,w′ ∈ V ∗;

2. counting strategy iff σi(w) = σi(w
′) wherein w,w′ ∈ V ∗ and | w |=| w′ |;

3. finite-memory strategy iff there is another function which modifies the finite memory
as the play progresses and aids σi in deciding the next state.

4. infinite memory strategy iff the memory involved is infinite.

A game is called zero-sum if ∀i, j, Oi ∩ Oj = ∅. These games are competitive where
each player i tries to ensure that the resulting play belongs to Oi. It is easy to see that
for a zero-sum game, there is atmost one winner for a given play i.e; ∀i, j, Wi ∩Wj = ∅.
A zero-sum game is said to be determined if for a given vertex v ∈ V , one of the players
wins the play starting at v i.e;

⋃

iWi = V . If we consider a two player game, it is clear
that the winning objective of a player is a complement of the other player. Due to this,
they are often referred to as opponents of each other.

If all the players in a determined game have memoryless strategies then the game is
said to enjoy memoryless determinacy. Similar notion is extended to all the other kinds
of strategies studied above.

Consider a 2-player zero-sum game G = (V0, V1, E,O0, O1). If a winning condition is
specified for player 0 and the game is zero-sum then it is clear that the winning condition
of 1 is the complement of the condition for 0. We refer to a 2-player zero-sum game as a
reachability game if the winning condition for 0 is a reachability condition and similarly
for other conditions too.
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2.2 2-player zero-sum graph games

In this subsection, we restrict ourselves to some basic concepts pertaining to 2-player
zero-sum graph games. However, it is to be noted that most of these concepts can be
easily extended to multi-player zero-sum games. These concepts are central to the nature
of graph games and hence independent of the winning conditions. Let the two players be
0 and 1.

2.2.1 Attractor and trap sets

Given a game G with arena A = (V,E) and a set X ⊆ V , player i can force a visit to the
set X in zero or more moves from the current state of the play. The set Attri(G, X) called
the Attractor set of player i for set X is the set of vertices from which i can force a visit
to some vertex in X irrespective of the wishes of the opponent. Before the construction
of the attractor set let us look into some simple yet important operators.

For some Y ⊆ V , prei(Y ) = {v ∈ Vi|vE ∩ Y 6= φ} ∪ {v ∈ V1−i|vE ⊆ Y }.

The following is the construction of Attr0(G, X) for some X ⊆ V .
Z0 = X
Zi = Zi−1 ∪ pre0(Zi−1)
Attr0(G, X) = Zi where i is the smallest value such that Zi = Zi+1

Note that the construction of Attr1 is similar. The example 2.2.3 gives the construc-
tion of an attractor set.

Rank r assigns to each vertex s in an attractor set Attri(G, X) a positive integer
indicating the length of the shortest path from s to a vertex in X. Formally, r(s) = 0 if
s ∈ X, else r(s) = j such that s ∈ Zj \ Zj−1. A memoryless strategy σi to reach X from
any vertex in Attri(G, X) is given as σi(s) = s′ such that rank of s′ is lower than that of
s.

A Trap for player i is a set T such that she cannot force a visit to V \T . Attractor and
trap concepts are duals of each other as we shall prove below. A set X ⊆ V is called as a
0-paradise iff it is a trap for 1 and 0 has a memoryless winning strategy in X. Following
are a few easy to prove lemmas about attractors.

Lemma 2.1. Let G be a game with arena A =(V,E). Then

1. The set V \ Attri(G, X) is a trap for player i.

2. The set Attri(G, X) is a trap for player 1 − i.

3. If U is a 0-paradise then so is Attr0(G, U)

4. A union of 0-paradises is also a 0-paradise

Note that the same is true for 1-paradises. [[2] lemma 6.5]
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Proof. 1. Assume that V \ Attri(G, X) is not a trap for player i. Then ∃v ∈ V \
Attri(G, X) such that i can force a visit to V \ {V \ Attri(G, X)} = Attri(G, X).
But if such a v did exist then by definition of Attri(G, X), v ∈ Attri(G, X), a
contradiction. Hence V \ Attri(G, X) is a trap for i.

2. Assume that Attri(G, X) is not a trap for 1 − i. Then ∃v ∈ Attri(G, X) such that
1− i can force a visit out of Attri(G, X). But by construction of Attri(G, X) (recall
the definition of operator prei), v 6∈ Attri(G, X), a contradiction. Hence Attri(G, X)
is a trap for 1 − i.

3. As U is a 0-paradise 0 has a memoryless winning strategy from U . Now Attr0(G, U)
is the set of states such that 0 can force a visit to U by using a memoryless rank-
based strategy. Once in U , 0 plays the memoryless strategy that she has in U .
Additionally from the above argument it is clear that Attr0(G, U) is a trap for 1 and
by definition of 0-paradise U is also a trap for 1. Hence Attr0(G, U) is a 0-paradise.

4. Consider a union U of 0-paradises. It is clear that 1 does not have path from this
set to V \U [refer lemma 2.3] and thus U is a 1-trap.
Now the memoryless strategy can be decided as follows, an arbitrary ordering can
be given to all the 0-paradises such that they are Xi where i ∈ {1, 2, 3..} and then
for a vertex v ∈ Xi where i is the smallest such value possible, 0 chooses the strategy
meant for Xi as long as it is in Xi and wins. But if the play ventures out of Xi then
it has to be to another 0-paradise only [otherwise it would not be a 1-trap] and in
this new paradise 0 follows the strategy of this paradise and so on. This would be
the memoryless winning strategy for 0 in U . Hence U is also a 0-paradise.

2.2.2 Subgame

Given a set X ⊆ V , the graph induced by X is called a subgame denoted by G[X] such
that

1. the arena AX = (V ∩X,E ∩ (X ×X))

2. every deadend in G is also a deadend in G[X] which means that the subgame cannot
introduce any new deadends.

Lemma 2.2. Let U and U ′ be subsets of V such that G[U ] is a subgame of G and G[U ][U ′]
is a subgame of G[U ] then G[U ′] is a subgame of G. [book [2] lemma 6.2]

Proof. The subgame G[U ′] satisfies the three conditions required for it to be a subgame
of G. ie; U ′ ⊆ V and the arena of G[U ′] would be as required [because of the transitivity
of set inclusion] and also no new deadends would be introduced as G[U ′] is a subgame of
G[U ].

Lemma 2.3. 1. For every 0-trap U in G, G[U ] is a subgame.

2. For every family of 0-traps, their union is also a 0-trap.
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3. If X is a 0-trap in G and Y is a subset of X, then Y is a 0-trap of G iff Y is a
0-trap in G[X].

Note that same results hold for 1-traps. [book [2] lemma 6.3]

Proof. 1. Given a 0-trap U , to prove that G[U ] is a subgame all we need to show is that
a deadend in G[U ] would also be a deadend in G. The proof of this claim follows.
Consider a deadend v in G[U ] which is not a deadend in G.
Now if v ∈ V0 then there would be an edge going out of v to V \U in G which means
that in G 0 has a chance to escape out of U ensuring that U is not a 0-trap, a
contradiction.
Now if v ∈ V1 and vE 6= φ in G then it would become a deadend in G[U ] iff
vE ⊆ V \U . But this means that all the outgoing edges from v lead out of the trap,
enabling 0 to ensure that the play eventually moves out of U . Then U is not a
0-trap at all, which is a contradiction.

2. A 0-trap U is a set of states from which 0 does not have a path to V \U and thus
cannot escape U . A union of family of 0-traps will also be a trap for 0 because 0
cannot escape from any of these individually and 0 does not have a path from any
of them to the states outside them. Now, consider a family of 0-traps U0, U1, U2 · · ·
and let the union of all the 0-traps Ui be X. Assume that X is not a 0-trap allowing
0 to have a path from X to V \X. Then there exists a vertex v in some 0-trap Ui

such that (v, v′) ∈ E and v′ 6∈ X i,e; v′ ∈ V \X. But as Ui ⊆ X, v′ ∈ V \ Ui. But
this would mean that Ui is not a 0-trap, a contradiction. Thus X is a 0-trap.

3. Previously it has been proved that a 0-trap X is a subgame. Y ⊆ X is a 0-trap
in G means that 0 doesn’t have a path from Y to V \Y . Now this also means that
0 doesn’t have a path from Y to X\Y as Y ⊆ X ⊆ V , which implies that Y is a
0-trap in G[X]. Similar argument holds other way round too.

2.2.3 Reachability Games

As has been defined earlier, a reachability game is the one in which the winning condition
specifies that a play is winning for player 0 iff atleast one of the desired states in visited
during the play. We denote reachability games as G = (V0, V1, E, F ) where F is the de-
sired set for the reachability condition of 0.

Theorem 2.1. Reachability games have memoryless determinacy (ie both the players have
memoryless strategies) [book [2] proposition 2.18 ]

Proof. Given a game G = (V0, V1, E, F ), the set Attr0(G, F ) is constructed for player 0.
By definition of Attr0(G, F , player 0 can force the play into a state in F in zero or more
steps from any state v ∈ Attr0(G, F ). Thus 0 can win the infinite plays from Attr0(G, F ).

However, to win finite plays 0 has to ensure that the play terminates in a deadend in
V1. This can be done by constructing another attractor set such that in zero or more steps
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Example 2.1.

0 3 4 7

1 2 5 6

Figure 2.1: Game arena for reachability game

0 can force the play to terminate in a deadend of player 1. But the interesting point to be
noted is that for a deadend v ∈ V1, vE = φ ⊆ Z0 which means that by definition of pre0,
all the deadends belonging V1 must have been included in Z1 during the construction of
Attr0(G, F ). [refer to section 2.2.1]. The winning region for player 0 is W0 = Attr0(G, F )
and the winning strategy σ0 is defined as the memoryless rank-based strategy described
in section 2.2.1.

The set W1 = V \W0 is a trap for 0 as 0 cannot force any play originating in W1 to
visit F . Hence W1 is winning for player 1. The memoryless winning strategy σ1 arbitrarily
chooses one of the successors for a vertex i.e; ∀v ∈W1, σ1(v) = u ∈ vE.

As both the players have memoryless winning strategies and as the sets W0∪W1 = V ,
reachability games enjoy memoryless determinacy.

Consider the arena given in the figure 2.1. V1 is all the odd numbered states while
the rest form V0 and the desired set is F = {6, 7}. The construction of the attractor
set Attr0(G, F ) (as has been explained the previous chapter using same symbols as in the
theorem for this construction) would be as follows.
Z0 = F = {6, 7}
Z1 = {6, 7, 4}
Z2 = {6, 7, 4, 3}
Z3 = {6, 7, 4, 3, 0}
Z4 = {6, 7, 4, 3, 0}
W0 = Attr0(G, F ) = Z4.
It is easy to note that 0 can not force a visit to the desired set from any other state.

2.2.4 Büchi Games

Similar to reachability games, Büchi games have a desired set F such that π is winning
for 0 iff Inf(π) ∩ F 6= ∅ or ends in a deadend for 1. A Büchi game is represented as
G = (V0, V1, E, F ).

Theorem 2.2. Buchi games enjoy memoryless determinacy. [Theorem 2.22 [2]]
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Example 2.2.

0 3 4 7

1 2 5 6

Figure 2.2: Game arena for Buchi wining condition

Proof. In a Buchi game, the winning condition for player 0 is Inf(π)∩ F 6= φ or the last
state v of π is such that v ∈ V1 and vE = φ.
Given this information, let us first construct Attr0(G, F ), the attractor set of 0 for the set
F such that 0 can force the play to visit F in 0 or more moves. Recall that this set would
include the deadends of 1. This accomplishes a part of W0 construction.

Now we have to find a subset Recur(F ) of Attr0(G, F ) from which 0 can force a visit
to atleast one state of F atleast one more time. This set would be the winning region for
0 because from this set she can force a visit to F infinitely often. So, W0 = Recur(F ).

The construction of Recur(F ) is as follows
Z0 = F - desired states
Xi = Attr0(G, Zi) - states from which 0 can force a visit to Zi in 0 or more moves
Yi = pre0(Xi) - states from which Xi can be visited in exactly 1 step.
Zi+1 = Yi ∩ F - states in F from which 0 can force a visit to F exactly one more time.
Let k be the least such value such that Zk = Zk+1, then let U = ∪i≤kZi

Recur(F ) = Attr0(G, U).
Note that the deadends of player 1 are included in Recur(F ) as it is an attractor set for
player 0 and by definition of pre0 all deadends of 1 will be included.
W0 = Recur(F ) is the winning region of 0. The memoryless strategy σ0 for player 0 is
defined as follows. For a play π = v0v1v2..vi then the next state is σ0(vi) = vi+1 chosen as
explained below.

• If vi ∈ V1 and is a deadend then the play is finite and it is a win for player 0.

• If vi ∈ V0 ∩W0 then ∃v′ ∈ vE|v′ ∈ W0 [by definition of Recur(F )]. vi+1 = v′ as it
ensures that atleast some state of F is visited infinitely often.

• If v ∈ V1 ∩W0 then any state v′ ∈ vE can be chosen because vE ⊆W0.

Using an argument similar to the proof of Theorem 2.1 we know that player 0 cannot
win from all states in V \W0. Thus W1 = V \W0 is the winning region for player 1. The
winning strategy for player 1 is symmetrical to σ0.

Consider the Arena in figure.2.2. V1 is all the odd numbered states while the rest form
V0 and the desired set F = {5, 6, 7} for the Buchi winning condition. Here the set W
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would be {4, 5, 6, 7} while the set W0 = Recur(F ) = {2, 3, 4, 5, 6, 7}. It is to be noted that
from any other state 0 cannot win the play.

2.2.5 Parity Games

In parity games, there is a coloring function χ : V −→ C where C ⊂ Z+ is a set of
priorities. For a play π = v0v1v2 . . . . χ(π) = χ(v0)χ(v1)χ(v2). The winning condition for
player 0 requires Max(χ(Inf(π))) to be even [or as with every other game, the finite play
terminates in a deadend for player 1].

The following theorem proves that parity games also enjoy memoryless determinacy.

Theorem 2.3 (Memoryless determinacy of parity games). The set of vertices of a parity
game is partitioned into a 0-paradise and a 1-paradise. [Theorem 6.6 [2]]

Proof. This proof is built on the induction of the maximum priority n.
Base case : Consider an arena with n = 0. Here player 1 can win only on the deadends
of 0. Thus the winning region W1 = Attr1(G, φ) and the winning region of player 0 is
V \W1. The memoryless strategies are pretty straight forward.

Now assume that n ≥ 1. By induction assume that there are memoryless strategies
for both players for games with maximum priority less than n.
Let X1 be a 1-paradise in G. It is called as a trap for 0 because from any of these states
0 cannot force the play such that the maximum priority repeated is even [otherwise there
would not be a winning strategy for 1 from this set]. Now it is clear that X0 = V \X1 is
a 1-trap.
Also define the sets N = {v ∈ X0 | χ(v) = n} ie; all those states in X0 whose priority is
n. Let Z = X0\Attr0(G[X0], N) all those states in X0 from which 0 cannot force a visit
to N .
As X0 is a 1-trap, G[X0] is a subgame of G [by lemma 2.3] and as Z is a complement of an
attractor set in G[X0] it is a 0-trap and hence G[X0][Z] is also a subgame of G[X0] and is
a subgame of G [by lemma 2.2]. Now it is to be noted that Z does not contain any state
with priority n and will have priorities {0, 1, ...n − 1} and by induction hypothesis, this
game is partitioned into 0 and 1 paradises denoted as Z0 and Z1 respectively. Now Z1 is
a 0-trap in G[Z] and Z is a 0-trap in G[X0] and thus by lemma 2.3 Z1 is a 0-trap in G[X0]
Thus X1 and Z1 are 0-traps in G [be lemma 2.3]. The reason for this is basically, within Z1

1 has a strategy because of which, 0 cannot escape from the set and the play continues to
be within Z1 and similarly within X1. This would basically mean that 1 has a memoryless
winning strategy within X1 ∪ Z1 which also happens to be a 0-trap [by lemma 2.3] and
thus this union is a 1-paradise.
However if Z1 is empty which basically means that X0 = Z0 then X0 is a 0-paradise
because 1 has no escape out of Z0 as it is the winning region of 0 in the subgame G[Z]
and also 0 has a memoryless winning strategy in Z0 and thus it would be a 0-paradise.
Now all we have to prove is that this X0 is indeed a 0-paradise. To do that let us first
take a family of all the 1-paradises there are in G and denote it as W1 and let the biggest
such paradise be W1 and this would be an union of all the paradises that belong to W1.
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Now Attr1(G,W1) is the attractor set for 1 and this would again be a 1-paradise [refer
lemma 2.1]. But as W1 is the largest such 1-paradise possible Attr1(G,W1) = W1. Now
considering W0 = V \W1 this is a 1-trap as it is a complement of an attractor set and
applying the same logic as we did with X1 = W1 and X0 = W0 previously, we obtain
that W1 ∪ Z1 is a 1- paradise. But as W1 is a union of all the 1-paradises there are and
Z1 6⊆W1, it follows that Z1 = φ. Now this leaves X0 = W0 as the 0-paradise and thus we
have shown that the parity game G is partitioned into 0 and 1 paradises.

2.3 Other infinite games - Generalised Muller Games

In this section, we consider infinite games played on finite graphs with the modifications
that

1. there are no deadends meaning that ∀v ∈ V, vE 6= φ and hence there are no finite
plays

2. the winning condition is defined as follows, there is a set U ⊆ V and a family of
sets Ω ⊆ PU and for a play π Inf(π) is the subset of U repeated infinitely often.
Player 0 is said to win a play π iff Inf(π) ∈ Ω. The important point to note here
is that if U = φ then Ω = {φ} and 0 always wins and if Ω = φ then 1 always wins.
For that matter 0 wins whenever we can decide that Inf(π) = φ.

Before describing the results for these games, we introduce a finite memory strategy
that depends on which states of U have been visited and this would help us decide which
state to choose next so that 0 wins the play. This finite memory called Last visitation
record (LV R) is defined as follows. If the current state of the play is v ∈ U and the LV R
before the current move is LV R = w1w2...wh, then one of the two possible cases are that

1. v has never been visited before in which case it is appended to LV R which now
becomes LV R = w1w2..whv

2. or v has been visited before and v = wj in which case the new LV R would be
LV R = w1w2..wj−1wj+1..whv

It is very easy to observe that these games are a more general version of Muller games.
The results for these games can be extended to Muller games by taking U = V and then
Ω will be the family of sets one of which must be repeated infinitely often for 0 to win
the play. Also note that there is no chance that Inf(π) becomes a null set in such a case
because U is now V .

All the proofs that are to be discussed with regard to these games, use only the
information in LV R and thus are finite memory games. The strategies used in these
games are called LV R strategies which in simple words mean that the strategy σi is a
function which takes into account the current state and the current value of LV R and
decides the next state so that i wins the play. It is very easy to note that memoryless
strategies are a special case of LV R strategies where in the strategy picks the same state
as the successor irrespective of the LV R.
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Simple results

We shall now discuss some simple results that hold for LV R strategies.

Theorem 2.4. If a player of a game G has LV R strategies f and g such that, for sets
A,C ⊆ V , f is a winning LV R strategy from A and similarly g from C, then there is
a winning LV R strategy h for that player from A ∪ C. Furthermore, if f and g are
no-memory strategies then so is h.[paper [4] theorem 3.1]

Proof. The proof to this is very similar to the proof of lemma 2.1 and as the proof does
not use the fact that paradises use no-memory strategies, the same proof holds good here
too. Infact, this theorem can be extended to include union of several sets from which a
player has winning LV R strategies.

Theorem 2.5. If a player of a game has a winning LV R strategy f playing from p ∈ V
and q ∈ V is visited in a play from p in which the player always follows f , then he has a
winning LV R strategy f ′ playing from q. Furthermore, if f is a no-memory strategy then
so is f ′. [paper [4] theorem 3.2]

Proof. Let A be a finite portion of the play π till q which started from p and played
according to f . Now f is a LV R strategy and would look into the LV R at the state
before q before deciding that q should have been taken. Now we can device another LV R
strategy f ′ such that it takes into consideration the new LV R′ obtained from the previous
LV R but with all the states belonging to both U and A deleted. And this strategy could
be designed such that it mimics f ie; it choses the same state after q as f would have
chosen given the previous LV R. Then, Inf sets of both the plays would be the same and
thus player would win even if he started from q.

A subgraph induced by X ⊆ V which is (X, V0 ∩X, V1 ∩X,E′ = E ∩ (X ×X)) and
U ′ = U ∩ X and Ω′ = Ω ∩ PU ′

is called a subgame of G iff ∀p ∈ X∃q ∈ X such that
(p, q) ∈ E ′. And any winning play for a player in this subgame is also a winning play in
G. It is straight forward that the subgraph is a subgame by the definition of the subgraph
and the winning play has a Inf(π) belonging to Ω′ which also belongs to Ω.

Theorem 2.6. For any X ⊆ V, φ 6= X 6= V , if one of the players has a strategy from X
to keep the play within X forever then the game graph induced by X is a subgame.

Proof. Let 0 be the player who has a strategy to keep the play within X. This means
that atleast one of the 0-states has a successor within X and all of 1-states have their
successors within X. And this means that ∀p ∈ X∃q ∈ X such that (p, q) ∈ E ′ and the
other conditions needed are already fulfilled and hence this is a subgame.

2.3.1 Forgetful determinacy

Now we show that the games under consideration have forgetful determinacy i.e; both the
players have winning LV R strategies.

Theorem 2.7. In a game G, W0 ∩W1 = φ and W0 ∪W1 = V and player i’s winning
LV R strategy from Wi can be determined from G. [Theorem 4.1 [4]]
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Proof. Let |V | = m and U = {w1, w2...wn}. Now if U = φ then as was already noted 0
always wins as the Inf(π) = φ ∈ Ω. So, the following proof is for U 6= φ. It is based on
the induction of m. If m = 2 and note that it cannot be less than 2 by the definition of
a game given earlier then there are only two things to consider irrespective of what U is
0 wins if U ∈ Ω else 1 wins. Now we consider games with m ≥ 3 and assume that the
theorem holds for games with m < 3.
For each i ≤ n, a set Ni,0 and Ni,1 are constructed such that 0, 1 can keep out of wi

forever playing from Ni,0 and Ni,1 respectively. Now, N0 = Attr0(G,∪i≤nNi,0) is the set
from which 0 can play such that he keeps out of U forever and wins as Inf = φ ∈ Ω.
Similarly N1 = Attr1(G,∪i≤nNi,1) is the set from which 1 can win.
At this stage we have to consider a smaller set of V which is V −N0 −N1. there are three
cases that are possible. Each of these have been discussed below.

1. V −N0 −N1 6= φ and N0 ∪N1 6= φ
0 cannot move out of V−N0 (otherwise that state would be inN0) which means 1 can
keep the play within V −N0 forever and by theorem 2.3 the graph G1 = V −N0 = V1

is a subgame of G. Also, from a subset of V1 which is V ′ = V1 −N1 1 cannot escape
which means that this set induces a subgame G′ within G1. This subgame G′ is also as
subgame of G [by transitivity]. Thus G′ is a subgame with number of states < m and
thus by induction has W

′

1 and W
′

0 along with required strategies. These strategies
can be extended to strategies in G without any modification because moving out of
G′ would mean a loss to the players because to move out of this 0 has to move to
N1 [V ′ = V −N0 −N1] as it cant go to N0 and thus loses the play. Given these sets
and strategies we can say that N0 ∪W ′

0 = W0 and the strategy built according to
the theorem 2.3.

2. V −N0−N1 = φ. In which case, the process terminates and W0 = N0 and W1 = N1

for which there are memoryless strategies as these are attractor sets.

3. N0 ∪ N1 = φ. In this case, we prove that 0 always wins if U ∈ Ω. else 1 wins. If
U ∈ Ω then 0 wins if all the states of U are repeated infinitely often. For this we
build the following sets.

• Ai = Attr0(G, wi) and from this 0 has a no memory strategy as has been seen
in the previous chapters.

• Vi = V \Ai. This is a subgame Gi of G because 0 cannot escape from this and all
the states which have edges from Vi to Ai are 1 states and for all states within
Vi there is atleast one other state ∈ Vi such that there is an edge between them.
In this subgame 1 has no winning strategy because if he had any such strategy
then let Wi,1 be a set such that he has a winning strategy which basically means
that he can play such that he can keep the play within Gi forever and win and
thus keep it out of wi and this would mean that Wi,1 ⊆ N1 but N1 = φ and
thus 1 has no strategy to win in this subgame.

• Now, this subgame has lesser than m states and by induction hypothesis there
should be a winning strategy f for 0. This strategy is keep the play within Vi

as long as 1 allows it (because only 1-states have a transition from Vi to Ai)

15



else if 1 moves out of Vi necessarily to Ai then force a visit to wi using the
memoryless strategy. [It is to be noted that the existence of this strategy does
not in any way contradict N0 = φ because this strategy cannot help 0 keep the
play out of wi forever, it can only help 0 choose such that if 1 decides to be in
Vi then stay within Vi else visit wi]

• To win the play when 1 moves out of Vi, 0 has to ensure that all the states
of U are repeated infinitely often. For this purpose, he maintains a number
θ(LV R) which indicates which state of U to be visited next to win the play.
This number would indicate an unvisited state of U (we can have an ordering
within U such that without confusion this number points to the smallest such
state possible) else if all have been visited then point to the first state of LV R
such that it is revisited. The strategy for 0 is, if the current state is v ∈ Ai and
θ(LV R) = i then use the memoryless strategy to visit wi and update θ(LV R)
and if v ∈ Vi then choose the next state according to f(L′, v) where L′ = LV R
but with all the states in U\Vi deleted. Now proceeding like this, the Inf(π)
is either φ if 1 allows the play to be within Vi forever else U if 1 decides to
leave Vi.

We have yet to prove the other part of the theorem that the sets W0 and W1 and thus N0

and N1 are constructible. This will be proved now. Given Ni,0 building N0 is easy. To
build Ni,0 for wi we do the following

• Xi = Attr1(G, wi). And for all v ∈ V −Xi there atleast one other state q ∈ V −Xi

such that there is an edge from v to q (else p ∈ Xi). This means to say that 0 can
keep the play within V −Xi forever and thus it is a subgame by theorem 2.3.

• Now Q = V −Xi has lesser than m states wi 6∈ Q then by induction, there should
be Z0 and Z1 such that i has a winning strategy as claimed by the theorem. Also
as 1 cannot go out of this Q (if it could then it would belong to Xi), 0 can keep the
play within Z0 forever in G also.

This Z0 itself is Ni,0 because this gives 0 a strategy to keep out of wi forever and win.
Now similarly Ni,1 can also be constructed.

2.3.2 Memoryless pair

A pair (U,Ω) is called a no-memory pair if U is finite and all games (V0, V1, E) with these
as their wining conditions are no-memory games (which means that one of the players
has a no-memory strategy).
A pair (U,Ω) is said to have a split if there exist α, β ⊆ U such that either α ∪ β ∈ Ω,
α ∈ PU and β ∈ PU or else αcupβ ∈ PU ,α ∈ Ω and β ∈ Ω.
A pair (U,Ω) is a no-memory pair iff it has no splits [paper [4] theorem 6.2]

We are now familiar with some of the basic concepts in graph games. The focus for
the rest of the report will remain concentrated on different kinds of two player games
and unless mentioned otherwise we would be dealing with zero-sum winning conditions.
Henceforth, we shall dedicate one chapter each for a different kind of game like parity
games, concurrent games where both players propose their moves simultaneously, graph
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games enriched with timing information and weighted games where different vertices and
edges are perceived differently by the players. Also for the sake of simplicity of notation,
we will drop some of the components of a tuple whenever it is clear from the context.
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Chapter 3

Parity Games (Untimed)

We shall now focus on two player zero-sum turn based games with a finite arena and infi-
nite plays. Each vertex in the arena has a priority assigned to it. The winning condition
for player 0 is to ensure that the maximum priority repeated infinitely often is even. As
the game is zero-sum, player 1’s winning objective is to make the maximum priority odd.
Some of the algorithms are designed for the minimum priority. However, it is easy to see
that these can be adopted to maximum priority with minimal changes.

Parity condition is the objective which has attracted a lot of attention amongst all the
ω-regular objectives seen in the Chapter 2. This is so because of the polynomial reduction
of any given ω-regular objective on a finite arena to a parity objective on a finite arena
[2]. Due to this reduction, it is sufficient to study only parity objectives.

From the Theorem 2.3, it follows that all games with parity objectives are determined
and that both players have memoryless strategies which help them achieve their goal. The
complexity of algorithms building these strategies has been a topic of intense research be-
cause of their coveted position in the NP ∩Co−NP bracket. Existence of a polynomial
time algorithm for parity games has been the holy grail of this research but the best
known algorithm has sub-exponential complexity. Several failed attempts at reaching
the polynomial target have resulted in a series of interesting construction techniques for
strategy algorithms. We shall familiarize ourselves with these techniques in the coming
sections of this chapter. The proofs of termination, correctness and time complexity are
beyond the scope of this report.

The table 3.1 summarizes some of the interesting results for parity games. Unless
specified otherwise the arena is finite with undirected edges and vertices partitioned be-
tween the two players. An infinite play is the result of player pushing the token along
one of the outgoing edges when the token is on their vertex. Also the arena is assumed
to have no deadends. The winning objective for player 0 is that the maximum priority
repeated infinitely often is even. The case with deadends is easy to deal with. We shall
mention any deviations in description of the game under consideration.

We shall study each of these results in detail in the coming subsections.
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Game Result Complexity Technique

N/C Recursive algorithm Exponential Attractors
for memoryless strategy O(2n) [2], [11]

N/C Deterministic algorithm Subexponential Small

for memoryless strategy nO(
√

n) paradises [6]

Min priority Deterministic algorithm O(dm.( n
⌊d/2⌋)

⌊d/2⌋) small progress

repeated is even for memoryless strategy O(dn) space measures - improvement [12]

N/C Deterministic algorithm sub-exponential discrete strategy

for memoryless strategy nO((n/d)d) improvement [14]

Weak parity Deterministic algorithm Linear time Attractors [18]
(max priority for memoryless strategy

reached is even)

Generalised parity memoryless strategy Attractors [20]

(boolean expressions for disjunction nO(
√

n).O(k.d).

of parity objectives) finite memory strategy (
d

d1, d2, . . . dk)
for conjunction

Table 3.1: Table of results for parity games

3.1 Parity games - algorithms for strategies

Consider a two player zero-sum game G = (V0, V1, E, χ) where Vi is the vertex set of player
i, E is the set of edges and χ : V −→ C is the priority function assigning priorities from
C to vertices. Let V = V0 ∪ V1, | E | = m, | V |= n and | C |= d. The problem of solving
of a parity game given a vertex v ∈ V , is to determine whether player 0 has a winning
strategy for the play starting in v.

3.1.1 Exponential algorithm based on attractor method

McNaughton [4] proposed an elegant way of calculating the set of vertices from which the
given set can be reached by a player in 0 or more moves. We have studied this under the
name of Attractor in Section 2.2.1 earlier. This was adopted to parity games by Zielonka
in [11] ([2]). However, using the attractor technique to crudely calculate the winning set
for 0 yields exponential complexity as shown by the algorithm 3.1.

Algorithm 3.1 computes the winning sets of both players recursively. First it finds the
set A of vertices with the maximum priority. Without loss of generality, let the parity
of the maximum priority be even. It then solves the subgame G′ induced by the set
V \Attr0(G, A). If W ′

1 returned for the subgame is empty then 1 wins from all of vertices
of G. Else, W ′

1 is a part of 1’s winning set (can be proved by a simple argument involving
win sets as attractors) and the subgame G′′ induced by V \ Attr1(G,W ′

1) is solved. The
final solutions are given by the win sets of G′′.
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Figure 3.1: Exponential algorithm for solving parity games based on attractors [2], [11]
Algorithm : Win
INPUT : Game G = (V0, V1, E, χ)
OUTPUT : Winning sets W0,W1

1. if V = ∅ return (∅, ∅)

2. d = maximum priority in G

3. A = set of vertices with maximum priority

4. i = d mod 2 ; j = 1 − i

5. (W ′
0,W

′
1) = win(G \ Attri(G, A))

6. if W ′
j = ∅ then (Wi,Wj) = (V, ∅)

7. else (W ′′
0 ,W

′′
1 ) = win(G \ Attrj(G,W ′

j)) and
(Wi,Wj) = (W ′′

i , V \W ′′
i )

8. return (W0,W1)

This algorithm has been presented in [6] to compare with their algorithm.

Complexity

Let T (n) be the time taken to solve a game of n vertices. The algorithm 3.1 makes two
recursive calls with subgames each of which might have atmost n−1 vertices. Additionally,
it preforms attractor computations which cost around O(n2). Hence T (n) ≤ 2T (n− 1) +
O(n2). Solving this we obtain T (n) = O(2n).

3.1.2 Discrete strategy improvement algorithm

We shall now look into an algorithm for solving a parity game by improving a randomly
chosen initial strategy until we can improve it no further. A detailed description can be
found in [14]. The technique of strategy improvement for solving games was previously
used for stochastic games [15] and discounted payoff and parity games [17]. However, due
to the nature of the games these algorithms were mathematically involved and masked
the beauty of the technique. Authors of [14] adopt this technique for simple parity games
and with the help of additional information maintained for each vertex, solve the parity
game without need for any involved calculations. The interesting aspect of this algorithm
is information maintained for a vertex which has important details about the winning
play involving this vertex.
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Notations used in the algorithm

Note that the arena is considered to be bipartite here.

• Ve ⊆ V (Vo ⊆ V ) is the set of vertices with even (odd) priorities.

• Relevance ordering : orders the vertices according to their priorities i.e; u < v iff
χ(u) < χ(v).

• Reward ordering on vertices: orders the vertices according to their importance to 0
i.e; u ≺ v iff u < v ∧ v ∈ Ve ∨ v < u ∧ u ∈ Vo.

• Reward ordering on sets: P ≺ Q iff the most relevant vertex v in their symmetric
difference is in Q if v ∈ Ve or in P if v ∈ Vo.

• Reward ordering wrt another vertex: P ≺w Q same as above but with the sets
restricted to contain vertices which are more relevant than w and P ∼w Q is the
equivalence with respect to ≺w.

• Play Profile of a vertex : ψ(v) is a triple (u, P, e) where

1. u is the most relevant vertex visited infinitely often,

2. P is the set of more relevant vertices visited before first visit u and

3. e is the number of vertices before first visit of u.

All these are with respect to a play π and ψ is called a profile-vertex valuation. We
will focus on only those valuations which are in accordance with a play i.e; they
obey simple conditions such as “the value of e reduces as we proceed along the play
but before the first visit of u′′ and so on.

• Reward ordering on profiles : describing which of the two profiles is better for 0.
(u, P, e) ≺ (v,Q, f) iff

1. u ≺ v or

2. (u = v) and P ≺ Q or

3. (u = v) and (P = Q) and v ∈ Vo and e < f or

4. (u = v) and (P = Q) and v ∈ Ve and e > f

Similarly (u, P, e) ≺w (v,Q, f) and (u, P, e) ∼w (v,Q, f) can be defined.

• Strategy σ of a valuation ψ : is the one that picks the successor of a V0 vertex as
suggested by ψ i.e; the profiles of these vertices should be correctly updated as the
play progresses.

• Improving a valuation : ψ′ is improved with respect to ψ if ψ′ picks the most
rewarding vertex as the successor each time i.e; improvise the reward for 0 whenever
possible.
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INPUT: Game G = (V0, V1, E, χ)
OUTPUT : Winning sets : W0,W1 and strategies σ0, σ1

1. for each v ∈ V0 select σ0(v) ∈ V1 such that (v, σ0(v)) ∈ E

2. G′ = (V0, V1, E
′, χ) - among all edges in E only those suggested by σ0 are retained

in E ′

3. ψ = valuation(G′) - calculate the valuation in game G′ compatible with σ0 and is
optimal for 1

4. σ′
0 = σ0

5. for each v ∈ V0 select σ0(v) ∈ V1 such that ψ(σ0(v)) is the most rewarding profile
(according to ≺) if not already so

6. repeat 2,3,4,5 until σ0 = σ′
0

7. for each v ∈ V1 select σ1(v) ∈ V0 such that ψ(σ1(v)) has the least rewarding profile

8. RECALL : first component of a profile is the most relevant vertex repeated infinitely
often

9. W0 = {v ∈ V | first component of ψ(v) ∈ Ve }

10. W1 = {v ∈ V | first component of ψ(v) ∈ Vo }

11. return W0,W1, σ0, σ1

Figure 3.2: Discrete strategy improvement for solving parity games

22



Complexity

To compute the time taken by the Algorithm 3.2 we need to know the number of strategy
improvement steps (number of times the repeat–until loop is repeated) and the time
for each such step. Each step takes O(nm) as it considers for each vertex all possible
outgoing edges. The number of steps is the number of times the strategy is improved.
Now this question of how many steps has been unanswered despite the large number of
strategy improvement algorithms [15], [17] and [16]. Authors of [14] show that there exist
algorithms which terminate after O((n/d)d) strategy improvement steps and that each
step takes only nO(1). However, the Algorithm 3.2 terminates after at most n steps as it
improvises the successor for each vertex at most once.

3.1.3 Deterministic sub-exponential algorithm [6]

As we discussed earlier, reducing the time taken to compute a winning strategy for a parity
game is the most sought after problem. We shall now see the fastest known algorithm to
solve a given parity game. Prior to [6] the best known complexity i.e; sub-exponential was
given by [8] which was randomised and based on similar algorithm for stochastic games [7]
which was inspired by randomised simplex algorithms [9], [10]. Along with retaining the
sub-exponential complexity, the algorithm proposed in [6] is deterministic which makes it
the best known algorithm so far.

Dominion D ⊆ V is a small winning attractor of size l for a player i computed in
O(nl) time (Lemma 4.1 [6]). Formally, D is said to be an i−dominion if i can win from
every vertex of D without ever leaving D. It is computed as shown in module dominion
of algorithm 3.3.

Jurziński et al propose an algorithm 3.3 in [6] which improvises on the exponential
algorithm studied in section 3.1.1. The authors have reduced the complexity substan-
tially (Algorithm 3.3) by calculating smaller attractor sets and avoiding redundant re-
calculations [6]. As is evident, the new algorithm calls the old algorithm whenever it is
unable to find a dominion and if it does find one then it removes the attractor of the
dominion and recurses on the left over game. The old algorithm is the same as algorithm
3.1 except that the recursive call is made to the new one.

Complexity

The dominions calculated are of size l = ⌈
√

2n⌉. The recurrence relation for the time
taken to solve a game of n vertices is

T (n) ≤ O(nl) + T (n− 1) + T (n− l)

where in T (n − 1) is due to the first call to new-win in old-win and T (n − l) is for the
second new-win call in old-win. The second call had atmost n − l vertices as the W ′

j

calculated in old-win is a j−dominion and hence of size atleast l. Solving this recurrence
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Figure 3.3: Deterministic sub-exponential algorithm for solving parity games
INPUT : Game G = (V0, V1, E, χ)
OUTPUT : Winning sets W0,W1

Main Module : new-win(G = (V0, V1, E, χ))

1. d = maximum priority, n = number of vertices

2. l = ⌈
√

2n⌉ size of the dominion

3. if V = ∅ return (∅, ∅)

4. (D, i) = dominion(G, l)

5. j = 1 − i

6. if D 6= ∅
(W ′

0,W
′
1) = new win(G \Attri(D))

(Wj,Wi) = (W ′
j , V \W ′

j)

7. else (W0,W1) = old win(G)

8. return (W0,W1)

Module : old-win(G = (V0, V1, E, χ))

1. A = set of vertices of highest priority

2. i = dmod2

3. j = 1 − i

4. (W ′
0,W

′
1) = new win(G \ Attri(A))

5. if W ′
j = ∅ then (Wi,Wj) = (V, ∅)

6. else (W ′′
0 ,W

′′
1 ) = new − win(G \ Attrj(W

′
j)) and

(Wi,Wj) = (W ′′
i , V \W ′′

i )

7. return (W0,W1)

Module : dominion(G, l) returns i−dominion of size l and player i

1. Compute all subsets of size l

2. for each subset U of size l do all the following

3. check if it is a 0-trap or 1-trap

4. if both fail then U is not a dominion

5. if U is a i−trap then Subgame G′ = G[U ] and
if 1 − i wins from all states of G′ then return U as (1 − i)-dominion
use Algorithm 3.1

6. else U is not a dominion; try next subset24



gives total runtime to be nO(
√

n).

Consider a game with arena which has atmost two outgoing edges for every vertex.

The authors show that the running time for such a game is nO(
√

n/log n) by choosing
l = ⌈

√

n/log n⌉.

3.1.4 Small progress measures for solving parity games [12]

Section 3.1.2 achieves the best known complexity maintaining additional information for
each vertex. We shall now look into an algorithm [12] which also maintains additional
information for each vertex. The information for a vertex acts as a witness for the winning
strategy indicating which direction to proceed to reach a cycle with the smallest priority
being even. This can be easily modified for maximum priority being even.

Close observation of the parity objective tells us that a play is winning for 0 iff it
eventually reaches a cycle whose smallest priority is even. We call such cycles as even
cycles and try to indicate for each vertex whether it belongs to an even cycle.

Notation used in the algorithm

Recall that d is the number of priorities in the game G.

1. Tuple ordering : (a1, a2, a3 · · ·ad) ∼i (b1, b2, b3 · · · bd) denotes the lexicographic or-
dering ∼ between the two d−tuples applied to the first i components.

2. Progress measure : A function ̺ : V → Nd is a parity progress measure if
∀(v, w) ∈ E, ̺(v) ≥χ(v) ̺(w) and the inequality is strict if χ(v) is odd. Intuitively,
a progress measure indicates the existence of only even cycles.
The lexicographic ordering for tuples is extended to progress measures such that
̺ ⊑ µ if forall v ̺(v) ≤ µ(v).

3. MG : is the set of d−tuples such that each tuple has only zeros on even positions
and odd positions i have a positive integer in {1, 2, · · · |V i|} where V i is the set of
vertices of priority i. By M⊤

G we denote the set MG ∪ {⊤} where ⊤ is the biggest
element.

4. prog(̺, v, v) for a parity measure ̺ : V →M⊤
G and (v, w) ∈ E is the least m ∈M⊤

G

such that m ≥χ(v) ̺(w) and if χ(v) is odd then the inequality is strict or is the
top element. Intuitively, prog(̺, v, w) picks for an edge (v, w) the same value as
indicated by ̺(w) or the next value if χ(v) is odd and the comparison is up to the
first χ(v) positions.

5. Game parity progress measure : a progress measure ̺ is called a game parity
progress measure if

• for all v ∈ V0, ̺(v) ≥χ(v) prog(̺, v, w) for some (v, w) ∈ E and

• for all v ∈ V1, ̺(v) ≥χ(v) prog(̺, v, w) for all (v, w) ∈ E
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Figure 3.4: Algorithm : computing the winning game parity progress measure
INPUT : Game G = (V0, V1, E, χ)
OUTPUT : Winning game parity progress measure ̺

1. Let ̺ be a measure which assigns the tuple (0, 0, · · ·0) to all vertices

2. while ̺ < Lift(̺, v) for some v ∈ V

3. do ̺ = Lift(̺, v)

4. return ̺

Intuitively, a game parity progress measure is the one that indicates the winning
strategy’s moves for V0 by indicating the successor and ensures that 1 cannot ruin
the play as it requires all successors of a V1 vertex to adhere to the tuple ordering.
A value ⊤ assigned to a vertex indicates that this vertex is losing for 0.

6. Strategy σ0 for ̺ : picks the successor having the least value of ̺.

7. Lift(̺, v)(u) is given as follows

• ̺(u) if u 6= v

• max{̺(v), min(v,w)∈Eprog(̺, v, w)} if u = v ∈ V0

• max{̺(v), max(v,w)∈Eprog(̺, v, w)} if u = v ∈ V1

Intuitively, Lift(̺, v) improves the value assigned to v according to prog such that
̺(v) is retained if v ∈ V0, is updated to the least value larger than ̺(v) (up to χ(v)
positions). It improves ̺ for a given vertex so that the value is now optimal for 0
i.e; indicates the winning even cycle.

Algorithm

From the definition of Lift operator given at 7 in the list above, it is clear that a progress
measure that has been lifted for all vertices is our final progress measure which gives
the winning strategy. Hence the simultaneous fix-point of Lift(̺, v) for all v will be our
winning measure.

Complexity

The algorithm 3.4 takes O(d.n) space as it keeps just a d−tuple for each of the n vertices.
Its running time is O(d.m.( n

⌊d/2⌋)
⌊d/2⌋). We omit the details here. The authors claim that

their algorithm can be modified to have a O(d.m.(n+d
d

)⌈d/2⌉) as its worst-case running
time.

Optimizations : The running time can be improved by pre-computing values of the
least progress measure, decomposing the game into maximal strongly connected compo-
nents as we work with cycles.
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Improvement of the algorithm [13]

The algorithm using progress measures for each vertex of the game studied above deter-
mine the winning set for player 0 by assigning an integral value 6= ⊤ while all those states
whose measures are ⊤ are winning for player 1. [13] analyses the exact role played by
the measure in the winning set of 0 given that the priorities of the vertices are 0,1 and 2.
The authors conclude that the measure assigned to a winning vertex is always below the
number of states with priority 1 (denoted by V 1). As the algorithm studied above works
to find a fix-point iterating each time it can improve the measure of atleast one vertex,
the number of iterations it would need are proportional to V 1.

[13] proposes a faster way of reaching the fix-point while maintaining the worst-case
behavior by reducing the number of iterations whenever possible. Let there exist a mea-
sure 0 < k < V 1 which is not assigned to any vertex but there are vertices with measures
> k. Such a measure is called a k-gap and the authors prove that any vertex with a
measure larger than k is losing for 0 and is given the measure ⊤. Such an improvement
reduces the number of iterations needed to reach a fix-point. However, it is not clear
whether how well this trick extends to games with more than 3 priorities.

3.2 Modified Parity Games

There are several variations of parity games each of which attempts to reduce the com-
plexity of solving the game. Some variations restrict the number of priorities, some
restrict the number of out-edges, some restrict the winning condition itself. On the other
hand, due the growing popularity of parity games, several research directions opened up
experimenting with the parity conditions by generalizing them, adopting existing parity
techniques, and comparing the expressiveness and determinacy with those of parity games.

We shall consider in the coming subsections two modifications in opposite directions
with one restricting the parity condition and the other generalizing it. As one would
expect, the complexity for the weak condition is much lower than that known for par-
ity games while that for the generalized condition is much higher requiring memory for
winning strategies in some cases.

3.2.1 Weak Parity Game

A weak parity game is a normal parity game with the modification that the winning ob-
jective for player 0 consists of all infinite plays whose least priority visited is even. This
class of games is well suited for solving reachability games with an additional requirement
on the priorities. This objective was first considered in [19] which solved the game and
showed the run time to be O(d,m)1. However, a keener observation and improved analysis
of the algorithm show the run time to be O(m) [18].

1Recall that d is the number of priorities, m is the number of edges and n is the number of vertices in

the game
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Figure 3.5: Algorithm to solve weak parity games

1. INPUT : Game G = (V0, V1, E, χ)

2. OUTPUT : Winning sets (W0,W1) that partition V

3. G0 = G; W0 = W1 = ∅

4. For each priority j,

• Let i = j mod 2

• find the attractor Aj for the set of vertices with priority j for player i

• This attractor is part of the Wi

• Gj+1 = Gj \ Aj

End for

5. return (W0,W1)

The algorithm is based on the calculation of attractors presented in Section 2.2.1. It
works as follows.

It works by calculating the attractors for each priority and working on the subgame
removing these attractors. The removed attractors form parts of winning sets depending
on the priority they correspond to. Since it works by removing vertices, we believe that
it terminates.

Complexity

A naive analysis of this gives the run time to be O(d.m) as it works on the graph with d
priorities and for each priority, we work on the edges to find the calculate the attractors.
However, [18] cleverly shows that several edges are removed each time we shrink the game.
The costliest operation performed in this algorithm is attractor computation. We know
that for the computation of an attractor we analyze edges of a graph. Thus the total
number of edges actually analyzed throughout the entire game is just m and hence the
run time is just O(m). Additionally, [18] provides efficient ways to compute attractors
and the set of vertices of a priority in a shrunk game.

3.2.2 Generalized Parity Games [20]

Simple parity condition studied in the Sections 3.1 are sufficient to deal with all ω-regular
objectives. However, there are other important winning conditions namely Rabin and
Streett which cannot be captured by simple parity conditions. [2] shows that a Streett
condition can be expressed as a Rabin condition. Simple parity conditions (NP ∩ Co-
NP [23]) are actually special cases (closed under complementation) of both Rabin (NP-
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Figure 3.6: Algorithm to solve generalized parity games
INPUT : Game G = (V0, V1, E, {χ1, χ2, · · ·χk}) [Player 0 has conjunction and 1 has
disjunction of parity objectives]
OUTPUT : Winning sets W0,W1

1. Pick one of the disjuncts and let its max even priority be d

2. The set of states from which 1 wins by (a) visiting d finitely often or (b) visiting
d− 1 infinitely often or (c) win by lower priorities or (d) win by other disjuncts

3. Find the attractor A for 1 for priority d−1. This is a trap for 0 where she cant win.

4. Additionally find an attractor B for 1 for a simpler winning condition i.e; subgame
without the set A

5. Both A and B are winning for 1. So we remove these two and proceed with the
subgame in a recursive fashion.

6. After this has been done for all disjuncts, the remaining states are winning for 0.

complete) and Street (Co-NP complete) [22].

By the nature of the conditions (studied in Chapter 2) it is clear that each pair in a
Rabin family can be captured by a simple parity condition. Thus to capture the entire
winning objective posed by Rabin condition, a disjunction of simple parity conditions.
Similarly Streett can be expressed as a conjunction of parity conditions.

Rabin-Street conditions are duals of each other and hence fit well together as com-
plementary objectives of the two players in a zero-sum game. Rabin games enjoy mem-
oryless determinacy while Street have finite memory determinacy [21]. The known com-
plexity to solve Rabin and Street games was O(m,nk, k!) [21] where k is the number
of pairs in the family. [20] retains these determinacies and improves the complexity to

nO(
√

n).O(k.d).(
d

d1, d2 · · · dk) where d1, d2 · · · dk are priorities for the k pairs.

The classical algorithm for conjunction and disjunction was given by Zielonka. We
shall briefly describe that algorithm for disjunction now. Let d1, d2 · · · dk are the k prior-
ities assigned to a vertex. As they are duals of each other we shall assign conjunctions to
player 0 and disjunctions to player 1. Note that by disjunction or conjunction of parity ob-
jectives we mean that each objective is simple parity objective for the player. For example
the disjunction for player 1 means that a play is winning for 1 if the least priority repeated
infinitely often is odd for atleast one of the k priorities. The actual priority objectives
for player 1 considered in [20] are obtained by complementing the priority functions given
and requiring the maximum priority to be even. But for the sake of simplicity we have
taken the same functions and require the max priority to be odd for 1. Intuitively, this
algorithm keeps multiple simple parity condition solving algorithms active at the same
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time. It finds the winning sets and their attractors for each of the simple conditions.
These are then removed and it recurses on the left-over game.

Complexity

[20] improve the complexity by calculating the attractors efficiently. To do this, they use
the concept of dominions introduced in [6]. They identify winning sets in the subgames
as dominions. As these are small winning attractors with efficient algorithms to com-
pute them, the algorithm can use this to calculate attractors and reduce complexity to

nO(
√

n).O(k.d).(
d

d1, d2 · · · dk).

It is easy to see that due to the rank-based memoryless strategy for attractors described
in section 2.2.1, player 1 has memoryless determinacy. As player 0 has a conjunction of
objectives to satisfy, she needs to remember all of them and hence needs atleast finite
memory for her winning strategy.
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Chapter 4

Timed Games

In this chapter we will focus on games played on an arena with timing information. Tra-
ditionally, this arena is a timed automaton [1] with some slight deviations. We shall first
give a brief notational introduction to timed automata and the main result of language
emptiness decidability.

Essentially, timed automata are finite automata augmented with clocks which grow
at the same rate and maintain timing information. These are variables over which we
can write boolean expressions to check their values and assignment expressions to update
their values. As the clocks take real values, the number of configurations (states) in a
timed automaton are infinite. Thus it is difficult to use the algorithms known for finite
automata to check for language emptiness.

The decidability of language emptiness is due to the existence of an equivalence rela-
tion of finite index on the set of all states. Once this relation has been proved to exist,
a finite automata (untimed) can be built whose language is symbol-equivalent to the
timed language. (we will study the notion of this equivalence later.) However there are
several generalizations [26], [27] of the classical timed automata which do not enjoy this
decidability. Even more interesting aspect of this relation is that it exists for a particular
generalization and suddenly becomes unavailable for slight variations of the model espe-
cially if we are varying the number of clocks in the model. It has been a long standing
open problem whether an equivalence relation exists for several models with 3 clocks [25],
[27].

As it turns out, this concept of equivalence classes is central to all kinds of analysis
questions posed on timed automata. Several timed games we will study in the coming
sections of this chapter have positive results precisely because of this equivalence relation.
The game structure given has a timed automaton for its arena. This arena is abstracted
out into a finite automata using the finite index equivalence relation on the infinite state
set. The timed game is then structured into an equivalent untimed one seeking a goal
very similar to the timed game.

We shall first give the list of latest-most improved results for timed games, then we
shall study in the Section 4.2 the class of timed games.
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LetX be the set of clocks, cm the maximum constant appearing the clock constraints,|L|
be the number of locations, SR be the set of states (equivalence classes) in the region au-
tomaton with R as the set of regions. As in the untimed games, turn-based timed games
partition the set of locations while concurrent games partition the set of actions. Let Li

(Ei) be the set of locations (actions) available to player i. The table 4.1 gives the scenario
for timed games. Unless specified otherwise, the table deals with two player zero-sum
games with timed automata as arena. The plays are infinite but need not be turn based.
We shall mention for each game the deviations from this description and the winning
conditions. H stands for the set of locations in the parity automaton representing the
goal.

4.1 Preliminaries of timed automata

We consider as time domain T the set Q+ or R+ of non-negative rationals or reals, and
A a set of actions. A time sequence over T is a non-decreasing sequence τ = (ti)i≥1 ; for
simplicity t0 is taken to be zero always. Let X be a set of clocks. A clock valuation over
X is a mapping ν : X → R+. We denote by RX

+ (or TX) the set of clock valuations over
X. If ν ∈ TX and τ ∈ T, then ν+τ is the clock valuation defined by (ν+τ)(x) = ν(x)+τ ,
for x ∈ X. A guard or constraint over X is a conjunction of expressions of the form x ∼ c
where x ∈ X, c ∈ N and ∼∈ {<,≤, >,≥,=}. We denote by C(X) the set of guards
over X. The satisfaction relation for guards over clock valuations is denoted as ν |= ϕ
whenever valuation ν satisfies guard ϕ in the usual way.

Clock constraints allow us to test the values of clocks. To change the value of a clock
x we use clock resets. U0(X) denotes the set of resets φ ∈ U0(X) defined as φ ⊆ X.

Let ν be a valuation and φ ⊆ X be a clock reset. We use the notation ν ′ = ν[φ := 0]
to denote ν ′(z) = ν(z) for all z ∈ X\φ and ν ′(y) = 0 for all y ∈ φ.

4.1.1 Timed Automata

A timed automaton [1] is a tuple A = (L,L0, A,X,E, F ) where L is a set of locations;
L0 ⊆ L is a set of initial locations; A is a set of symbols; X is a set of clocks; E ⊆
L×L×A×C(X)×U0(X) is the set of edges and F ⊆ L is a set of final locations. C(X)
and U0(X) are the set of clock constraints and clock resets as described above. An edge
e = (l, l′, a, ϕ, φ) represents an edge from l to l′ on symbol a, with the valuation ν ∈ TX

satisfying the guard ϕ, and then φ gives the resets of certain clocks.

Timed Transition System

It is clear that due to infinitely many values taken by clocks, the number of states (l, ν),
l ∈ L, ν ∈ TX is infinite for a timed automaton. We define for a given timed automaton
A the timed transition system TA over the set of states L × TX . The state of a timed
automaton can change in 2 ways:
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Game Result Complexity Technique

Concurrent memoryless - safety O(|L|.|X|!.2|X|.(2Cmax + 1)|X|.|H|.|H∗||H|+1) Symbolic algorithms [33]
Parity no memoryless -reach Goal parity automaton

Concurrent memoryless - safety EXPTIME complete Randomised time strategy [34]
Parity finite memory -reach parity as reach and safety

Concurrent Reduction to turn Edges = |SR|.((cm + 1).(|X| + 2).2). Regions to untime [29]
Parity based untimed parity (|E1| + 1).[(|E2| + 1).((cm + 1).(|X| + 2).2)] apply actions sequentially

States = |SR|.(1 + (cm + 1.(|X| + 2).2.(E1 + 1)))

Concurrent Receptive strategy O((|L|.(cm + 1)|C||C + 1|!2|C|)2|C|) Fix point µ expression [31]
Time to reach EXPTIME complete on extended clock regions

Turn Functions to compute O(|R|3) Strategy improvement [30],
Time to reach time, # to reach EXPTIME complete for 2 clocks of regionally constant strategy

Turn Reduction to EXPTIME complete for 2 clocks Regions consistent [32]
Min/Max avg-price untimed with values

avg time/edge

Table 4.1: Table of results for timed games
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1. Due to elapse of time: for a state (l, ν) and a real-number t ≥ 0, (l, ν)
t−→ (l, ν+ t).

This kind of transition is called a timed transition.

2. Due to a location-switch: for a state (l, ν) and an edge (l, l′, a, ϕ, φ) such that ν |= ϕ,
(l, ν)

a−→ (l′, φ(ν)). We call such a transition, an A-transition.

A path is a finite (infinite) sequence of consecutive (time or location-switch) transi-
tions. The path is said to be accepting if it starts in an initial location (l0 ∈ L0) and ends
in a final location (or repeats a final location infinitely often). A run through a path from a

valuation ν ′0 (with ν ′0(x) = 0 for all x) is a sequence π = (l0, ν
′
0)

t1−→ (l0, ν1)
(a1,ϕ1,φ1)−→ (l1, ν

′
1)

t2−→ (l1, ν2)
The timed word corresponding to the run is tw = (a1, t1)(a2, t2)(a3, t3) · · · (an, tn). Note
that νi = ν ′i−1 + (ti − ti−1), νi |= ϕi, and that ν ′i = νi[φi := 0], i ≥ 1. A timed word tw is
accepted by A iff there exists an accepting run (through an accepting path) over A, the
word corresponding to which is tw. The timed language L(A) accepted by A is defined
as the set of all timed words accepted by A.

Note that we refer to l ∈ L as a location and e ∈ E as an edge while (l, ν) as a state
and (l, ν) −→ (l′, ν ′) as a transition.

4.1.2 Region Automata

Given a set X of clocks, let R be a partitioning of TX . Each partition contains a set
(possibly infinite) of clock valuations. Given α ∈ R, the successors of α represented by
Succ(α) are defined as

α′ ∈ Succ(α) if ∃ν ∈ α, ∃t ∈ T such that ν + t ∈ α′

The partition R is said to be a set of regions iff

α′ ∈ Succ(α) ⇐⇒ ∀ν ∈ α, ∃t ∈ T such that ν + t ∈ α′.

A set of regions is consistent with time elapse if two valuations which are equivalent (within
the same partition) stay equivalent with time elapse. A region α ∈ R is said to satisfy a
clock constraint ϕ ∈ C(X) denoted as α |= ϕ, if ∀ ν ∈ α, ν |= ϕ. A clock reset φ ∈ U0(X)
maps a region α to a region α[φ := 0] = α′ such that α′ ∩ {ν[φ := 0]} 6= ∅ for ν ∈ α.

A set of regions R is said to be compatible with a set of clock constraints C(X) iff
∀ϕ ∈ C(X) and ∀α ∈ R exactly one of the following holds (a) α |= ϕ or (b) α |= ¬ϕ. A
set of regions R is said to be compatible with a set of clock resets U0(X) iff α′ = α[φ :=
0] ⇒ ∀ν ∈ α, ∃ν ′ ∈ α′ such that ν ′ = ν[φ := 0].

Given a timed automaton A, and a set of regions R compatible with C(X) and U0(X),
the region automaton R(A) = (Q,Q0, A, E

′, F ′) is defined as follows: Q = L×R the set
of locations; Q0 = L0 × {α0} (α0 is the region where ν(x) = 0 for all x ∈ X), the set of
initial locations; F ′ = F × R ⊆ Q the set of final locations; E ′ ⊆ (Q × A × Q) is the
set of edges. (l, α)

a→ (l′, α′) if ∃α′′ ∈ R and a transition (l, l′, a, ϕ, φ) ∈ E such that (a)
α′′ ∈ Succ(α), (b) α′′ |= ϕ and (c) α′ = α′′[φ := 0].

Let tw = (a1, t1)(a2, t2)(a3, t3) · · · (an, tn) be a timed word then Untime(tw) = a1a2 · · ·an.
Also, Untime(L(A)) = {Untime(twi) | ∃twi ∈ L(A)}. The region automaton is an ab-
straction of the timed automaton accepting Untime(L(A)) [1].

Theorem 4.1. Let A be a timed automaton. Then the problem of checking emptiness of
L(A) is decidable.
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4.2 Games played on timed automata

In this section we shall study the strategies available to a player in a timed game over
timed automaton. [35], [37] paved the way for timed games. Treating timed automata as
a game structure and building winning strategies for player 0 (controllers in these papers)
was the beginning of timed games over timed automata. A series of papers [33], [29], [30],
[31], [32], [34] followed which dealt with different winning objectives, adding meaning to
a timed strategy, improving the result by introducing randomness and so on. However,
most of the papers rely on the classic region equivalence available to a timed automata
and reduce the given timed game to the corresponding untimed version.

The notions of game introduced in Chapter 2 can be extended in a simple fashion
to timed games by replacing the arena of untimed graph with timed automata. The
moves proposed or selected by the players in untimed games are outgoing edges from the
vertex. As the infinite transition system of a timed automaton differs from the finite
representation, the players actually carve out a timed path in the transition system by
proposing timed moves (t, a) from a state (l, ν). While there is no notion of a language in a
timed game, the goal or objective is represented as a set of desirable paths in the transition
system. There are several ways of representing this objective with the simplest form being
extending the untimed objectives to a timed setting by considering the objective to hold
only with respect to the locations and hence called location goals. For example, if we
consider a parity objective in a timed game, it would require the infinitely repeated priority
to be even plays winning to player 0. This objective places no timing restriction and hence
the objective is with respect to the location and not the clock valuation. However, there
is some work on timed objectives too [36]. A strategy of a player tells for a given prefix
of the play the move to be proposed.

4.2.1 Concurrent timed games

Though the notion of concurrency is not fully matured in a timed setting, several papers
have attempted to capture this essential aspect in a game. [33] was the first attempt in
this direction. Concurrency is expressed by requiring both players to propose moves of
the form (t, a) where t is the time player wants to elapse before executing action a. Hence
the edge set E is partitioned into E1 and E2 The move with smaller of the two delays is
chosen and that player gets her way. The immediate concern is that of time divergence
as the player how proposes 0 delay always gets to play her actions. Thus there is a trivial
winning strategy for any player. But such a strategy is not physically meaningful as it
induces zeno-plays and are thus invalid. Hence for a strategy to be physically meaningful
it has to ensure time divergence.

Several attempts have been made to achieve time divergence, placing syntactic re-
strictions [37], [38], [36] or semantic restrictions [39]. Others [35] require the controller
(player 0) to ensure time divergence. While all these means do achieve the goal they are in
some sense too restrictive and limit the expressiveness. [33] followed by [29], [31] and [34]
follow a rather decent way of capturing time divergence by imposing certain additional
requirements on the winning objective. This is by far the least restrictive with respect to
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the game’s expressiveness.

Given a goal Φ for player i, the actual winning objective in [33] for which the winning
sets and strategies are computed is given by WCi(Φ)(Φ∩ td)∪ (Blamelessi \ td) where td
represents the set of time divergent runs (where in the total time elapsed over the infinite
run tends to infinity) and Blamelessi is the set of runs where i is responsible for only
finitely many moves (and hence even if the run is converging, as 1 − i is guilty of this
convergence, i still wins the play). Such a modification along with giving a meaningful
expression to time divergence also ensures that for a given play, there is atmost one
winner. However, it is possible that there are plays which are won by neither player
and this also results in some locations of the automaton being winning for neither of the
players. A simple proof of this lack of run-level determinacy can be given by considering
a run where both players propose moves 0 delays throughout the game. Such a game
cannot be declared winning for either player as it would be against the notion we are
trying so hard to capture. This is a serious drawback in timed games leading to the
following theorem. Note that in such a game we can strive for two levels of determinacy
namely strong and weak. A game is strongly determined if plays losing to 0 can be won
by 1 and a game is weakly determined if 1 can force the play (losing to 0) away from the
winning plays of 0 i;e 1 can force the game into WC1(∼ Φ) or ∼WC0(Φ) respectively.

Theorem 4.2. The timed automaton games (and hence, the timed game structures) are
neither weakly, not strongly determined for the class of reachability goals. [33].

It is also shown in [33] that while safety objective can have memoryless strategies in
both timed and untimed games, reachability has memoryless in untimed and only finite
memory strategies in timed games.

Goal as a parity automaton [33]

[33] and [34] deal with timed games by using the elegant techniques proposed in [40]
for untimed games with an infinite state set. They achieve this by first expressing the
given ω−regular objective as a parity objective. This objective is then translated into a
deterministic and total parity automaton which is a deterministic finite automaton with
labels and priorities derived from the locations of the timed automaton. The totality and
determinism are with respect to the labeling function which assigns to each vertex in the
parity automaton the name of a location in the timed automaton.

Time divergence is imposed by extending the states with additional information such
as tick which is true if the clock valuation of the state’s predecessor saw an integer unit
elapse, blame is true if 0 was responsible for the preceding transition. It is easy to see
that using these additional information, the set of meaningful winning plays i.e; the set
WCi(Φ) for player i can be captured. The states of both the timed automaton and the
parity automaton are augmented with information tick and blame. A µ−calculus formula
is derived for the winning plays by finding the time divergent fix point of the Controlled
predecessor operator. Controlled predecessor of a state indicates the set of states from
which 0 can force a visit to the state in one move.
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The solution for timed games outlined in [33] is along the same lines as [40] but for
the timing part requires all the µ−calculus formulae over the parity automata to be re-
gionally constant (i.e; for any two states with their locations being the same and their
clock valuations being in the same region the operators in the formula behave alike).
The strategy in a timed game proposes the move (t, a) from a state (l, ν) such that

(l, ν)
t−→ (l, ν + t)

a−→ (l′, ν ′) where l′ would have been chosen by the strategy for un-
timed version in [40] and t is chosen such that the action a is enabled.

Complexity -The time taken to compute the winning set is O(|L|.|X|!.2|X|.(2Cmax +
1)|X|.|H|.|H∗||H|+1) where H is the set of states in the parity automaton and H∗ is the
set of states in the parity automaton augmented with additional information. The rest of
the variables pertain to the timed automaton (described in Section 4.1). [33] also proves
that solving a timed game for a location goal is EXPTIME complete.

Trading memory for randomness [34]

The strategy outlined above from [33] proposes a time delay t for every move by accessing
an infinitely precise clock and hence requires infinite memory to hold the value of this
clock. [34] proposes to use only finite memory for the strategies but at the cost of ran-
domizing them. Note that all the goals are location goals.

Here too the given timed automaton states are augmented to impose time divergence.
Winning states and strategies for set B of safety states are achieved by solving the untimed
version of the game over the region automaton for reachability of L \B and reverting the
winning sets for 0 and 1. The strategy for 1 is the rank based strategy for attractor set
Attr1(G, L \ B) while 0 chooses any outgoing edge in the remaining states which form a
trap for 1. All the states are augmented with additional information to help ensure time
divergence by requiring at least a few clocks to be reset infinitely often. The strategy can
propose any time delay because no matter what 1 does it cannot escape the winning set
of 0 which is a trap to 1.

For solving the reachability objective, the attractor to the set of states is computed
and the rank based strategy is used to predict the action part of the move (t, a) from the

state (l, ν). Let (l, ν)
t−→ (l, ν + t)

a−→ (l′ν ′). The time delay t is predicted by taking
the least possible time taken to reach the region containing the state (l, ν + t). If such
a minimum does not exist i.e; the interval of times to reach the region is not left closed
then the strategy randomly and uniformly chooses a value within the interval. As it does
not pick an exact value to wait, the need for a precise clock is eliminated. However, such
strategies can be implemented only for those controllers which can wait a random amount
of time. As they do not require to know the precise time delay they do not need a precise
clock and an imprecise one would do as well.

The authors outline a very simple algorithm for solving timed parity games too. Let
us first understand how to solve an untimed parity game through reachability and safety.

• Let G0 = G be the given game and i = 0.
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• Find a set of states Attr0(Gi, V d) of the game Gi for the vertices of maximum even
priority d.

• Solve the left over subgame Gi′ = Gi[V \Attr0(G, V d)] with less number of priorities
to obtain the winning set Y i for 0.

• Solve the game Gi for the safety objective of staying within Y i to obtain the winning
set Z i.

• The same is repeated for the subgame induced by V i = V \ Z i until V i = Z i. This
V i is winning for 0.

Note that Controlled predecessor operator is used in the construction of Attr sets.

Intuitively, the notion of winning set in a parity game can be expressed as those
states from which we can reach the states with desired priorities (reachability require-
ment) and once we have reached these states, the play can stay there forever (safety
requirement). The strategy from the winning states is built by using the strategies of
reachability and safety in the corresponding sets. Strategy for reachability objective in
the states in Attr0(G, V d) the attractor rank based strategy is used and the strategy for
safety objective in the set Z i is by arbitrarily choosing some state in the set Z i (works by
the definition of winning set for a safety objective). The timed version is similarly solved
for winning sets and strategies.

Memory requirements- The authors show that reachability strategies and thus
parity strategies can not be memoryless. If they are memoryless then 1 can easily figure
out the least delay proposed by 0 and always propose lower than that but beyond 0 time
units and always win the play. Thus to ensure that 1 does not collect all the delays
proposed by 0 and propose lower than the least of 0’s delays, 0 has to propose infinitely
many delays and to do so 0 would need a precise clock. However, they are not sure if
safety can be achieved by memoryless strategies. It is important to note that due to the
use of an imprecise clock for randomised strategies only finite memory is needed. Thus
for safety objective deterministic finite memory strategies exist while for reachability and
parity randomised finite memory or deterministic infinite memory (outlined in the section
4.2.1) exist.

Untiming the timed game [29]

The techniques of solving timed games that we saw above though elegant do not exploit
the the main feature of a timed automaton. Most results pertaining to timed automata
rely largely on the classical region equivalence. Now we shall brief a technique which
untimes the given timed parity game [29].

The notion of time divergence and the means of achieving it by modifying the winning
objective is adopted here too. The states of the timed automata are augmented with
the boolean flags tick and blame which carry the same meaning as earlier. Now a region
automaton is constructed considering regions over these augmented states. However, as
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the players concurrently their actions are disjoint and hence the set E in the timed au-
tomaton is partitioned.

In the timed game, from a state (l, ν) player i had the move (ti, ai) such that i reaches
(l, ν + ti) and then (li, νi) if her move was picked. In the region automaton, from a state
sr = [(l, ν)] player 0 always picks the region R0 and action a0 indicating that she would
like to elapse enough time to reach R0 and then take the action a0. After 0 has reached
her desired state s0

r = [(l0, ν0)] in the region automaton, 1 proposes her own region, action
pair R1, a1 to reach s1

r = [(l1, ν1)] provided she move in the timed game could defeat 0’s
move. Thus the given timed parity game is converted into an untimed finite bipartite
turn based parity game.

The winning states for 0 in the region automaton give the locations winning for her in
the original timed game. The proof of this follows immediately from the proof of language
emptiness decidability in [1]. Now, any of the techniques described in Chapter 3 can be
used to solve the untime parity game.

Complexity-As the solution is largely based on the conversion to an untimed automa-
ton, the main contributing factor to the run time is the size of the region automaton. The
number of states in the region automaton is |SR|.(1+ (cm +1)|.(|X|+2).2.(|E1|+1)) and
the number of edges is |SR|.((cm + 1).(|X| + 2).2).(|E1|)[1 + (E2 + 1).((c1).(|X| + 2).2)]

4.2.2 Turn based timed games

Timed automata can also be considered as arena for turn based timed games. These
have been investigated in [30], [32] and also extensively over the weighted counterpart of
timed automata. We shall look into [30] and [32] to gain a quick peek into turn based
games. These games are very similar in nature to the concurrent ones seen earlier except
that the play progresses in a turn based fashion. There is an additional feature in these
games. They introduce simple yet relevant metrics into a game and the players now try
to minimize or maximize the chosen metric. Min and Max are the two players (coun-
terparts of players 1 and 0 respectively) and while Max is interested in maximizing the
value she wins while Min wants to minimize the value she loses. [30] treats this value as
the runtime of the play π represented by rt(π).

The explicit mention of time divergence does not arise in either of the papers but if
we observe the objectives of the players, Max will try to ensure that the runs are time
divergent as she wants to maximize the time spent during the play. However, Min might
try to make a play zeno as the value she loses is the value gained by Max. But, this state
of affairs is no worse than the time divergence condition seen earlier which allows player
1 to cause time convergent plays as long as 0 need not take the blame for it. As it is
implicitly achieved, we shall remain silent about this requirement while discussing these
papers.

The set of locations L of the timed automaton is partitioned between the two players
as it is a turn based game. As it is a timed game moves proposed are (t, a) where t
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is the time to be elapsed before the action a. The strategy for a player guides her by
determining for a given finite prefix of the play, the move to be proposed.

Reachability time as a value [30]

One of the most interesting yet heavily overlooked metric for a timed game would be the
time taken by the play itself. [30] deals with the players working towards this metric.
Given a play π, Max wins rt(π) while Min loses rt(π). Hence it is a zero-sum game with
respect to the metric. The winning objective for Max is to ensure that the play reaches
a desired set of locations and at the same time maximize the runtime while that for Min
would be to avoid the set and minimize the time taken.

As it is important to maximize the time, the authors compute the optimal (best for
both players concerned) time to the reachability set F ⊆ L and the number of hops
(number of moves) to reach it. These computations are done by two functions T and
D which are optimal iff they satisfy all of the following conditions. For a given state
s = (l, v)

• if D(s) = ∞ then T (s) = ∞

• if l ∈ F then D(s) = T (s) = 0

• if l ∈ Lmin \F then T (s) = infa,t{t+T (S ′) : s
t−→ s′′

a−→ s′} and D(s) is 1 +D(s′)
where s′ was picked for T (s).

• if l ∈ Lmax \F then T (s) = supa,t{t+T (S ′) : s
t−→ s′′

a−→ s′} and D(s) is 1+D(s′)
where s′ was picked for T (s).

We have noted in earlier sections that the number of states in a timed automaton are
infinite due to the real value clock valuations. This being the case, it would be imprac-
tical to calculate the values of T and D for the states individually. As the objective is
a reachability one and hence a location goal, we can play the same old trick of working
with the untimed regions and then extracting results for the timed version.

Let R(A) be the region automaton for the original timed automaton A and let SR =
L × R be the set of states in R(A). Recall that R is the finite set of regions over the
clock valuations. Now we shall define similar functions TR and DR for this automaton
too. These are known to be optimal iff for a state sr ∈ SR

• if sr ∈ FR then DR(sr) = TR(sr) = 0

• if sr ∈ Smin \FR then TR(sr) is the minimum value of T (s) such that sr = [s] taken
over all possible ways out to reach the next region and DR(sr) is incremented by 1
in the direction chosen by TR.

• if sr ∈ Smax \ FR then TR(sr) maximizes the value of T (s) such that sr = [s] taken
over all possible ways out to reach the next region and DR(sr) is incremented by 1
in the direction chosen by TR.
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Now we will see a strategy improvement algorithm for computing these functions and
the winning strategy for Max.

1. Start with any regionally constant positional strategy for player µo for Min

2. Let i = 0

3. Solve the subgame restricted to µi as a one player game to obtain Ti, Di. As Min
does not have any moves, the game is played solely by player Max.

4. Improve µi to be the most optimal for player Min at all states if not already optimal.

5. i = i+ 1

6. stop when µi+1 = µi

7. return Ti, Di

The algorithm to solve the one player game for Max is along the same lines and
can be obtained by replacing all occurrences of Min above by Max. Note that though
positional strategies do exist as the goal is reachability, they might require a finite amount
of memory to keep track of time delay to be proposed (which is typically obtained from
the clock intervals serving as delay between two regions).

Complexity - The algorithm takes O(|SR|) number of iterations to terminate and hence
runs in O(|SR|3) time. The problem of solving reachability time games in EXPTIME-
complete on timed automata with at least two clocks.

Similar work has been done independently for concurrent timed games too [31].

Average time as the value [32]

In this game the metric the players would be fighting for is the average time per transition
and this in itself is the sole winning objective. Untimed versions of these games were stud-
ied [41], [42] and [43]. The metric in an untimed game is the price attached to the edges
while the players play in a turn based fashion. While Min tries to minimize the average
(taken over the infinite play) price of the play, Max tries to maximize it. For a price
function price and a play π = v0v1 · · · , V∗(π) = lim supn→∞.(1/n).

∑n
i=1 price(vi−1, vi)

is the value lost by Min. The value V ∗ gained by Max is obtained by replacing the
sup by inf . For a vertex v, v = infµ∈Σmin

supχ∈Σmax
V ∗(outcome(v, χ, µ)) while v =

supχ∈Σmax
infµ∈Σmin

V∗(outcome(v, χ, µ)). A game is said to be determined if for all v,
v = v. [43] shows that every average-price game is determined and optimal positional
strategies exist for both players.

In the timed setting, the metric is the average runtime with the average taken over
several plays with the same strategies. For player Min, V∗(s, χ.µ) = lim supn→∞.(1/n).
rt(outcome(s, χ.µ)) is the value lost for plays starting at state s = (l, ν) with Max and
Min using the strategies χ and µ respectively. Similarly V ∗(s, χ, µ) can be defined by
replacing sup with inf . As before, s and s can be defined. The notion of determinacy
remains same when interpreted over the infinite state set of states (l, ν) where l is the
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location of the timed automaton and ν is the clock valuation.

Due to the infinitely many states, we rely once again on the strength of region au-
tomaton. The definitions of all the values V∗, V

∗, sr and sr are similarly defined except
that the runtime rt would calculate the time elapsed between two regions as opposed to
two states. Now, positional determinacy in the game on region automata follows from
the result in the untimed average-price games and the fact that the region set is finite.
The average-time game on the region automaton is solved using the known techniques
for untimed versions. Thus the game on timed automaton is determined and needs some
memory to maintain timing information.

Complexity - The authors claim that the value of the game on region automaton can
be solved by an EXPTIME algorithm. Additionally, it is EXPTIME-complete for timed
automata with at least two clocks.
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Chapter 5

Problems to ponder over

We have studied several different algorithms for solving untimed parity games in Chapter
3 and several formulations of timed games in Chapter 4. While the untimed game scenario
is quite mature and stabilised with most of the resarch there focusing mainly on improving
the complexity. Timed games are yet to reach that stage of maturity. There are several
directions of research yet to be given attention to. We shall list a few problems that
we have formulated over the period of this literature study. We are as yet not aware of
any existing solutions for these problems and equally unware about the feasiblity and the
impact factor.

Parity games

Following is a list of open problems yet to be explored for parity games.

1. Weak Parity Games [18] - Does the complexity remain polynomial for a bounded
number of visits to the max or min priority vertex? Of course, the strategies will no
longer be memoryless. How does the complexity change with the number of visits?

2. Complexity reducing tricks for parity games - Parity games are known to
enjoy memoryless determinacy [4] and hence all the strategies every built are mem-
oryless. The best known algorithm is sub-exponential [6]. Will the complexity
reduce if we considered strategies with finite or infinite memory? So far, very few
algorithms use the trick of randomization. Can there be a randomized algorithm
which achieves better complexity?

3. Restricted parity games - with some of the parameters (number of priorities,
out edges, in edges, no. of vertices, no. of visits, etc) restricted can we reduce the
complexity.

4. Multi player parity games - definition of the game has to be proposed. Questions
similar to parity can be asked here too.

5. Infinite arena games - can the currently known techniques (progress measures
[12], strategy improvement [14]) be extended to infinite arena games?
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6. Nash equilibrium, Nash determinacy - untimed games with the payoff being
simple metrics like number of times minimum vertex visited, number of vertices in
the path before the loop/desired vertex, number vertices in the loop i.e; we want to
see the desired vertex as often as possible etc.

7. Sharing of vertices i.e; V0 ∩ V1 6= ∅ - pick some criterion to decide whose move
is picked. This should be interesting cause it is too strict to declare that only one
player has a say. At some vertices it is turn based and at others it is concurrent i;e
an open system which is asynchronous most of the times but has some synchronous
points?

8. Deterministic sub-exponential algorithm for solving parity games [6] -
based on dominions of size l = ⌈

√
2n⌉. How does tweaking this factor affect the

complexity given by recurrence relation T (n) ≤ O(nl) + T (n− 1) + T (n− l)?

9. Probabilistic turn based parity games - each player has a probability distribu-
tion over the outgoing edges from her vertex.

Timed games

Following are some directions which can be explored in the context timed games.

1. Concurrent probabilistic times games - enriching games in [24] with time.

2. Complexity of timed buchi games - traditional timed automata with locations
partitioned among the players i.e; turn based games. The complexity should be
lower than that for parity conditions technically speaking. The same technique of
[29] can be used to untime and then apply untimed Buchi games algorithms. In
untimed case, they exhibit better complexity than parity conditions.

3. Problems of parity with time - add timing dimension to parity problems in
earlier section.

4. Coalitional timed games - non-zero sum games.

5. Hybrid arena for timed games - considering some of the locations as concurrent
and some as turn based. Same as problem 7 in untimed parity games problems.

6. Arena defined on the states as opposed to locations - For example one of the
ways to define the arena on states would be to mention for a location, the invariants
under which player i can choose the outgoing edge.

7. Timing constraints in the goals - so far most of the research has been aimed at
location goals.

8. Do the results vary with the number of clocks - as the results are closely tied to
region equivalence, would the number of clocks change the known results.

9. Equilibria - There are some papers dealing with time as a metric, can we formulate
notions of equilibria for these games?
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[9] J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear program-
ming, Algorithmica, 16 (1996), pp. 498 - 516.

[10] G. Kalai, A subexponential randomized simplex algorithm (Extended abstract), in
Symposium on Theory of Computing, STOC92, ACM Press, 1992, pp. 475 - 482.

[11] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata
on infinite trees, Theoretical Computer Science, 200 (1998), pp. 135 - 183.
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